CN104079359A - Cooperative spectrum sensing threshold optimization method in cognitive wireless network - Google Patents

Cooperative spectrum sensing threshold optimization method in cognitive wireless network Download PDF

Info

Publication number
CN104079359A
CN104079359A CN201410256853.1A CN201410256853A CN104079359A CN 104079359 A CN104079359 A CN 104079359A CN 201410256853 A CN201410256853 A CN 201410256853A CN 104079359 A CN104079359 A CN 104079359A
Authority
CN
China
Prior art keywords
threshold
lambda
delta
sigma
partiald
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410256853.1A
Other languages
Chinese (zh)
Other versions
CN104079359B (en
Inventor
朱琦
金燕君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201410256853.1A priority Critical patent/CN104079359B/en
Publication of CN104079359A publication Critical patent/CN104079359A/en
Application granted granted Critical
Publication of CN104079359B publication Critical patent/CN104079359B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种认知无线网络中协作频谱感知门限优化方法,该方法对基于表决融合的双门限协作频谱感知中的投票门限和检测门限分别进行了优化。首先,固定双门限能量检测的检测门限值,对表决融合准则的投票门限进行优化,使得在该能量检测门限值条件下,协作频谱感知的全局错误概率最小;然后在表决融合准则的投票门限取最优值的前提下,对双门限能量检测的检测门限值进行了优化,在不同接收信噪比条件下,最优的检测门限值是动态的,所以要根据信噪比确定最优的检测门限值。该发明可以使协作频谱感知的全局错误概率在各信噪比条件下都达到最小值,从而提高了协作频谱感知的性能。

The invention provides a cooperative spectrum sensing threshold optimization method in a cognitive wireless network. The method optimizes respectively the voting threshold and the detection threshold in the dual-threshold cooperative spectrum sensing based on voting fusion. First, the detection threshold of dual-threshold energy detection is fixed, and the voting threshold of the voting fusion criterion is optimized, so that the global error probability of cooperative spectrum sensing is the smallest under the condition of the energy detection threshold; Under the premise of taking the optimal value of the threshold, the detection threshold value of the double-threshold energy detection is optimized. Under the condition of different receiving signal-to-noise ratio, the optimal detection threshold value is dynamic, so it should be determined according to the signal-to-noise ratio Optimal detection threshold. The invention can make the global error probability of the cooperative spectrum sensing reach the minimum value under each signal-to-noise ratio condition, thereby improving the performance of the cooperative spectrum sensing.

Description

一种认知无线网络中协作频谱感知门限优化方法A Cooperative Spectrum Sensing Threshold Optimization Method in Cognitive Wireless Networks

技术领域technical field

本发明涉及一种认知无线网络中协助频谱感知门限优化方法,属于通信技术领域。The invention relates to a threshold optimization method for assisting spectrum sensing in a cognitive wireless network, and belongs to the technical field of communication.

背景技术Background technique

随着无线通信技术不断取得巨大发展,如蓝牙、Wifi、WSN、3GLTE等,越来越多的通信系统需要分配无线频谱,无线电波非视距传播的特性决定了无线设备适合使用3GHZ以下的频段,但是传统的固定分配频谱机制保证了每一种通信系统都固定占用某一频段,导致目前为止可供分配使用的3GHZ以下的频段寥寥无几。与此同时,已授权频谱的使用效率却很低,只有15%~85%。认知无线电可以有效解决频谱匮乏,它允许次用户在空闲的已授权频段进行数据传输。频谱感知作为认知无线电的关键技术,得到广泛深入的研究。认知用户需要周期性地进行频谱感知,检测主用户是否存在,若检测到主用户不存在,则可以利用该授权频段进行数据传输。认知用户需要具备很高的检测概率,一旦主用户重新出现,必须很精确地检测到主用户的出现,并在规定的时间内迅速退出该频段,尽量避免对主用户的干扰。With the continuous great development of wireless communication technology, such as Bluetooth, Wifi, WSN, 3GLTE, etc., more and more communication systems need to allocate wireless spectrum. The characteristics of non-line-of-sight propagation of radio waves determine that wireless devices are suitable for using frequency bands below 3GHZ , but the traditional fixed spectrum allocation mechanism ensures that each communication system will occupy a certain frequency band, resulting in very few frequency bands below 3 GHz available for allocation so far. At the same time, the utilization efficiency of authorized spectrum is very low, only 15% to 85%. Cognitive radio can effectively solve spectrum scarcity by allowing secondary users to transmit data in vacant licensed frequency bands. As a key technology of cognitive radio, spectrum sensing has been extensively and deeply researched. Cognitive users need to perform spectrum sensing periodically to detect whether the primary user exists. If no primary user is detected, the authorized frequency band can be used for data transmission. Cognitive users need to have a high detection probability. Once the primary user reappears, the presence of the primary user must be detected accurately and quickly exit the frequency band within the specified time to avoid interference to the primary user.

频谱感知的方法主要包括匹配滤波检测、能量检测和循环平稳特征检测等方法,其中能量检测方法的判决方法是先设置一个门限,通过能量检测器与设定的门限相比较,超过检测门限,就认为该频段内有主用户存在。它的优点是方法简单,计算复杂性低,且不需要主用户的先验信息,是本地频谱感知的主要方法,但是在低信噪比条件下检测性能差,因为信号淹没在噪声中,能量检测法只能计算信号的能量,不能区分出干扰是来自信号还是噪声。由于噪声的不确定性,传统的单门限能量检测门限值不易设定,而且当认知用户感知到的主用户能量位于门限值附近时,容易发生误检,采用双门限能量检测可以大大降低误检概率。另外,由于隐蔽终端、多径衰落等问题的影响,单用户检测性能很差,多次用户协作频谱感知可以有效提高检测性能,协作频谱感知利用了相同数据在不同终端不同传输路径的多接收的优势,获得空间分集增益。Spectrum sensing methods mainly include matched filter detection, energy detection, and cyclostationary feature detection. The judgment method of the energy detection method is to set a threshold first, and compare it with the set threshold through the energy detector. It is considered that there is a primary user in this frequency band. Its advantage is that the method is simple, the computational complexity is low, and it does not need the prior information of the main user. It is the main method of local spectrum sensing, but the detection performance is poor under the condition of low signal-to-noise ratio, because the signal is submerged in the noise, and the energy The detection method can only calculate the energy of the signal, and cannot distinguish whether the interference comes from the signal or the noise. Due to the uncertainty of noise, the threshold value of traditional single-threshold energy detection is not easy to set, and when the primary user energy perceived by cognitive users is near the threshold value, false detection is prone to occur. Using double-threshold energy detection can greatly Reduce the probability of false detection. In addition, due to the influence of hidden terminals and multipath fading, single-user detection performance is very poor. Multi-user cooperative spectrum sensing can effectively improve detection performance. advantage, gaining space diversity gain.

衡量协作频谱感知性能的主要参数是全局虚警概率和全局漏检概率,它们之和被定义为全局错误概率。首先,协作频谱感知的性能与融合算法密切相关,协作频谱感知的融合准则有AND准则、OR准则、表决融合准则等,其中OR准则等价于表决融合准则的投票门限为1、AND准则是等价于表决融合准则的投票门限为次用户的总个数,所以AND准则和OR准则都是表决融合准则的特例。故表决融合准则的投票门限值与频谱感知性能有着紧密联系。其次,利用双门限能量检测方法进行频谱感知时,检测门限值的选取很大程度上影响着感知的性能。在各接收信噪比条件下,认知用户如何确定双门限能量检测的检测门限值以及怎样选取合适的表决融合准则投票门限值成为了必须研究解决的问题。The main parameters to measure the performance of cooperative spectrum sensing are the global false alarm probability and the global missed detection probability, and their sum is defined as the global error probability. First of all, the performance of cooperative spectrum sensing is closely related to the fusion algorithm. The fusion criteria of collaborative spectrum sensing include AND criterion, OR criterion, voting fusion criterion, etc., where the OR criterion is equivalent to the voting threshold of the voting fusion criterion is 1, and the AND criterion is Since the voting threshold of the voting fusion criterion is the total number of secondary users, both the AND criterion and the OR criterion are special cases of the voting fusion criterion. Therefore, the voting threshold of the voting fusion criterion is closely related to the spectrum sensing performance. Secondly, when using the dual-threshold energy detection method for spectrum sensing, the selection of the detection threshold greatly affects the sensing performance. How to determine the detection threshold of dual-threshold energy detection for cognitive users and how to select the appropriate voting threshold for voting fusion criteria has become a problem that must be studied and solved under the conditions of each receiving signal-to-noise ratio.

