CN104064070A - Intelligent analog breaker - Google Patents

Intelligent analog breaker Download PDF

Info

Publication number
CN104064070A
CN104064070A CN201410324458.2A CN201410324458A CN104064070A CN 104064070 A CN104064070 A CN 104064070A CN 201410324458 A CN201410324458 A CN 201410324458A CN 104064070 A CN104064070 A CN 104064070A
Authority
CN
China
Prior art keywords
simulation
intelligent
dsp
arm
connected
Prior art date
Application number
CN201410324458.2A
Other languages
Chinese (zh)
Other versions
CN104064070B (en
Inventor
陈剑
李世倩
傅洪全
陶红鑫
Original Assignee
国家电网公司
江苏省电力公司
江苏省电力公司生产技能培训中心
北京殷图仿真技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 江苏省电力公司, 江苏省电力公司生产技能培训中心, 北京殷图仿真技术有限公司 filed Critical 国家电网公司
Priority to CN201410324458.2A priority Critical patent/CN104064070B/en
Publication of CN104064070A publication Critical patent/CN104064070A/en
Application granted granted Critical
Publication of CN104064070B publication Critical patent/CN104064070B/en

Links

Abstract

The invention relates to an intelligent analog breaker. The intelligent analog breaker is arranged in a relay protection and integrated automation training system of an electric system, used for simulation and connected with a simulation host computer and an intelligent terminal. The intelligent analog breaker comprises an analog breaker body and an intelligent plugin; the intelligent plugin comprises a processing chip and an input and output circuit connected with the processing chip, wherein the processing chip is of a double-CPU structure comprising the ARM and the DSP; the processing chip comprises an ARM kernel in which an ARM program is written and a DSP kernel in which a DSP program is written, the DSP kernel is in signal connection with the simulation host computer through an optical fiber, and the ARM kernel is in signal connection with the intelligent terminal through an optical fiber; the input and output circuit is connected with the analog breaker body through an interface circuit. By adopting the intelligent analog breaker, the simulation host computer knows the on-off state of the analog breaker body through the optical fibers and can also issue a plurality of instructions for controlling the analog breaker body, thereby meeting requirements for training simulation; through optical fiber connection, defects of cable connection are overcome, the number of cables is reduced, and reliability of communication is guaranteed.

Description

智能化模拟断路器 Intelligent simulation of circuit breaker

技术领域 FIELD

[0001] 本发明涉及一种用于进行电力系统实训仿真的智能化模拟断路器。 [0001] The present invention relates to a method for the intelligent power system breaker simulation training simulation.

背景技术 Background technique

[0002] 模拟断路器是电力系统继电保护与综合自动化实训系统中不可缺少的一个重要组成部分。 [0002] Analog circuit breaker is an indispensable important component of power system protection and integrated automation training system. 如附图1所示,现有的模拟断路器通过电缆分别和仿真主机和智能终端相连,其主要功能如下: 1、 仿真主机仅仅通过采集模拟断路器的辅助触点,知晓模拟断路器的开关状态; 2、 智能终端将跳合闸命令发到模拟断路器,由模拟断路器来模拟断路器的工作情况。 As shown in the drawings, the conventional analog simulation circuit breakers and intelligent terminals and host are connected through the cable 1, respectively, and its main functions are as follows: 1, only by simulation host analog acquisition auxiliary contacts of the circuit breaker, the circuit breaker switches its analog state; 2, the intelligent terminal simulation tripping command to the breaker, the circuit breaker by an analog to simulate operation of the circuit breaker.

[0003] 上述现有的模拟断路器主要存在下列问题: 1、 仿真主机和模拟断路器通讯信号过于简单,仅限于模拟断路器的开关状态信号,不能满足实训仿真的需要,如进行"断路器拒动"等功能的模拟; 2、 如果加强仿真模拟功能,则通过电缆连接的触点类型大量增加,电缆连线众多,接线非常复杂; 3、 仿真主机和模拟断路器经常分开放置,相距很远,大量电缆将给现场布线带来不便, 可靠性受影响; 4、 智能终端与模拟断路器也是分开放置,电缆连线众多,接线复杂,如果距离很远,大量电缆将给现场布线带来不便,可靠性受影响。 [0003] The main conventional analog circuit breaker has the following problems: 1, the host and the analog simulation circuit breaker communication signal is too simple, the switching state signal is limited to the analog circuit breakers, can not meet the needs of the training simulation, such as a "trip tripping device "and analog functions; 2, if the reinforcing simulation function, a significant increase in the type of cable through the contacts, many cable connections, wiring is very complicated; 3, the analog simulation circuit breakers are often host and separately placed apart far, a large number of field wiring cable will cause inconvenience, affected reliability; 4, intelligent terminals and analog circuit breaker are placed separately, a number of cable connections, wiring complexity, if a long distance, with a large number of field wiring cable will to inconvenience, reliability is affected.

发明内容 SUMMARY

[0004] 本发明的目的是提供一种能够模拟多种功能且接线简单、通讯可靠的智能化模拟断路器。 [0004] The object of the present invention is to provide a simple wiring and analog functions, analog circuit breaker intelligent and reliable communications.

[0005] 为达到上述目的,本发明采用的技术方案是: 一种智能化模拟断路器,设置于在电力系统的继电保护与综合自动化实训系统中用于进行仿真,其分别与仿真主机和智能终端相连接,其包括模拟断路器和智能插件; 所述的智能插件包括具有ARM和DSP双CPU架构的处理芯片、与所述的处理芯片相连接的开入开出电路;所述的处理芯片包括写有ARM程序的ARM核和写有DSP程序的DSP核, 所述的DPS核通过光纤与所述的仿真主机相信号连接,所述的ARM核通过光纤与所述的智能终端相信号连接;所述的开入开出电路通过接口电路与所述的模拟断路器相连接。 [0005] To achieve the above object, the technical solution of the present invention is that: an intelligent analog circuit breaker disposed for protection and simulation training system for power integrated automation systems, which respectively Emulation Host and is connected to the intelligent terminal, and which includes an analog circuit breaker plug-in smart; intelligent said insert comprising an ARM and DSP processing chip having a dual-CPU architecture, and the processing chip connected to open out into the circuit; the processing chip comprises a program written in ARM core ARM and DSP programs written DSP core, said core phase signal DPS is connected by an optical fiber with said host computer simulation, the ARM core of the optical fiber by the smart terminal with signal; said circuit opening out into the open via the interface circuit connected to said analog circuit breaker.

[0006] 所述的处理芯片还包括写有是否正在仿真的仿真状态标识的共享RAM,所述的共享RAM分别与所述的ARM核和DSP核相连接。 Chip [0006] further comprising said shared RAM whether it is written simulation simulation state flag, the shared RAM are connected to the ARM core and a DSP core.

[0007] 所述的开入开出电路包括连接于所述的处理芯片和所述的接口电路之间的可编程芯片。 [0007] opening into said open circuit includes a programmable chip between the chip connected to the processing circuit and the interface.

[0008] 所述的DSP核连接有千兆以太网接口,所述的千兆以太网接口与所述的仿真主机的光纤口通过所述的光纤相连接;所述的ARM核连接有百兆以太网接口,所述的百兆以太网接口与所述的智能终端的光纤口通过所述的光纤相连接。 [0008] The DSP core is connected to Gigabit Ethernet interfaces, Gigabit Ethernet emulation of the host interface and the port are connected by optical fiber to the optical fiber; ARM core is connected to the Fast Ethernet, Fast Ethernet port of the fiber optic interface and the intelligent terminal connected through said optical fiber.

[0009] 由于上述技术方案运用,本发明与现有技术相比具有下列优点: 1、 采用本发明的智能化模拟断路器,仿真主机可以通过光纤知晓模拟断路器开关状态,也可以下发多种控制模拟断路器的命令,从而对模拟断路器进行智能化管理,使其能够模拟多种功能,满足实训仿真的需要: 2、 本发明的智能化模拟断路器与仿真主机通过光纤连接,解决了长距离电缆连线的各种弊端,不仅节约了大量电缆,而且两设备相距1公理以内都能保证通讯的可靠性; 3、 智能终端可以通过光纤对智能化模拟断路器发送指令,用一对光纤能传输所有的开入、开出量信息,不仅节约了大量电缆,而且两设备相距1公理以内都能保证通讯的可靠性。 [0009] Using the above technical solution, the present invention as compared with the prior art has the following advantages: 1, the present invention is intelligent analog circuit breaker, the optical fiber by the host emulation analog circuit breaker switch its state, may be issued multiple analog circuit breaker kinds of control commands to the analog circuit breaker intelligent management, so that it can simulate a variety of functions to meet the needs of the training simulation: 2, intelligent analog simulation circuit breaker according to the present invention the host is connected through an optical fiber, solves all the disadvantages of long cable connection, not only saves a lot of cables, and two stacked within the device 1 can ensure the reliability of communication axioms; 3, the intelligent terminal may send a command to the intelligent simulation of the circuit breaker through the optical fiber, with a pair of fiber can transmit all open into, out of the amount of information, not only saves a lot of cables, and two stacked within the device 1 can ensure the reliability of communication axioms.