发明内容Contents of the invention

技术问题:本发明的目的是提供一种认知无线网络中优化协作频谱感知性能的方案,该方法可以使得协作频谱感知的全局错误概率在各接收信噪比条件下都达到最小值,从而达到提高协作频谱感知性能的目的。Technical problem: The purpose of the present invention is to provide a scheme for optimizing the performance of cooperative spectrum sensing in a cognitive wireless network. This method can make the global error probability of cooperative spectrum sensing reach the minimum value under each receiving signal-to-noise ratio condition, thereby achieving The purpose of improving the performance of cooperative spectrum sensing.

技术方案:该方法对基于表决融合的双门限协作频谱感知中的投票门限和检测门限分别进行了优化,首先,固定双门限能量检测的检测门限值,对表决融合准则的投票门限进行优化,使得在该能量检测门限值条件下,协作频谱感知的全局错误概率最小;然后在表决融合准则的投票门限取最优值的前提下,对双门限能量检测的检测门限值进行了优化,在不同接收信噪比条件下,最优的检测门限值是动态的,所以要根据信噪比确定最优的检测门限值。Technical solution: This method optimizes the voting threshold and detection threshold in the dual-threshold cooperative spectrum sensing based on voting fusion. First, the detection threshold of the dual-threshold energy detection is fixed, and the voting threshold of the voting fusion criterion is optimized. Under the condition of the energy detection threshold value, the global error probability of cooperative spectrum sensing is the smallest; then, on the premise that the voting threshold of the voting fusion criterion is the optimal value, the detection threshold value of the dual-threshold energy detection is optimized, Under the condition of different receiving signal-to-noise ratio, the optimal detection threshold is dynamic, so the optimal detection threshold should be determined according to the signal-to-noise ratio.

本发明所针对的认知无线网络中基于表决融合的集中式协作频谱感知系统结构如图1所示。包括一个主用户,多个次用户以及一个融合中心,认知用户通过各自的感知信道(次用户接收主用户信号经过的信道)接收主用户信号的能量信息,然后对接收到的主用户信号的能量信息进行双门限能量检测,做出本地判决结果,并将各自的判决结果通过报告信道(次用户将判决结果传输给融合中心经历的信道)发送至融合中心,融合中心对接收到的判决结果进行表决融合,得到最终判决结果。认知无线网络根据此最终检测结果来判断该授权频谱是否空闲。The structure of the centralized cooperative spectrum sensing system based on voting fusion in the cognitive wireless network targeted by the present invention is shown in FIG. 1 . Including a primary user, multiple secondary users and a fusion center, the cognitive users receive the energy information of the primary user signal through their respective sensing channels (the channel through which the secondary user receives the primary user signal), and then analyze the energy information of the received primary user signal Double-threshold energy detection is performed on the energy information to make local judgment results, and the respective judgment results are sent to the fusion center through the reporting channel (the channel through which the secondary user transmits the judgment results to the fusion center), and the fusion center evaluates the received judgment results Voting fusion is carried out to obtain the final judgment result. The cognitive wireless network judges whether the licensed spectrum is free according to the final detection result.

能量检测法是频谱检测最基本的方法。它测量信道中的无线频率能量或者接收到的信号强度指标(RSSI)来判断信道是否被占用。能量检测的性能决定了最终的感知结果和感知性能,而能量检测的性能主要与门限值、噪声平均功率、信号平均功率和采样数有关。若采用传统的传统的单门限能量检测法,选取λ作为单门限能量检测的门限值,则能量检测的虚警概率pf和检测概率pd为:Energy detection method is the most basic method of spectrum detection. It measures the radio frequency energy in the channel or the received signal strength indicator (RSSI) to determine whether the channel is occupied. The performance of energy detection determines the final perception result and performance, and the performance of energy detection is mainly related to threshold value, noise average power, signal average power and sampling number. If the traditional traditional single-threshold energy detection method is adopted and λ is selected as the threshold value of single-threshold energy detection, the false alarm probability p f and detection probability p d of energy detection are:

pp ff == PP (( EE. (( xx )) >> λλ || Hh 00 )) == QQ (( (( λλ σσ uu 22 -- 11 )) ττ ff sthe s ))

pp dd == PP (( EE. (( xx )) >> λλ || Hh 11 )) == QQ (( (( λλ σσ uu 22 -- γγ -- 11 )) ττ ff sthe s 22 γγ ++ 11 ))

其中:γ为次用户的接收信噪比;是噪声方差;τ是次用户的感知时间;fs为采样频率; Q ( x ) = 1 2 π ∫ x ∞ exp ( - t 2 2 ) dt . Where: γ is the receiving signal-to-noise ratio of the secondary user; is the noise variance; τ is the perception time of the secondary user; f s is the sampling frequency; Q ( x ) = 1 2 π ∫ x ∞ exp ( - t 2 2 ) dt .

本发明所采用的双门限能量检测有两个检测门限λ0、λ1,如图2所示,则次用户对应的本地判决准则为:The dual-threshold energy detection adopted in the present invention has two detection thresholds λ 0 and λ 1 , as shown in Fig. 2, then the local decision criterion corresponding to the secondary user is:

DD. == 00 ,, EE. (( xx )) << &lambda;&lambda; 00 11 ,, EE. (( xx )) >> &lambda;&lambda; 11 Uu ,, &lambda;&lambda; 00 << EE. (( xx )) << &lambda;&lambda; 11

其中:U表示能量值落入不定区间时,次用户不做出本地判决。Among them: U means that when the energy value falls into an indeterminate range, the secondary user does not make a local decision.

由于隐蔽终端、多径衰落等问题的影响,单用户检测性能很差,多次用户协作频谱感知可以有效提高检测性能,协作频谱感知的融合准则有AND准则、OR准则、表决融合准则等,其中OR准则等价于表决融合准则的投票门限为1、AND准则是等价于表决融合准则的投票门限为次用户的总个数,所以AND准则和OR准则都是表决融合准则的特例。协作频谱感知的检测性能与表决融合准则的投票门限、双门限能量检测的检测门限密切相关,于是本发明首先对表决融合准则的投票门限进行优化,然后在表决融合准则的投票门限取最优值的前提下,对双门限能量检测的检测门限值进行了优化,在不同接收信噪比条件下,最优的检测门限值是动态的,所以要根据信噪比确定最优的检测门限值,使得协作频谱感知的全局错误概率在各信噪比条件下都达到最小值,从而提高了协作频谱感知的性能。Due to the influence of hidden terminals and multipath fading, single-user detection performance is very poor. Multi-user cooperative spectrum sensing can effectively improve detection performance. The fusion criteria of cooperative spectrum sensing include AND criterion, OR criterion, voting fusion criterion, etc., among which The OR criterion is equivalent to the voting threshold of the voting fusion criterion is 1, and the AND criterion is equivalent to the voting threshold of the voting fusion criterion being the total number of secondary users, so both the AND criterion and the OR criterion are special cases of the voting fusion criterion. The detection performance of cooperative spectrum sensing is closely related to the voting threshold of the voting fusion criterion and the detection threshold of the double-threshold energy detection, so the present invention first optimizes the voting threshold of the voting fusion criterion, and then takes the optimal value of the voting threshold of the voting fusion criterion Under the premise of , the detection threshold value of dual-threshold energy detection is optimized. Under the condition of different receiving signal-to-noise ratio, the optimal detection threshold value is dynamic, so the optimal detection threshold value should be determined according to the signal-to-noise ratio. The limit value makes the global error probability of cooperative spectrum sensing reach the minimum value under each SNR condition, thus improving the performance of cooperative spectrum sensing.

有益效果:双门限能量检测较之传统的单门限能量检测,可以大大降低频谱感知的误检概率,而且由于隐蔽终端、多径衰落等问题的影响,单用户检测性能很差,多次用户协作频谱感知可以有效提高检测性能。本发明基于双门限能量检测的协作频谱感知方法,在融合中心采用表决融合准则对各次用户的本地判决结果进行融合,将优化目标设为全局错误概率,基于该优化目标对表决融合准则的投票门限值和双门限能量检测的检测门限值进行选取,使全局错误概率最小,从而提高了协作频谱感知的性能。Beneficial effects: Compared with traditional single-threshold energy detection, double-threshold energy detection can greatly reduce the false detection probability of spectrum sensing, and due to the influence of hidden terminals, multipath fading and other problems, single-user detection performance is very poor, and multiple users cooperate Spectrum sensing can effectively improve detection performance. The cooperative spectrum sensing method based on double-threshold energy detection in the present invention adopts the voting fusion criterion in the fusion center to fuse the local judgment results of each user, sets the optimization goal as the global error probability, and votes for the voting fusion criterion based on the optimization goal The threshold value and the detection threshold value of double-threshold energy detection are selected to minimize the global error probability, thereby improving the performance of cooperative spectrum sensing.