附图说明 BRIEF DESCRIPTION

[0010] 附图1为现有的模拟断路器的示意图。 [0010] Figure 1 is a schematic diagram of a conventional analog circuit breaker.

[0011] 附图2为本发明的智能化模拟断路器的示意图。 [0011] Intelligent and schematic drawings of the circuit breaker 2 of the present invention.

[0012] 附图3为本发明的智能化模拟断路器的智能插件的结构框图。 [0012] The block diagram of smart widget Intelligent and Figure 3 a circuit breaker of the present invention.

[0013] 附图4为本发明的智能化模拟断路器的工作流程图。 [0013] Intelligent and a flowchart of Figure 4 the circuit breaker of the present invention.

具体实施方式 Detailed ways

[0014] 下面结合附图所示的实施例对本发明作进一步描述。 Embodiment shown in the drawings embodiments of the present invention will be further described [0014] below in conjunction.

[0015] 实施例一:参见附图2所示。 [0015] Example a: see FIG. 2 FIG. 电力系统的继电保护与综合自动化实训系统是用于对智能变电站运行维护人员进行培训所使用的系统,一种设置于在该系统中用于进行仿真的智能化模拟断路器,包括模拟断路器和智能插件,其分别通过光纤与仿真主机和智能终端相连接。 Power system protection and integrated automation training system for substation intelligent operation and maintenance personnel training system used, a setting in for the simulation of intelligent simulation of a circuit breaker in the system, including analog circuit breaker and smart widget, which are connected through an optical fiber and the intelligent terminal simulation host.

[0016] 参见附图3所示,智能插件包括处理芯片、与处理芯片相连接的开入开出电路。 [0016] Referring to the drawings shown in FIG. 3, the smart widget includes processing chip, and the chip is connected to the opening to open circuit.

[0017] 处理芯片为具有ARM和DSP双CPU架构的芯片,本实施例中选用0MAP-L138芯片, 其包括写有ARM程序的ARM核、写有DSP程序的DSP核、仅供ARM核访问的ARM RBL、仅供DSP核访问的DSP RBL、分别与ARM核和DSP核相连接以供访问的共享RAM。 [0017] chip having an ARM and DSP chip dual-CPU architecture, the present embodiment selection 0MAP-L138 chip, which includes a program written in ARM core ARM, DSP program written DSP cores, ARM core access only of RBL ARM, DSP only access of RBL DSP core, respectively ARM core and the DSP core are connected for shared RAM access. ARM核及其所连接的模块和接口构成ARM子系统,而DSP核及其所连接的模块和接口构成DSP子系统。 And the ARM core and connected to an interface module configured ARM subsystem, and the DSP core and the interface modules are attached form a DSP subsystem. 共享RAM中写有是否正在仿真的仿真状态标识。 Shared RAM whether it is written in the simulation of simulation state identification.

[0018] 开入开出电路通过接口电路与模拟断路器相连接,开入开出电路包括连接于处理芯片和接口电路之间的可编程芯片。 [0018] On the out circuit is connected via an analog interface circuit breaker, opening out into the connection circuit includes a programmable chip between the chip and the interface circuit.