附图说明Description of drawings

图1为本发明的系统模型。Fig. 1 is the system model of the present invention.

图2为本发明的双门限判决模型。Fig. 2 is the double-threshold decision model of the present invention.

具体实施方式Detailed ways

按照单门限能量检测的相关概率定义,定义双门限能量检测的相关概率如下:According to the definition of correlation probability of single-threshold energy detection, the correlation probability of dual-threshold energy detection is defined as follows:

pp ff == PP (( EE. (( xx )) >> &lambda;&lambda; 11 || Hh 00 )) == QQ (( (( &lambda;&lambda; 11 &sigma;&sigma; uu 22 -- 11 )) &tau;&tau; ff sthe s )) -- -- -- (( 11 ))

pp aa == PP (( EE. (( xx )) << &lambda;&lambda; 00 || Hh 00 )) == 11 -- QQ (( (( &lambda;&lambda; 00 &sigma;&sigma; uu 22 -- 11 )) &tau;&tau; ff sthe s )) -- -- -- (( 22 ))

&Delta;&Delta; 00 == PP (( &lambda;&lambda; 00 << EE. (( xx )) << &lambda;&lambda; 11 || Hh 00 )) == 11 -- pp ff -- pp aa == QQ (( (( &lambda;&lambda; 00 &sigma;&sigma; uu 22 -- 11 )) &tau;&tau; ff sthe s )) -- QQ (( (( &lambda;&lambda; 11 &sigma;&sigma; uu 22 -- 11 )) &tau;&tau; ff sthe s )) -- -- -- (( 33 ))

pp dd == PP (( EE. (( xx )) >> &lambda;&lambda; 11 || Hh 11 )) == QQ (( (( &lambda;&lambda; 11 &sigma;&sigma; uu 22 -- &gamma;&gamma; -- 11 )) &tau;&tau; ff sthe s 22 &gamma;&gamma; ++ 11 )) -- -- -- (( 44 ))

pp mm == PP (( EE. (( xx )) << &lambda;&lambda; 00 || Hh 11 )) == 11 -- QQ (( (( &lambda;&lambda; 00 &sigma;&sigma; uu 22 -- &gamma;&gamma; -- 11 )) &tau;&tau; ff sthe s 22 &gamma;&gamma; ++ 11 )) -- -- -- (( 55 ))

&Delta;&Delta; 11 == PP (( &lambda;&lambda; 00 << EE. (( xx )) << &lambda;&lambda; 11 || Hh 11 )) == 11 -- pp dd -- pp mm == QQ (( (( &lambda;&lambda; 00 &sigma;&sigma; uu 22 -- &gamma;&gamma; -- 11 )) &tau;&tau; ff sthe s 22 &gamma;&gamma; ++ 11 )) -- QQ (( (( &lambda;&lambda; 11 &sigma;&sigma; uu 22 -- &gamma;&gamma; -- 11 )) &tau;&tau; ff sthe s 22 &gamma;&gamma; ++ 11 )) -- -- -- (( 66 ))

其中:H1和H0分别表示主用户存在和不存在的情况,△0和△1分别表示在H0、H1条件下次用户接收到的能量值位于不定区间的概率,γ为次用户的接收信噪比,是噪声方差,τ是次用户的感知时间,fs为采样频率,本发明所采用的双门限能量检测有两个检测门限λ0、λ1Among them: H 1 and H 0 respectively represent the existence and non-existence of the primary user, △ 0 and △ 1 represent the probability that the energy value received by the user next time under the conditions of H 0 and H 1 is in the uncertain interval, and γ is the secondary user The receiving signal-to-noise ratio of is the noise variance, τ is the perception time of the secondary user, f s is the sampling frequency, The double-threshold energy detection adopted in the present invention has two detection thresholds λ 0 and λ 1 .

假设有N个次用户进行频谱感知,其中做出本地判决的次用户将判决结果发送给融合中心,融合中心对接收到的判决结果进行表决融合,表决融合的投票门限为n,则融合中心按照表决融合准则:Assuming that there are N secondary users performing spectrum sensing, the secondary users who make local decisions send the judgment results to the fusion center, and the fusion center performs voting fusion on the received judgment results. The voting threshold for voting fusion is n, then the fusion center follows Voting Convergence Guidelines:

Ff == 00 ,, &Sigma;&Sigma; ii == 11 NN DD. ii << nno 11 ,, &Sigma;&Sigma; ii == 11 NN DD. ii &GreaterEqual;&Greater Equal; nno -- -- -- (( 77 ))

判断主用户的存在与否,其中Di表示第i个次用户做出的本地判决结果。则本地判决采用单门限能量检测时,全局虚警概率Qf和全局检测概率Qd分别为:Judging whether the primary user exists or not, where D i represents the local judgment result made by the ith secondary user. Then when the local judgment adopts single-threshold energy detection, the global false alarm probability Q f and the global detection probability Q d are respectively:

QQ ff == 11 -- &Sigma;&Sigma; ll == nno NN CC NN ll (( 11 -- pp ff )) ll pp ff NN -- ll -- -- -- (( 88 ))

QQ dd == &Sigma;&Sigma; ll == nno NN pp dd ll (( 11 -- pp dd )) NN -- ll -- -- -- (( 99 ))

本地判决采用双门限能量检测时,N个进行频谱感知的次用户中,若有K个次用户接收到的能量值位于确定区间,则有(N-K)个次用户不做出本地判决。所以全局虚警概率Qf、漏检概率Qm和检测概率Qd分别为:When double-threshold energy detection is used for local decision, among N secondary users performing spectrum sensing, if the energy values received by K secondary users are in a certain interval, then (NK) secondary users do not make local decision. Therefore, the global false alarm probability Q f , missed detection probability Q m and detection probability Q d are respectively:

QQ ff == 11 -- PP {{ Ff == 00 || Hh 00 }} == 11 -- PP {{ Ff == 00 ,, KK &NotEqual;&NotEqual; NN || Hh 00 }} -- PP {{ Ff == 00 ,, KK == NN || Hh 00 }} == 11 -- &Sigma;&Sigma; KK == 00 NN -- 11 CC NN KK &Pi;&Pi; ii == 11 KK PP {{ Oo ii &le;&le; &lambda;&lambda; 00 &cup;&cup; Oo ii &GreaterEqual;&Greater Equal; &lambda;&lambda; 11 || Hh 00 }} &Pi;&Pi; ii == KK ++ 11 NN PP {{ &lambda;&lambda; 00 &le;&le; Oo ii &le;&le; &lambda;&lambda; 11 || Hh 00 }} &Sigma;&Sigma; ll == nno KK CC KK ll pp aa ll pp ff KK -- ll -- &Pi;&Pi; ii == 11 NN PP {{ Oo ii &le;&le; &lambda;&lambda; 00 &cup;&cup; Oo ii &GreaterEqual;&Greater Equal; &lambda;&lambda; 11 || Hh 00 }} &Sigma;&Sigma; ll == nno NN CC NN ll pp aa ll pp ff KK -- ll == 11 -- &Sigma;&Sigma; KK == 00 NN -- 11 CC NN KK &Pi;&Pi; ii == 11 KK (( 11 -- &Delta;&Delta; 00 )) &Pi;&Pi; ii == KK ++ 11 NN &Delta;&Delta; 00 &Sigma;&Sigma; ll == nno KK CC KK ll pp aa ll pp ff KK -- ll -- &Pi;&Pi; ii == 11 NN (( 11 -- &Delta;&Delta; 00 )) &Sigma;&Sigma; ll == nno NN CC NN ll pp aa ll pp ff NN -- ll == 11 -- &Sigma;&Sigma; KK == 00 NN -- 11 CC NN KK (( 11 -- &Delta;&Delta; 00 )) KK &Delta;&Delta; 00 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp aa ll pp ff KK -- ll -- (( 11 -- &Delta;&Delta; 00 )) NN &Sigma;&Sigma; ll == nno NN CC NN ll pp aa ll pp ff NN -- ll == 11 -- &Sigma;&Sigma; KK == 00 NN CC NN KK (( 11 -- &Delta;&Delta; 00 )) KK &Delta;&Delta; 00 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp aa ll pp ff KK -- ll -- -- -- (( 1010 ))