[0019] 由于处理芯片包括ARM子系统和DSP子系统,因而软件设计分为ARM子系统的软件设计和DSP子系统的软件设计,对应ARM和DSP分别是不同的指令集和编译器。 [0019] Since the processing subsystem including ARM and DSP chip subsystems, and thus is divided into software design software design and software design ARM DSP subsystem subsystem, the corresponding ARM and DSP are different instruction sets and compiler. ARM子系统主要用于实现与智能终端的通信,其采用GOOSE协议,并采用嵌入式Linux操作系统。 ARM subsystem is mainly used to implement communication with the intelligent terminal, using the protocol GOOSE, and embedded Linux operating system. Linux操作系统具有强大可定制,体系结构灵活且易于裁剪。 Linux operating system has a powerful customizable, flexible architecture and easy to cut. 嵌入式Linux的软件部分需要完成UBL移植,U-B00T移植,Linux内核移植和文件系统的移植。 Partially embedded Linux software needs to be done UBL transplantation, U-B00T transplant, transplant Linux kernel and file system. DSP子系统用于实现与仿真主机、与模拟断路器信号交换数据,DSP子系统的软件设计采用无操作系统,用TI公司提供的CCS软件进行设计。 DSP subsystem for implementing a host and simulation, and simulation data handshake circuit breaker, the DSP subsystem design uses no operating system software, with the software of CCS design provided by TI. 0MAP-L138芯片为ARM+DSP双CPU架构的处理芯片,其内部有128KB的共享内存可作为双方缓存数据,增加了两个核之间的中断,共计7个中断,其中ARM 子系统有5个DSP中断事件,DSP子系统有2个ARM中断,ARM和DSP使用系统控制模块中的INTGEN寄存器相互中断,实现通信。 0MAP-L138 ARM + DSP chip dual-CPU architecture of the chip, its internal shared memory of 128KB can be used as both a data cache, increasing the interruption between the two cores, a total of seven interrupt, the subsystem which has 5 ARM DSP interrupt event, ARM DSP subsystem has two interrupts, ARM and DSP system control module INTGEN each interrupt register, for communication. 该0MAP-L138处理芯片的启动过程如下: 1、 开机上电,在BOOT管脚上配置的启动方式被锁定采样到SYSCFG模块的BOOTCFG寄存器,从而确定处理芯片的启动方式; 2、 该处理芯片的启动默认值是:ARM核休眠,DSP核使能。 The 0MAP-L138 chip startup process is as follows: 1, the Power On start BOOT arranged on the locking pin is sampled BOOTCFG SYSCFG register module, to determine the start mode processing chip; 2, the processing chip the default is to start: ARM core sleep, DSP core enable. 所以这时候DSP核启动, DSP核从片内DSP L2 ROM处读取指令执行,这里有已经固化的仅DSP核可以访问的ROM Bloader,简称DSP RBL ; 3、 DSP核的RBL做一些简单的初始化后,就通过PSC模块使能ARM核,休眠自己。 Therefore, this time starting with a DSP core, a DSP core DSP L2 ROM is read from the instruction execution at the chip, there has been cured ROM Bloader only accessible DSP core, referred to as DSP RBL;. 3, DSP core do some simple initialization RBL after it is enabled by the ARM core module PSC, sleep himself. 然后ARM核从片内的RAM Local ROM处读取指令并执行,这里面有已经固化好的ARM ROM Bootloader,简称ARM RBL ; 4、 ARM核的RBL做一些初始化后,根据BOOTCFG寄存器的设定,从指定的地方读取用于启动U-Boot 的Bootloader,即U-Boot BootLoader,简称UBL ; 5、 当ARM RBL读取到UBL后就根据其AIS格式中的命令初始化、加载并运行UBL。 ARM core is then read from the RAM Local ROM and executes the instruction sheet, there has been the cured ARM ROM Bootloader, referred ARM RBL; After. 4, the ARM core RBL do some initialization, according to the register setting BOOTCFG, reading from a specified place for starting Bootloader U-boot, i.e. U-boot BootLoader, referred UBL;. 5, when the ARM RBL read after UBL AIS according to its format initialization command, load and run UBL. 然后UBL加载运行U-Boot,U-Boot根据启动参数启动Linux, Linux根据启动参数加载根文件系统; 6、 这时ARM核上的Linux就运行起来了,但DSP核还处于休眠状态。 UBL is then loaded to run U-Boot, U-Boot The boot Linux boot parameters, loading the root file system according to the Linux boot parameters; 6, then the ARM core Linux runs up, but still the DSP core in the dormant state. 在Linux经过一系列初始化后会执行跟文件系统中/etc/profile的指令。 After a series of initialization in the Linux file system with / etc / profile instructions will be executed. 在这里添加插入DSP Link内核模块的命令,就会在/dev目录下产生一个叫dsplink的设备文件。 Here insert DSP Link add kernel modules command, the device will generate a file called dsplink in the / dev directory. 这个DSP Link内核模块就是通过前面所说的中断和PSC设定就可以完成与DSP核的通信与控制。 The Link DSP kernel module is interrupted by the aforesaid setting PSC and can be completed in communication with the control with a DSP core.