QQ mm == PP {{ Ff == 00 || Hh 11 }} == PP {{ Ff == 00 ,, KK &NotEqual;&NotEqual; NN || Hh 11 }} ++ PP {{ Ff == 00 ,, KK == NN || Hh 11 }} == &Sigma;&Sigma; KK == 00 NN -- 11 CC NN KK &Pi;&Pi; ii == 11 KK PP {{ Oo ii &le;&le; &lambda;&lambda; 00 &cup;&cup; Oo ii &GreaterEqual;&Greater Equal; &lambda;&lambda; 11 || Hh 11 }} &Pi;&Pi; ii == KK ++ 11 NN PP {{ &lambda;&lambda; 00 &le;&le; Oo ii &le;&le; &lambda;&lambda; 11 || Hh 11 }} &Sigma;&Sigma; ll == nno KK CC KK ll pp mm ll pp dd KK -- ll ++ &Pi;&Pi; ii == 11 NN PP {{ Oo ii &le;&le; &lambda;&lambda; 00 &cup;&cup; Oo ii &GreaterEqual;&Greater Equal; &lambda;&lambda; 11 || Hh 11 }} &Sigma;&Sigma; ll == nno NN CC NN ll pp mm ll pp dd KK -- ll == &Sigma;&Sigma; KK == 00 NN -- 11 CC NN KK &Pi;&Pi; ii == 11 KK (( 11 -- &Delta;&Delta; 11 )) &Pi;&Pi; ii == KK ++ 11 NN &Delta;&Delta; 11 &Sigma;&Sigma; ll == nno KK CC KK ll pp mm ll pp dd KK -- ll ++ &Pi;&Pi; ii == 11 NN (( 11 -- &Delta;&Delta; 11 )) &Sigma;&Sigma; ll == nno NN CC NN ll pp mm ll pp dd NN -- ll == &Sigma;&Sigma; KK == 00 NN -- 11 CC NN KK (( 11 -- &Delta;&Delta; 11 )) KK &Delta;&Delta; 11 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp mm ll pp dd KK -- ll ++ (( 11 -- &Delta;&Delta; 11 )) NN &Sigma;&Sigma; ll == nno NN CC NN ll pp mm ll pp dd NN -- ll == &Sigma;&Sigma; KK == 00 NN CC NN KK (( 11 -- &Delta;&Delta; 11 )) KK &Delta;&Delta; 11 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp mm ll pp dd KK -- ll -- -- -- (( 1111 ))

Qd=1-Qm    (12)Q d =1-Q m (12)

a.表决融合准则的投票门限n的优化a. Optimization of the voting threshold n of the voting fusion criterion

对于协作频谱感知,融合准则的选取会影响频谱感知的性能,OR准则和AND准则分别是表决融合准则的投票门限n等于1和等于次用户的总个数N的特殊情况,由式(10)、(11)和(12)知,表决融合准则的投票门限n会影响协作频谱感知的性能,所以需要对它的值进行最优化,使得协作频谱感知的性能最优。For cooperative spectrum sensing, the selection of the fusion criterion will affect the performance of spectrum sensing. The OR criterion and the AND criterion are special cases where the voting threshold n of the voting fusion criterion is equal to 1 and equal to the total number of secondary users N. Formula (10) , (11) and (12), the voting threshold n of the voting fusion criterion will affect the performance of cooperative spectrum sensing, so its value needs to be optimized to make the performance of cooperative spectrum sensing optimal.

我们定义频谱感知全局错误概率为(Qf+Qm),假设做出本地判决的次用户的个数K已知,则优化问题可以写为:We define the global error probability of spectrum sensing as (Q f +Q m ), assuming that the number K of secondary users making local decisions is known, then the optimization problem can be written as:

min(Qf+Qm)    (13)min(Q f +Q m ) (13)

s.t.n≤Ks.t.n≤K

求表决融合准则的最优投票门限nopt,使得全局错误概率为(Qf+Qm)达到最小值。Find the optimal voting threshold n opt of the voting fusion criterion, so that the global error probability (Q f +Q m ) reaches the minimum value.

由式(10)、(11),得全局错误概率:From equations (10) and (11), the global error probability is obtained:

QQ ff ++ QQ mm == 11 ++ &Sigma;&Sigma; KK == 00 NN CC NN KK (( (( 11 -- &Delta;&Delta; 11 )) KK &Delta;&Delta; 11 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp mm ll pp dd KK -- ll -- (( 11 -- &Delta;&Delta; 00 )) KK &Delta;&Delta; 00 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp aa ll pp ff KK -- ll )) -- -- -- (( 1414 ))

设:set up:

GG (( nno )) == (( 11 -- &Delta;&Delta; 11 )) KK &Delta;&Delta; 11 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp mm ll pp dd KK -- ll -- (( 11 -- &Delta;&Delta; 00 )) KK &Delta;&Delta; 00 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp aa ll pp ff KK -- ll -- -- -- (( 1515 ))

则由式(14)、(15)可得:Then from equations (14) and (15), we can get:

QQ ff ++ QQ mm == 11 ++ &Sigma;&Sigma; KK == 00 NN CC NN KK GG (( nno )) -- -- -- (( 1616 ))

因为:because:

&PartialD;&PartialD; (( QQ ff ++ QQ mm )) &PartialD;&PartialD; nno || nno optopt == &Sigma;&Sigma; KK == 00 NN CC NN KK &PartialD;&PartialD; GG (( nno )) &PartialD;&PartialD; nno || nno optopt == 00 -- -- -- (( 1717 ))

&PartialD;&PartialD; GG (( nno )) &PartialD;&PartialD; nno &ap;&ap; GG (( nno ++ 11 )) -- GG (( nno )) (( nno ++ 11 )) -- nno == GG (( nno ++ 11 )) -- GG (( nno )) == CC KK nno (( (( 11 -- &Delta;&Delta; 00 )) KK &Delta;&Delta; 00 NN -- KK pp aa nno pp ff KK -- nno -- (( 11 -- &Delta;&Delta; 11 )) KK &Delta;&Delta; 11 NN -- KK pp mm nno pp dd KK -- nno )) -- -- -- (( 1818 ))

所以由式(17)、(18)可得:So from equations (17) and (18), we can get:

&PartialD;&PartialD; GG (( nno )) &PartialD;&PartialD; nno || nno optopt == 00 &DoubleRightArrow;&DoubleRightArrow; (( 11 -- &Delta;&Delta; 00 )) KK &Delta;&Delta; 00 NN -- KK pp aa nno optopt pp ff KK -- nno optopt == (( 11 -- &Delta;&Delta; 11 )) KK &Delta;&Delta; 11 NN -- KK pp mm nno optopt pp dd KK -- nno optopt &DoubleRightArrow;&DoubleRightArrow; (( pp aa pp mm )) nno optopt == (( pp dd pp ff )) KK -- nno optopt (( 11 -- &Delta;&Delta; 11 11 -- &Delta;&Delta; 00 )) KK (( &Delta;&Delta; 11 &Delta;&Delta; 00 )) NN -- KK -- -- -- (( 1919 ))

对上式两边取对数得:Take the logarithm on both sides of the above formula to get:

nno optopt lnln pp aa pp mm == (( KK -- nno optopt )) lnln pp dd pp ff ++ lnln (( 11 -- &Delta;&Delta; 11 11 -- &Delta;&Delta; 00 )) KK (( &Delta;&Delta; 11 &Delta;&Delta; 00 )) NN -- KK -- -- -- (( 2020 ))

解得:Solutions have to:

nno optopt == KK lnln pp dd pp ff ++ lnln (( 11 -- &Delta;&Delta; 11 11 -- &Delta;&Delta; 00 )) KK (( &Delta;&Delta; 11 &Delta;&Delta; 00 )) NN -- KK lnln pp aa pp dd pp mm pp ff -- -- -- (( 21twenty one ))

所以当 n = n opt = K ln p d p f + ln ( 1 - &Delta; 1 1 - &Delta; 0 ) K ( &Delta; 1 &Delta; 0 ) N - K ln p a p d p m p f 时, &PartialD; G ( n ) &PartialD; n | n opt = 0 , ( Q f + Q m ) 取得极值。又因为:so when no = no opt = K ln p d p f + ln ( 1 - &Delta; 1 1 - &Delta; 0 ) K ( &Delta; 1 &Delta; 0 ) N - K ln p a p d p m p f hour, &PartialD; G ( no ) &PartialD; no | no opt = 0 , ( Q f + Q m ) Get the extreme value. also because:

&PartialD;&PartialD; 22 GG (( nno )) &PartialD;&PartialD; nno 22 == &PartialD;&PartialD; GG (( nno ++ 11 )) &PartialD;&PartialD; nno -- &PartialD;&PartialD; GG (( nno )) &PartialD;&PartialD; nno (( nno ++ 11 )) -- nno == &PartialD;&PartialD; GG (( nno ++ 11 )) &PartialD;&PartialD; nno -- &PartialD;&PartialD; GG (( nno )) &PartialD;&PartialD; nno -- -- -- (( 22twenty two ))