[0020] 7、然后再执行ARM核的程序,在ARM核程序中使用DSP Link的库函数来访问dsplink设备,从而在用户空间实现对DSP核的控制与通信。 [0020] 7, and then perform the ARM core, the use of library functions in DSP Link ARM core dsplink program to access the device, thus controlling the communication of the DSP core in user space. ARM核程序中使用DSP Link库函数加载DSP端的应用程序到内存,使用DSP Link的PR0C函数启动DSP核,然后ARM核和DSP核就都各自独立运行起来了,通过DSP Link来进行通信。 ARM core program library functions using DSP Link DSP side loading applications into memory, using the DSP PR0C Link function starts with a DSP core, then the ARM core and a DSP core, all operate independently up to communicate via DSP Link.

[0021] 系统启动后,可以进行所需的模拟断路器的仿真,此时仿真主机可以通过光纤向该智能化模拟断路器发送仿真控制命令来进行仿真,也可以采集智能化模拟断路器的开关状态。 After the [0021] system startup, simulation of the circuit breaker may be required, in which case the simulation host may send control commands to the emulator through an optical fiber to simulate intelligent analog circuit breaker, the switch may be collected breaker Intelligent and status. 智能终端则可以通过光纤向该智能化模拟断路器发送变位命令。 Intelligent terminal may be transmitted through the optical fiber to the displacement command intelligent simulation of the circuit breaker.

[0022] 参见附图4所示,智能插件的ARM子系统的工作过程为:ARM核的程序启动DSP核的程序后,开启中断,开如下步骤: 步骤1 :查询共享RAM中的仿真状态标识,一直要等到仿真状态标识为正在仿真标识后,进行步骤2 ; 步骤2 :查询智能终端的光纤口,查询是否收到包含变位信号的G00SE数据包,如果收到G00SE数据包,则根据G00SE数据包中的配置信息或默认设置解G00SE数据包,将解完后的变位信号写入共享RAM中,并通过DSP Link中断DSP,DSP响应中断,将变位开出信号通过连接模拟断路器的接口电路送给模拟断路器。 [0022] Referring to Figure 4, the working process ARM intelligent subsystem insert is: after the commencement ARM core DSP core program enable interrupts, open the following steps: Step 1: Query the shared RAM simulation state identification , not until after the simulation state identifier being simulated identification, step 2; step 2: query fiber interface intelligent terminal, check whether the received packet contains G00SE displacement signal, if G00SE received packet, according G00SE profile data packet or packets G00SE default settings solution, the solution after the displacement signal is written in the shared RAM, and by DSP Link interrupt DSP, DSP in response to the interrupt, the displacement out of the circuit breaker by connecting the analogue signal to the analog interface circuit breaker. 然后ARM程序再重复以上过程,又从步骤1开始。 ARM program then repeat the above process, and from the beginning of step 1.

[0023] 其中ARM子系统使用了3个DSP中断事件,分别是:1、G00SE数据包配置中断,该中断让ARM核从共享RAM中的相应位置读入G00SE配置数据及正在仿真标识等等信息;2、仿真G00SE数据包中断,该中断让ARM核从共享RAM中相应位置读入仿真主机要发送的G00SE 数据包,或者根据GOOSE数据包的配置数据,通过光纤口发送出去;3、停止仿真中断,该中断让ARM核知道,仿真已停止,仿真状态标识由正在仿真标识变为停止仿真标识,ARM核的程序进入等待仿真开始的状态。 [0023] wherein three ARM DSP subsystem interrupt events, namely: 1, G00SE package configuration interrupt, so that the ARM core is being simulated G00SE configuration data and respective locations identified from the read information and the like in the shared RAM ; 2, simulation G00SE packet interrupt which allows ARM core from the shared RAM corresponding positions read G00SE packet simulation host to be transmitted, or the configuration data GOOSE data packets sent through the optical fiber port; 3, stop the simulation interrupt, let ARM nuclear know, the simulation has stopped, the state identified by the simulation is simulation flag is set to stop the simulation to identify, ARM nuclear program is waiting for the start of the simulation.