&PartialD;&PartialD; 22 GG (( nno )) &PartialD;&PartialD; nno 22 || nno == nno optopt == &PartialD;&PartialD; GG (( nno ++ 11 )) &PartialD;&PartialD; nno || nno == nno optopt -- &PartialD;&PartialD; GG (( nno )) &PartialD;&PartialD; nno || nno == nno optopt == &PartialD;&PartialD; GG (( nno ++ 11 )) &PartialD;&PartialD; nno || nno == nno optopt -- 00 == CC KK nno optopt ++ 11 (( (( 11 -- &Delta;&Delta; 00 )) KK &Delta;&Delta; 00 NN -- KK pp aa nno optopt ++ 11 pp ff KK -- nno optopt -- 11 -- (( 11 -- &Delta;&Delta; 11 )) KK &Delta;&Delta; 11 NN -- KK pp mm nno optopt ++ 11 pp dd KK -- nno optopt -- 11 )) == CC KK nno optopt ++ 11 (( (( 11 -- &Delta;&Delta; 00 )) KK &Delta;&Delta; 00 NN -- KK pp aa pp ff pp aa nno optopt pp ff KK -- nno optopt -- (( 11 -- &Delta;&Delta; 11 )) KK &Delta;&Delta; 11 NN -- KK pp mm pp dd pp mm nno optopt pp dd KK -- nno optopt )) -- -- -- (( 23twenty three ))

由式(1)、(2)、(4)和(5)知pa>pm,pd>pf,故:It is known from formulas (1), (2), (4) and (5) that p a >p m , p d >p f , so:

pp aa pp ff >> pp mm pp dd -- -- -- (( 24twenty four ))

所以由式(19)、(23)和(24)得:So from equations (19), (23) and (24):

(( 11 -- &Delta;&Delta; 00 )) KK &Delta;&Delta; 00 NN -- KK pp aa pp ff pp aa nno optopt pp ff KK -- nno optopt >> (( 11 -- &Delta;&Delta; 11 )) KK &Delta;&Delta; 11 NN -- KK pp mm pp dd pp mm nno optopt pp dd KK -- nno optopt -- -- -- (( 2525 ))

代入式(23)得: &PartialD; 2 G ( n ) &PartialD; n 2 | n = n opt > 0 , Substitute into formula (23) to get: &PartialD; 2 G ( no ) &PartialD; no 2 | no = no opt > 0 ,

所以: &PartialD; 2 ( Q f + Q m ) &PartialD; n 2 | n opt = &Sigma; K = 0 N C N K &PartialD; 2 G ( n ) &PartialD; n 2 | n opt > 0 . so: &PartialD; 2 ( Q f + Q m ) &PartialD; no 2 | no opt = &Sigma; K = 0 N C N K &PartialD; 2 G ( no ) &PartialD; no 2 | no opt > 0 .

综上所述,当 n = n opt = K ln p d p f + ln ( 1 - &Delta; 1 1 - &Delta; 0 ) K ( &Delta; 1 &Delta; 0 ) N - K ln p a p d p m p f 时, &PartialD; ( Q f + Q m ) &PartialD; n | n opt = &Sigma; K = 0 N C N K &PartialD; G ( n ) &PartialD; n | n opt = 0 , &PartialD; 2 ( Q f + Q m ) &PartialD; n 2 | n opt = &Sigma; K = 0 N C N K &PartialD; 2 G ( n ) &PartialD; n 2 | n opt > 0 , 所以(Qf+Qm)取得极小值。实际应用中,投票门限n为正整数,所以:In summary, when no = no opt = K ln p d p f + ln ( 1 - &Delta; 1 1 - &Delta; 0 ) K ( &Delta; 1 &Delta; 0 ) N - K ln p a p d p m p f hour, &PartialD; ( Q f + Q m ) &PartialD; no | no opt = &Sigma; K = 0 N C N K &PartialD; G ( no ) &PartialD; no | no opt = 0 , &PartialD; 2 ( Q f + Q m ) &PartialD; no 2 | no opt = &Sigma; K = 0 N C N K &PartialD; 2 G ( no ) &PartialD; no 2 | no opt > 0 , Therefore (Q f +Q m ) takes a minimum value. In practical applications, the voting threshold n is a positive integer, so:

表示不小于x的最小整数。当双门限能量检测的门限值λ0、λ1确定时,可以将λ0、λ1的值代入(1)~(6)式,求得pd、pf、pa、pm以及△0、△1,代入上式即可求出使得(Qf+Qm)取得极小值的投票门限nopt Indicates the smallest integer not less than x. When the threshold values λ 0 and λ 1 of the dual-threshold energy detection are determined, the values of λ 0 and λ 1 can be substituted into formulas (1) to (6) to obtain p d , p f , p a , p m and △ 0 and △ 1 are substituted into the above formula to obtain the voting threshold n opt that makes (Q f +Q m ) obtain a minimum value.

b.双门限能量检测的门限值λ0、λ1的优化b. Optimization of threshold values λ 0 and λ 1 for dual-threshold energy detection

对于双门限能量检测,门限值λ0、λ1的取值以及它们之间的关系都会对频谱感知的性能产生影响,其中λ0≤λ1。由(1)~(6)式可知,当λ0的取值减小时,漏检概率会降低当λ1的取值增大时,虚警概率会降低,但是同时检测概率也会降低;当两个门限之间的距离拉大时,次用户接收到的能量值位于不定区间的概率加大,反之则减小,当λ0=λ1时,等价于单门限能量检测,则次用户接收到的能量值位于不定区间的概率为0。For dual-threshold energy detection, the threshold values λ 0 , λ 1 and the relationship between them will affect the performance of spectrum sensing, where λ 0 ≤ λ 1 . It can be seen from (1)~(6) that when the value of λ 0 decreases, the probability of missed detection will decrease; when the value of λ 1 increases, the probability of false alarm will decrease, but at the same time the detection probability will also decrease; when When the distance between the two thresholds increases, the probability that the energy value received by the secondary user is in the indeterminate range increases, and vice versa, it decreases. When λ 01 , it is equivalent to single-threshold energy detection, and the secondary user The probability that the received energy value is in the indeterminate interval is 0.

我们定义频谱感知全局错误概率为(Qf+Qm),假设做出本地判决的次用户的个数K已知,则优化问题可以写为:We define the global error probability of spectrum sensing as (Q f +Q m ), assuming that the number K of secondary users making local decisions is known, then the optimization problem can be written as:

min(Qf+Qm)   (27)min(Q f +Q m ) (27)

s.t.0<λ01<+∞st0<λ 01 <+∞

求双门限能量检测的最优门限值使得全局错误概率为(Qf+Qm)达到最小值,即满足:Calculating the Optimal Threshold Value of Dual-Threshold Energy Detection Make the global error probability (Q f +Q m ) reach the minimum value, namely satisfy:

&PartialD;&PartialD; (( QQ ff ++ QQ mm )) &PartialD;&PartialD; &lambda;&lambda; 00 || &lambda;&lambda; 00 optopt == 00 &PartialD;&PartialD; (( QQ ff ++ QQ mm )) &PartialD;&PartialD; &lambda;&lambda; 11 || &lambda;&lambda; 11 optopt == 00 -- -- -- (( 2828 ))

其中:in:

&PartialD;&PartialD; (( QQ ff ++ QQ mm )) &PartialD;&PartialD; &lambda;&lambda; 00 || &lambda;&lambda; 00 optopt == &PartialD;&PartialD; (( 11 ++ &Sigma;&Sigma; KK == 00 NN CC NN KK GG (( nno )) )) &PartialD;&PartialD; &lambda;&lambda; 00 || &lambda;&lambda; 00 optopt == &Sigma;&Sigma; KK == 00 NN CC NN KK &PartialD;&PartialD; GG (( nno )) &PartialD;&PartialD; &lambda;&lambda; 00 || &lambda;&lambda; 00 optopt == 00 -- -- -- (( 2929 ))

&PartialD;&PartialD; (( QQ ff ++ QQ mm )) &PartialD;&PartialD; &lambda;&lambda; 11 || &lambda;&lambda; 11 optopt == &PartialD;&PartialD; (( 11 ++ &Sigma;&Sigma; KK == 00 NN CC NN KK GG (( nno )) )) &PartialD;&PartialD; &lambda;&lambda; 11 || &lambda;&lambda; 11 optopt == &Sigma;&Sigma; KK == 00 NN CC NN KK &PartialD;&PartialD; GG (( nno )) &PartialD;&PartialD; &lambda;&lambda; 11 || &lambda;&lambda; 11 optopt == 00 -- -- -- (( 3030 ))

&PartialD; G ( n ) &PartialD; &lambda; 0 | &lambda; 0 opt = 0 , &PartialD; G ( n ) &PartialD; &lambda; 1 | &lambda; 1 opt = 0 . but &PartialD; G ( no ) &PartialD; &lambda; 0 | &lambda; 0 opt = 0 , &PartialD; G ( no ) &PartialD; &lambda; 1 | &lambda; 1 opt = 0 .