[0024] DSP子系统工作过程为:DSP核端程序运行后,先做一些初如化工作,如初如化仿真主机光纤口等等,然后不停读仿真主机光纤口,等待仿真主机发送过来的配置数据,配置数据包括对智能化模拟断路器的配置以及GOOSE数据包的配置信息,当配置数据交换完后,仿真主机马上开始启动仿真,仿真开始。 [0024] DSP subsystem works as follows: After the end of the run a DSP core, as do some of the early work, such as the simulation host ever fiber interface and the like, and then kept reading emulated host fiber interface, sent from the host waits for the simulation configuration data, the configuration data includes configuration information for intelligent simulation of the circuit breaker and GOOSE configuration packet, when the configuration data exchange was finished, the simulation host immediately started the simulation, the simulation starts. DSP核程序在收到GOOSE数据包的配置后,会将GOOSE数据包的配置数据和正在仿真标识写入共享RAM中,并通过DSP Link中断通知ARM核。 DSP nuclear program after receiving a configuration GOOSE packets will GOOSE configuration data packet identification and simulation are written in the shared RAM, and notify interrupted by DSP Link ARM core. 仿真开始后,每个仿真步长中,仿真主机都会同步地向每个仿真主机光纤口发送包含命令的数据,DSP核端程序循环读取仿真主机光纤口,收到新的数据包后,根据数据包类型进行分别处理。 After the start of the simulation, the simulation of each step in the simulation are transmitted in synchronization master to each of the emulated host port optical data containing the commands, the DSP reads the program cycle end core fiber interface emulation host, receives a new packet, in accordance with packet types separately. 这里接收的数据包主要分为3类:1、开出量数据包:收到开出量数据包后,智能插件通过连接模拟断路器的接口电路将开出量信号对应地送给模拟断路器;2、仿真GOOSE数据包:收到仿真GOOSE数据包后,DSP核端程序写入共享RAM中,并通过DSP Link 中断通知ARM核;3、停止仿真数据包:收到停止仿真数据包后,本次仿真结束,仿真主机停止仿真,DSP核端程序通过DSP Link中断通知ARM核仿真结束后,重新初如化自己,然后不停读仿真主机的光纤口,等待仿真主机发送过来的配置操作,进行下一次新的仿真。 Here the received data packet is divided into three categories: 1, the amount of packets out: After receiving the data packet out the amount, the smart plug by connecting the analogue interface circuit breaker the opening corresponding to the amount of signal to the analog circuit breaker ; 2, GOOSE simulation data packets: data packet after receiving GOOSE simulation, the DSP core-end program is written in the shared RAM, and notify the interrupt by DSP Link ARM core; 3, stop the simulation data packets: data packets received after stopping the simulation, the end of the simulation, the simulation host stop the simulation, the DSP core end of an interrupt program by the DSP Link ARM core simulation after the notification, such as the beginning of their re, then stop reading optical simulation host port, waiting simulation operation sent from the host configuration, under a new simulation performed.

[0025] DSP核使用了1个ARM中断事件,当收到ARM中断后,DSP进入中断程序,DSP核从共享RAM中相应位置读入数据,将变位开出信号通过连接模拟断路器的接口电路发送给模拟断路器。 [0025] DSP core uses an ARM interrupt event, when after receiving the ARM interrupt, the DSP enters the interrupt routine, the DSP core from the shared RAM data read in the corresponding position, the displacement will open the circuit breaker by connecting the analogue signal interface sent to the analog circuit breaker.

[0026] 上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。 [0026] The embodiment for explaining the technical concept and features of the invention, its object is to only allow those skilled in the art to understand the present invention and according to embodiments, and not limit the scope of this invention. 凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。 Where an equivalent changes or modifications made from the spirit of the present invention, shall fall within the scope of the present invention.