将式(15)代入上式得:Substitute (15) into the above formula to get:

&PartialD;&PartialD; GG (( nno )) &PartialD;&PartialD; &lambda;&lambda; 00 || &lambda;&lambda; 00 optopt == &PartialD;&PartialD; pp mm &PartialD;&PartialD; &lambda;&lambda; 00 || &lambda;&lambda; 00 optopt (( KK (( 11 -- &Delta;&Delta; 11 )) KK -- 11 &Delta;&Delta; 11 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp mm ll pp dd KK -- ll -- (( 11 -- &Delta;&Delta; 11 )) KK (( NN -- KK )) &Delta;&Delta; 11 NN -- KK -- 11 &Sigma;&Sigma; ll == nno KK CC KK ll pp mm ll pp dd KK -- ll ++ (( 11 -- &Delta;&Delta; 11 )) KK &Delta;&Delta; 11 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll ll pp mm ll -- 11 pp dd KK -- ll -- &PartialD;&PartialD; pp aa &PartialD;&PartialD; &lambda;&lambda; 00 || &lambda;&lambda; 00 optopt (( KK (( 11 -- &Delta;&Delta; 00 )) KK -- 11 &Delta;&Delta; 00 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp aa ll pp ff KK -- ll ++ (( 11 -- &Delta;&Delta; 00 )) KK (( NN -- KK )) &Delta;&Delta; 00 NN -- KK -- 11 &Sigma;&Sigma; ll == nno KK CC KK ll pp aa ll pp ff KK -- ll -- (( 11 -- &Delta;&Delta; 00 )) KK &Delta;&Delta; 00 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll ll pp aa ll -- 11 pp ff KK -- ll == 00 -- -- -- (( 3131 ))

其中:in:

&PartialD;&PartialD; pp mm &PartialD;&PartialD; &lambda;&lambda; 00 || &lambda;&lambda; 00 optopt == -- &tau;&tau; ff sthe s 22 &pi;&pi; (( 22 &gamma;&gamma; ++ 11 )) expexp (( (( &lambda;&lambda; 00 optopt -- &gamma;&gamma; -- 11 )) 22 &tau;&tau; ff sthe s 22 (( 22 &gamma;&gamma; ++ 11 )) )) -- -- -- (( 3232 ))

&PartialD;&PartialD; pp aa &PartialD;&PartialD; &lambda;&lambda; 00 || &lambda;&lambda; 00 optopt == -- &tau;&tau; ff sthe s 22 &pi;&pi; expexp (( -- (( &lambda;&lambda; 00 optopt -- 11 )) 22 &tau;&tau; ff sthe s 22 )) -- -- -- (( 3333 ))

将式(31)、(32)和(33)代入式(33)得:Substituting equations (31), (32) and (33) into equation (33), we get:

&PartialD;&PartialD; (( QQ ff ++ QQ mm )) &PartialD;&PartialD; &lambda;&lambda; 00 || &lambda;&lambda; 00 optopt == &Sigma;&Sigma; KK == 00 NN CC NN KK (( -- &tau;&tau; ff sthe s 22 &pi;&pi; (( 22 &gamma;&gamma; ++ 11 )) expexp (( -- (( &lambda;&lambda; 00 optopt -- &gamma;&gamma; -- 11 )) 22 &tau;&tau; ff sthe s 22 (( 22 &gamma;&gamma; ++ 11 )) )) )) (( KK (( 11 -- &Delta;&Delta; 11 )) KK -- 11 &Delta;&Delta; 11 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp mm ll pp dd KK -- ll -- (( 11 -- &Delta;&Delta; 11 )) KK (( NN -- KK )) &Delta;&Delta; 11 NN -- KK -- 11 &Sigma;&Sigma; ll == nno KK CC KK ll pp mm ll pp dd KK -- 11 ++ (( 11 -- &Delta;&Delta; 11 )) KK &Delta;&Delta; 11 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll ll pp mm ll -- 11 pp dd KK -- ll )) ++ (( &tau;&tau; ff sthe s 22 &pi;&pi; expexp (( -- (( &lambda;&lambda; 00 optopt -- 11 )) 22 &tau;&tau; ff sthe s 22 )) )) (( KK (( 11 -- &Delta;&Delta; 00 )) KK -- 11 &Delta;&Delta; 00 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp aa ll pp ff KK -- ll ++ (( 11 -- &Delta;&Delta; 00 )) KK (( NN -- KK )) &Delta;&Delta; 00 NN -- KK -- 11 &Sigma;&Sigma; ll == nno KK CC KK ll pp aa ll pp ff KK -- ll -- (( 11 -- &Delta;&Delta; 00 )) KK &Delta;&Delta; 00 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll ll pp aa ll -- 11 pp ff KK -- ll )) == 00 -- -- -- (( 3434 ))

由式(34)即可解得最优门限值 The optimal threshold value can be obtained by formula (34)

&PartialD;&PartialD; GG (( nno )) &PartialD;&PartialD; &lambda;&lambda; 11 || &lambda;&lambda; 11 optopt == &PartialD;&PartialD; pp dd &PartialD;&PartialD; &lambda;&lambda; 11 || &lambda;&lambda; 11 optopt (( KK (( 11 -- &Delta;&Delta; 11 )) KK -- 11 &Delta;&Delta; 11 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp mm ll pp dd KK -- ll -- (( 11 -- &Delta;&Delta; 11 )) KK (( NN -- KK )) &Delta;&Delta; 11 NN -- KK -- 11 &Sigma;&Sigma; ll == nno KK CC KK ll pp mm ll pp dd KK -- ll ++ (( 11 -- &Delta;&Delta; 11 )) KK &Delta;&Delta; 11 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp mm ll (( KK -- ll )) pp dd KK -- ll -- 11 )) -- &PartialD;&PartialD; pp ff &PartialD;&PartialD; &lambda;&lambda; 11 || &lambda;&lambda; 11 optopt (( KK (( 11 -- &Delta;&Delta; 00 )) KK -- 11 &Delta;&Delta; 00 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp aa ll pp ff KK -- ll ++ (( 11 -- &Delta;&Delta; 00 )) KK (( NN -- KK )) &Delta;&Delta; 00 NN -- KK -- 11 &Sigma;&Sigma; ll == nno KK CC KK ll pp aa ll pp ff KK -- ll -- (( 11 -- &Delta;&Delta; 00 )) KK &Delta;&Delta; 00 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp aa ll (( KK -- ll )) pp ff KK -- ll -- 11 )) -- -- -- (( 3535 ))

其中:in:

&PartialD;&PartialD; pp dd &PartialD;&PartialD; &lambda;&lambda; 11 || &lambda;&lambda; 11 optopt == &tau;&tau; ff sthe s 22 &pi;&pi; (( 22 &gamma;&gamma; ++ 11 )) expexp (( -- (( &lambda;&lambda; 11 optopt -- &gamma;&gamma; -- 11 )) 22 &tau;&tau; ff sthe s 22 (( 22 &gamma;&gamma; ++ 11 )) )) -- -- -- (( 3636 ))

&PartialD;&PartialD; pp ff &PartialD;&PartialD; &lambda;&lambda; 11 || &lambda;&lambda; 11 optopt == &tau;&tau; ff sthe s 22 &pi;&pi; expexp (( -- (( &lambda;&lambda; 11 optopt -- 11 )) 22 &tau;&tau; ff sthe s 22 )) -- -- -- (( 3737 ))

将式(35)、(36)和(37)代入(28)得:Substitute (35), (36) and (37) into (28) to get:

&PartialD;&PartialD; (( QQ ff ++ QQ mm )) &PartialD;&PartialD; &lambda;&lambda; 11 || &lambda;&lambda; 11 optopt == &tau;&tau; ff sthe s 22 &pi;&pi; (( 22 &gamma;&gamma; ++ 11 )) expexp (( -- (( &lambda;&lambda; 11 optopt -- &gamma;&gamma; -- 11 )) 22 &tau;&tau; ff sthe s 22 (( 22 &gamma;&gamma; ++ 11 )) )) (( KK (( 11 -- &Delta;&Delta; 11 )) KK -- 11 &Delta;&Delta; 11 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp mm ll pp dd KK -- ll -- (( 11 -- &Delta;&Delta; 11 )) KK (( NN -- KK )) &Delta;&Delta; 11 NN -- KK -- 11 &Sigma;&Sigma; ll == nno KK CC KK ll pp mm ll pp dd KK -- ll ++ (( 11 -- &Delta;&Delta; 11 )) KK &Delta;&Delta; 11 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp mm ll (( KK -- ll )) pp dd KK -- ll -- 11 )) -- &tau;&tau; ff sthe s 22 &pi;&pi; expexp (( -- (( &lambda;&lambda; 11 optopt -- 11 )) 22 &tau;&tau; ff sthe s 22 )) (( KK (( 11 -- &Delta;&Delta; 00 )) KK -- 11 &Delta;&Delta; 00 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp aa ll pp ff KK -- ll ++ (( 11 -- &Delta;&Delta; 00 )) KK (( NN -- KK )) &Delta;&Delta; 00 NN -- KK -- 11 &Sigma;&Sigma; ll == nno KK CC KK ll pp aa ll pp ff KK -- ll -- (( 11 -- &Delta;&Delta; 00 )) KK &Delta;&Delta; 00 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp aa ll (( KK -- ll )) pp ff KK -- ll -- 11 )) == 00 -- -- -- (( 3838 ))

由式(38)即可解得最优门限值 The optimal threshold value can be obtained by formula (38)

由公式(34)(38)可知,不同的信噪比条件下,双门限能量检测的门限最优值的取值各异。取表决融合准则的投票门限n=nopt,即表决融合准则达到最优的前提下,由公式(34)(38)可计算得在各信噪比条件下的值。From formulas (34)(38), it can be seen that under different SNR conditions, the optimal value of the threshold for dual-threshold energy detection The value of is different. Take the voting threshold n=n opt of the voting fusion criterion, that is, under the premise that the voting fusion criterion is optimal, it can be calculated by formulas (34)(38) that under each SNR condition value.

Claims (1)

1.一种认知无线网络中协作频谱感知门限的优化方法,其特征在于该方法包括以下步骤:1. an optimization method for cooperative spectrum sensing threshold in a cognitive wireless network, characterized in that the method comprises the following steps: a、定义λ0和λ1是双门限能量检测的两个门限值,且要求门限值λ0≤λ1,[0,λ0]∪[λ1,+∞)为确定区间,(λ01)为不定区间,协作频谱感知的全局错误概率(Qf+Qm)为:a. Define λ 0 and λ 1 as the two threshold values of double-threshold energy detection, and require the threshold value λ 0 ≤ λ 1 , [0,λ 0 ]∪[λ 1 ,+∞) is the definite interval, ( λ 0 , λ 1 ) are uncertain intervals, and the global error probability (Q f +Q m ) of collaborative spectrum sensing is: QQ ff ++ QQ mm == 11 ++ &Sigma;&Sigma; KK == 00 NN CC NN KK (( (( 11 -- &Delta;&Delta; 11 )) KK &Delta;&Delta; 11 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp mm ll pp dd KK -- ll -- (( 11 -- &Delta;&Delta; 00 )) KK &Delta;&Delta; 00 NN -- KK &Sigma;&Sigma; ll == nno KK CC KK ll pp aa ll pp ff kk -- ll )) 其中N个认知用户中有K个认知用户接收到的信号能量落入确定区间,所以具体是哪K个认知用户接收到的信号能量落在确定区间内,有种的可能情况;H1和H0分别表示主用户存在和不存在的情况,△0和△1分别表示H0、H1条件下次用户接收到的能量值位于不定区间的概率:Among the N cognitive users, the signal energy received by K cognitive users falls within the definite interval, so specifically which K cognitive users receive the signal energy within the definite interval, there is H 1 and H 0 respectively represent the existence and non-existence of the primary user, △ 0 and △ 1 respectively represent the probability that the energy value received by the user next time under the conditions of H 0 and H 1 is in an uncertain interval: &Delta;&Delta; 00 == PP (( &lambda;&lambda; 00 << EE. (( xx )) << &lambda;&lambda; 11 || Hh 00 )) == 11 -- pp ff -- pp aa == QQ (( (( &lambda;&lambda; 00 &sigma;&sigma; uu 22 -- 11 )) &tau;&tau; ff sthe s )) -- QQ (( (( &lambda;&lambda; 11 &sigma;&sigma; uu 22 -- 11 )) &tau;&tau; ff sthe s )) &Delta;&Delta; 11 == PP (( &lambda;&lambda; 00 << EE. (( xx )) << &lambda;&lambda; 11 || Hh 11 )) == 11 -- pp dd -- pp mm == QQ (( (( &lambda;&lambda; 00 &sigma;&sigma; uu 22 -- &gamma;&gamma; -- 11 )) &tau;&tau; ff sthe s 22 &gamma;&gamma; ++ 11 )) -- QQ (( (( &lambda;&lambda; 11 &sigma;&sigma; uu 22 -- &gamma;&gamma; -- 11 )) &tau;&tau; ff sthe s 22 &gamma;&gamma; ++ 11 )) ;; pd、pf和pm分别表示本地频谱感知的检测概率、虚警概率以及漏检概率:p d , p f and pm represent the detection probability, false alarm probability and missed detection probability of local spectrum sensing respectively: p d = Q ( ( &lambda; 1 &sigma; u 2 - &gamma; - 1 ) &tau; f s 2 &gamma; + 1 ) , p f = Q ( ( &lambda; 1 &sigma; u 2 - 1 ) &tau; f s ) , p m = 1 - Q ( ( &lambda; 0 &sigma; u 2 - &gamma; - 1 ) &tau; f s 2 &gamma; + 1 ) , p a = 1 - Q ( ( &lambda; 0 &sigma; u 2 - 1 ) &tau; f s ) , 其中 Q ( x ) = 1 2 &pi; &Integral; x &infin; exp ( - t 2 2 ) dt , γ为次用户的接收信噪比,是噪声方差,τ是次用户的感知时间,fs为采样频率; p d = Q ( ( &lambda; 1 &sigma; u 2 - &gamma; - 1 ) &tau; f the s 2 &gamma; + 1 ) , p f = Q ( ( &lambda; 1 &sigma; u 2 - 1 ) &tau; f the s ) , p m = 1 - Q ( ( &lambda; 0 &sigma; u 2 - &gamma; - 1 ) &tau; f the s 2 &gamma; + 1 ) , p a = 1 - Q ( ( &lambda; 0 &sigma; u 2 - 1 ) &tau; f the s ) , in Q ( x ) = 1 2 &pi; &Integral; x &infin; exp ( - t 2 2 ) dt , γ is the receiving signal-to-noise ratio of the secondary user, is the noise variance, τ is the perception time of the secondary user, and f s is the sampling frequency; b、对表决融合准则的投票门限n进行优化,使得协作频谱感知的全局错误概率(Qf+Qm)最小,故要求 &PartialD; ( Q f + Q m ) &PartialD; n | n = n opt = 0 , &PartialD; 2 ( Q f + Q m ) &PartialD; n 2 | n = n opt > 0 , 得到最优投票门限值 n opt = K ln p d p f + ln ( 1 - &Delta; 1 1 - &Delta; 0 ) K ( &Delta; 1 &Delta; 0 ) N - K ln p a p d p m p f , 实际应用中,投票门限n为正整数,所以 表示不小于x的最小整数;b. Optimize the voting threshold n of the voting fusion criterion, so that the global error probability (Q f +Q m ) of cooperative spectrum sensing is the smallest, so it is required &PartialD; ( Q f + Q m ) &PartialD; no | no = no opt = 0 , &PartialD; 2 ( Q f + Q m ) &PartialD; no 2 | no = no opt > 0 , get the optimal voting threshold no opt = K ln p d p f + ln ( 1 - &Delta; 1 1 - &Delta; 0 ) K ( &Delta; 1 &Delta; 0 ) N - K ln p a p d p m p f , In practical applications, the voting threshold n is a positive integer, so Indicates the smallest integer not less than x; c、对双门限能量检测的检测门限值λ0、λ1进行优化,使得协作频谱感知的全局错误概率(Qf+Qm)达到最小值,故令 &PartialD; ( Q f + Q m ) &PartialD; &lambda; 1 | &lambda; 1 = &lambda; 1 opt = 0 , 可得下列方程组:c. Optimize the detection thresholds λ 0 and λ 1 of dual-threshold energy detection, so that the global error probability (Q f +Q m ) of cooperative spectrum sensing reaches the minimum value, so that &PartialD; ( Q f + Q m ) &PartialD; &lambda; 1 | &lambda; 1 = &lambda; 1 opt = 0 , The following equations can be obtained: 当认知用户的接收信噪比γ、认知用户的个数N、接收到的信号能量落入确定区间的认知用户个数K、感知时间τ以及采样频率fs确定时,在表决融合准则的投票门限取其最优值的前提下,即n=nopt,就可由上述方程组求出双门限能量检测的最优检测门限值 When the receiving signal-to-noise ratio γ of cognitive users, the number N of cognitive users, the number K of cognitive users whose received signal energy falls into a certain interval, the perception time τ and the sampling frequency f s are determined, in the voting fusion Under the premise that the voting threshold of the criterion takes its optimal value, that is, n=n opt , the optimal detection threshold value of the double-threshold energy detection can be obtained from the above equations
CN201410256853.1A 2014-06-10 2014-06-10 Collaborative spectrum sensing thresholding optimization method in a kind of cognition wireless network Expired - Fee Related CN104079359B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410256853.1A CN104079359B (en) 2014-06-10 2014-06-10 Collaborative spectrum sensing thresholding optimization method in a kind of cognition wireless network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410256853.1A CN104079359B (en) 2014-06-10 2014-06-10 Collaborative spectrum sensing thresholding optimization method in a kind of cognition wireless network