Claims (4)

1. 一种智能化模拟断路器,设置于在电力系统的继电保护与综合自动化实训系统中用于进行仿真,其分别与仿真主机和智能终端相连接,其特征在于:其包括模拟断路器和智能插件; 所述的智能插件包括具有ARM和DSP双CPU架构的处理芯片、与所述的处理芯片相连接的开入开出电路;所述的处理芯片包括写有ARM程序的ARM核和写有DSP程序的DSP核, 所述的DPS核通过光纤与所述的仿真主机相信号连接,所述的ARM核通过光纤与所述的智能终端相信号连接;所述的开入开出电路通过接口电路与所述的模拟断路器相连接。 An intelligent simulation of a circuit breaker disposed in the simulation for power system protection and training integrated automation systems, which are connected to the host and the intelligent terminal simulation, characterized by: an analog circuit breaker comprising and smart widget; the insert comprises a smart chip having an ARM and DSP dual-CPU architecture, and the processing chip connected to open out into the circuit; chip including said processing program written ARM ARM core DSP program is written and a DSP core, said core phase signal DPS is connected by an optical fiber with said host computer simulation, the ARM core phase signal via an optical fiber with said intelligent terminal; out into the open an analog circuit connected through said interface circuit breaker.
2. 根据权利要求1所述的智能化模拟断路器,其特征在于:所述的处理芯片还包括写有是否正在仿真的仿真状态标识的共享RAM,所述的共享RAM分别与所述的ARM核和DSP核相连接。 2. Intelligent and circuit breaker according to claim 1, wherein: said processing chip further comprises a shared RAM is being written if the state flag simulation simulation, the shared RAM respectively with said ARM core and a DSP core connection.
3. 根据权利要求1所述的智能化模拟断路器,其特征在于:所述的开入开出电路包括连接于所述的处理芯片和所述的接口电路之间的可编程芯片。 Intelligent and according to claim 1 of the circuit breaker, characterized in that: said circuit comprises opening out into a programmable chip between the chip connected to the processing circuit and the interface.
4. 根据权利要求1所述的智能化模拟断路器,其特征在于:所述的DSP核连接有千兆以太网接口,所述的千兆以太网接口与所述的仿真主机的光纤口通过所述的光纤相连接; 所述的ARM核连接有百兆以太网接口,所述的百兆以太网接口与所述的智能终端的光纤口通过所述的光纤相连接。 The intelligent analog circuit breaker according to claim 1, wherein: said DSP core connected Gigabit Ethernet interfaces, Gigabit Ethernet emulation of the host interface and the port through the optical fiber the optical fiber is connected; ARM core is connected to the Fast Ethernet, Fast Ethernet port of the fiber optic interface and the intelligent terminal via the optical fiber is connected.
CN201410324458.2A 2014-07-09 2014-07-09 Intelligent mimic-disconnecting switch CN104064070B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410324458.2A CN104064070B (en) 2014-07-09 2014-07-09 Intelligent mimic-disconnecting switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410324458.2A CN104064070B (en) 2014-07-09 2014-07-09 Intelligent mimic-disconnecting switch

Publications (2)

Publication Number Publication Date
CN104064070A true CN104064070A (en) 2014-09-24
CN104064070B CN104064070B (en) 2017-08-04

Family

ID=51551754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410324458.2A CN104064070B (en) 2014-07-09 2014-07-09 Intelligent mimic-disconnecting switch

Country Status (1)