Publications (2)

Publication Number Publication Date
CN104079359A true CN104079359A (en) 2014-10-01
CN104079359B CN104079359B (en) 2016-03-02

Family

ID=51600423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410256853.1A Expired - Fee Related CN104079359B (en) 2014-06-10 2014-06-10 Collaborative spectrum sensing thresholding optimization method in a kind of cognition wireless network

Country Status (1)

Country Link
CN (1) CN104079359B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105227253A (en) * 2015-08-20 2016-01-06 黑龙江科技大学 A Novel Dual-Threshold Cooperative Spectrum Sensing Algorithm Based on Energy Detection
CN105391505A (en) * 2015-11-25 2016-03-09 宁波大学 Energy judgment threshold adjustment-based multi-user cooperative spectrum sensing method
CN105471528A (en) * 2015-11-25 2016-04-06 宁波大学 Adaptively-adjustable cooperative spectrum sensing method
CN108989829A (en) * 2018-08-01 2018-12-11 南京邮电大学 Video living transmission system and its implementation based on the double-deck driving interference coordination

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105375998B (en) * 2015-11-25 2017-11-07 宁波大学 The multiband cooperative frequency spectrum sensing method optimized based on sub-clustering

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090207735A1 (en) * 2008-02-14 2009-08-20 The Hong Kong University Of Science And Technology Robust cooperative spectrum sensing for cognitive radios
US20100081387A1 (en) * 2008-09-29 2010-04-01 Motorola, Inc. Signal detection in cognitive radio systems
US20100329180A1 (en) * 2009-06-30 2010-12-30 Motorola, Inc. Method for optimizing spatial diversity gain of a set of nodes used for cooperative sensing
CN101944961A (en) * 2010-09-03 2011-01-12 电子科技大学 Double threshold cooperative sensing method in cognitive wireless network
CN102571241A (en) * 2012-02-20 2012-07-11 江苏新大诚信息技术有限公司 Improved double-threshold cooperative spectrum sensing method
CN102739325A (en) * 2011-04-01 2012-10-17 上海无线通信研究中心 Cooperative frequency spectrum perception method
CN103384174A (en) * 2013-05-10 2013-11-06 江苏科技大学 Method based on cooperation of multiple users and multiple antennas for optimizing spectrum sensing detection probability

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090207735A1 (en) * 2008-02-14 2009-08-20 The Hong Kong University Of Science And Technology Robust cooperative spectrum sensing for cognitive radios
US20100081387A1 (en) * 2008-09-29 2010-04-01 Motorola, Inc. Signal detection in cognitive radio systems
US20100329180A1 (en) * 2009-06-30 2010-12-30 Motorola, Inc. Method for optimizing spatial diversity gain of a set of nodes used for cooperative sensing
CN101944961A (en) * 2010-09-03 2011-01-12 电子科技大学 Double threshold cooperative sensing method in cognitive wireless network
CN102739325A (en) * 2011-04-01 2012-10-17 上海无线通信研究中心 Cooperative frequency spectrum perception method
CN102571241A (en) * 2012-02-20 2012-07-11 江苏新大诚信息技术有限公司 Improved double-threshold cooperative spectrum sensing method
CN103384174A (en) * 2013-05-10 2013-11-06 江苏科技大学 Method based on cooperation of multiple users and multiple antennas for optimizing spectrum sensing detection probability

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王晓迪: "WRAN中的协作频谱感知参数优化", 《计算机系统应用》 *
陈长兴: "基于双门限能量检测的协作频谱感知算法", 《系统工程与电子技术》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105227253A (en) * 2015-08-20 2016-01-06 黑龙江科技大学 A Novel Dual-Threshold Cooperative Spectrum Sensing Algorithm Based on Energy Detection
CN105391505A (en) * 2015-11-25 2016-03-09 宁波大学 Energy judgment threshold adjustment-based multi-user cooperative spectrum sensing method
CN105471528A (en) * 2015-11-25 2016-04-06 宁波大学 Adaptively-adjustable cooperative spectrum sensing method
CN105471528B (en) * 2015-11-25 2017-11-17 宁波大学 A kind of cooperation spectrum sensing method adaptively adjusted
CN108989829A (en) * 2018-08-01 2018-12-11 南京邮电大学 Video living transmission system and its implementation based on the double-deck driving interference coordination

Also Published As

Publication number Publication date
CN104079359B (en) 2016-03-02

Similar Documents

Publication Publication Date Title
CN102571241B (en) Improved double-threshold cooperative spectrum sensing method
CN101459445B (en) Cooperative spectrum sensing method in cognitive radio system
CN103338458B (en) A kind of cooperative frequency spectrum sensing method for cognitive radio system
CN104079359B (en) Collaborative spectrum sensing thresholding optimization method in a kind of cognition wireless network
CN105227253A (en) A Novel Dual-Threshold Cooperative Spectrum Sensing Algorithm Based on Energy Detection
CN101867424B (en) Cooperative frequency spectrum sensing method for cognitive radio network
CN107370521B (en) Cognitive radio multi-user cooperative spectrum sensing method
CN106169945A (en) A kind of cooperative frequency spectrum sensing method of difference based on minimax eigenvalue
CN103338082B (en) Double-threshold cooperation frequency spectrum sensing method based on k-rank criteria
CN101615926B (en) Method for cognizing asynchronous synergic frequency spectrum perception in radio
CN103873171B (en) Based on the collaborative spectrum sensing Decision fusion method that multi-user cooperates mutually
CN103384174B (en) Multi-user multi-antenna collaborative spectrum sensing detection probability optimization method
CN103281142B (en) Energy detection method and device for joint time-domain double-threshold and frequency-domain variable point numbers
CN104780006A (en) Frequency spectrum detector soft fusion method based on minimum error probability rule
CN104038298A (en) Satellite network self-adaption joint spectrum sensing method based on link sensing
CN101521526A (en) Method for optimal joint idle spectrum detection of cognitive radio
CN102223194B (en) Spectrum sensing method
CN103763721A (en) Passive receiver detection and spectrum access method for heterogenous network
CN102006609A (en) Adaptive sequential cooperative spectrum detection method
CN105979590A (en) User scheduling and power distribution method based on effective capacity in cognitive radio system
CN104022839B (en) A kind of information fusion decision method being applied to cooperative spectrum sensing
CN103973381B (en) Based on the cooperative spectrum detection method of Cholesky matrix decomposition
CN103067108B (en) Cognitive radio spectrum sensing cooperative detection method
CN103269514B (en) Based on Secondary Users&#39; power distribution method and the device of frequency spectrum perception
CN104469811A (en) Clustering Cooperative Spectrum Sensing Hard Fusion Method for Cognitive Wireless Sensor Networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20141001

Assignee: Jiangsu Nanyou IOT Technology Park Ltd.

Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS

Contract record no.: 2016320000221

Denomination of invention: Cooperative spectrum sensing threshold optimization method in cognitive wireless network

Granted publication date: 20160302

License type: Common License

Record date: 20161129

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model
EC01 Cancellation of recordation of patent licensing contract

Assignee: Jiangsu Nanyou IOT Technology Park Ltd.

Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS

Contract record no.: 2016320000221

Date of cancellation: 20180116

EC01 Cancellation of recordation of patent licensing contract
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160302

CF01 Termination of patent right due to non-payment of annual fee