Country Link
CN (1) CN104064070B (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030211450A1 (en) * 2002-05-07 2003-11-13 Cae Inc. Method and apparatus for self-paced integrated procedure training using a real-time, full-scope simulation
CN101106262A (en) * 2007-01-26 2008-01-16 西安交通大学 Dual core intelligent communication control for plastic shell low voltage breaker
JP2008299068A (en) * 2007-05-31 2008-12-11 Yokogawa Electric Corp Operation training system and operation training method
CN101630151A (en) * 2009-08-14 2010-01-20 国网电力科学研究院武汉南瑞有限责任公司 Dual-CPU based circuit breaker intelligent controller
CN102195346A (en) * 2011-05-11 2011-09-21 江苏镇安电力设备有限公司 Intelligent circuit breaker
CN202004540U (en) * 2011-04-28 2011-10-05 河南省电力公司鹤壁供电公司 Digitized intelligent circuit breaker analog device
CN202171890U (en) * 2011-06-23 2012-03-21 山东电力集团公司东营供电公司 Relay protection test simulation apparatus
CN102545388A (en) * 2012-02-08 2012-07-04 深圳市金博联电力技术有限公司 Intelligent controller of permanent magnet mechanism breaker
CN202332019U (en) * 2011-09-15 2012-07-11 宁波市鄞州供电局 Simulation circuit breaker
CN103050934A (en) * 2012-12-27 2013-04-17 江苏科技大学 Intelligent control device of circuit breaker
CN103440800A (en) * 2013-06-14 2013-12-11 国网技术学院 Simulation training system of high-voltage substation
CN103680238A (en) * 2013-11-04 2014-03-26 国家电网公司 Intelligent transformer station mixing simulation training system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030211450A1 (en) * 2002-05-07 2003-11-13 Cae Inc. Method and apparatus for self-paced integrated procedure training using a real-time, full-scope simulation
CN101106262A (en) * 2007-01-26 2008-01-16 西安交通大学 Dual core intelligent communication control for plastic shell low voltage breaker
JP2008299068A (en) * 2007-05-31 2008-12-11 Yokogawa Electric Corp Operation training system and operation training method
CN101630151A (en) * 2009-08-14 2010-01-20 国网电力科学研究院武汉南瑞有限责任公司 Dual-CPU based circuit breaker intelligent controller
CN202004540U (en) * 2011-04-28 2011-10-05 河南省电力公司鹤壁供电公司 Digitized intelligent circuit breaker analog device
CN102195346A (en) * 2011-05-11 2011-09-21 江苏镇安电力设备有限公司 Intelligent circuit breaker
CN202171890U (en) * 2011-06-23 2012-03-21 山东电力集团公司东营供电公司 Relay protection test simulation apparatus
CN202332019U (en) * 2011-09-15 2012-07-11 宁波市鄞州供电局 Simulation circuit breaker
CN102545388A (en) * 2012-02-08 2012-07-04 深圳市金博联电力技术有限公司 Intelligent controller of permanent magnet mechanism breaker
CN103050934A (en) * 2012-12-27 2013-04-17 江苏科技大学 Intelligent control device of circuit breaker
CN103440800A (en) * 2013-06-14 2013-12-11 国网技术学院 Simulation training system of high-voltage substation
CN103680238A (en) * 2013-11-04 2014-03-26 国家电网公司 Intelligent transformer station mixing simulation training system

Also Published As

Publication number Publication date
CN104064070B (en) 2017-08-04

Similar Documents

Publication Publication Date Title
CN102033798B (en) Method for simulating intelligent electronic device IEC61850/MMS (Microsoft media server) server
CN101482753A (en) Real-time simulation apparatus and system of redundancy flight control computer
CN101923126B (en) Automatic closed loop test method
CN102419719A (en) Computer system and method for starting same
CN103051065B (en) A power distribution automation and distributed fa linkage system testing methods
CN101478146B (en) Digital transforming plant protecting controlling method and multifunctional protection controller
CN103176084B (en) Intelligent substation simulation system in panoramic replace mode and integration testing method for intelligent substation simulation system
CN101930419B (en) Hot plug method, hot plug control device and hot plug card system
CN103713214A (en) Intelligent transformer station relay protection closed loop test system
CN201535806U (en) One kind of protection testing
CN103136138A (en) Chip, chip debugging method and communication method for chip and external devices
CN106462147A (en) Remote terminal unit (RTU) with universal input/output (UIO) and related method
CN101782774B (en) DC field layer simulation system, digital real-time emulation system and closed loop test system
CN102832715B (en) Intelligent Substation design virtual terminal, real fiber / cable integrated design method
CN201515183U (en) Intelligent integrated distribution box with leakage protection remote monitoring function
CN101826752A (en) Backup power automatic switching device action simulation method in self-adaptive electric network operation mode
CN103744761A (en) Method and system for controlling multiple mobile terminals to automatically execute tasks
CN103312852B (en) A mobile terminal current automated testing apparatus and testing method
CN203350377U (en) Automation relay protection testing device
CN102664465A (en) Breaker controller with dual-power-source switching function, switching system and switching method
CN100465907C (en) Apparatus and method of CMOS parameter setting and maintaining
CN1752946A (en) Debugging method of embedded system and its system
CN103559053B (en) Board system and FPGA (Field Programmable Logic Array) online update method of communication interface cards
EP2860627A1 (en) Active usb device and switching method for operating mode thereof
CN103904779B (en) Full station intelligent terminal simulation apparatus and method of using an intelligent substation

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee