CN104063838B - Asymmetric Watermarking Schemes method based on Logistic chaotic maps and Walsh sequences - Google Patents

Asymmetric Watermarking Schemes method based on Logistic chaotic maps and Walsh sequences Download PDF

Info

Publication number
CN104063838B
CN104063838B CN201410298407.7A CN201410298407A CN104063838B CN 104063838 B CN104063838 B CN 104063838B CN 201410298407 A CN201410298407 A CN 201410298407A CN 104063838 B CN104063838 B CN 104063838B
Authority
CN
China
Prior art keywords
watermark
msub
mrow
threshold
public key
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410298407.7A
Other languages
Chinese (zh)
Other versions
CN104063838A (en
Inventor
吴胜兵
霍瑶
马艳玲
李兴林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201410298407.7A priority Critical patent/CN104063838B/en
Publication of CN104063838A publication Critical patent/CN104063838A/en
Application granted granted Critical
Publication of CN104063838B publication Critical patent/CN104063838B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Editing Of Facsimile Originals (AREA)
  • Image Processing (AREA)

Abstract

本发明提供了一种基于Logistic混沌映射和Walsh序列的非对称水印算法,包括如下步骤:根据载体图像的每块系数块的最大奇异值得到特征矩阵;选取与特征矩阵不相关的Walsh序列为公钥水印,根据Logistic映射动力学方程得到混沌序列,将所述混沌序列转换为取值为±1的序列并从中截取一个与特征矩阵不相关的序列作为私钥水印;根据公钥水印和私钥水印的加权和得到嵌入水印,根据嵌入水印的信息生成水印图像;对水印图像进行检测。本发明的技术方案安全性高,能够较好的保护版权,检测性能好,鲁棒性强。

The present invention provides a kind of asymmetrical watermarking algorithm based on Logistic chaotic map and Walsh sequence, comprises the following steps: obtain feature matrix according to the maximum singular value of each coefficient block of carrier image; Select the Walsh sequence unrelated to feature matrix as common key watermark, get the chaotic sequence according to the Logistic mapping dynamic equation, convert the chaotic sequence into a sequence with a value of ±1 and intercept a sequence unrelated to the feature matrix as the private key watermark; according to the public key watermark and the private key The weighted sum of the watermarks is used to obtain the embedded watermark, and the watermarked image is generated according to the information embedded in the watermark; the watermarked image is detected. The technical scheme of the invention has high safety, can better protect copyright, has good detection performance and strong robustness.

Description

基于Logistic混沌映射和Walsh序列的非对称水印方法Asymmetric Watermarking Method Based on Logistic Chaos Map and Walsh Sequence

技术领域technical field

本发明属于数字水印技术领域,具体涉及一种基于Logistic混沌映射和Walsh序列的非对称水印方法。The invention belongs to the technical field of digital watermarking, and in particular relates to an asymmetrical watermarking method based on Logistic chaotic mapping and Walsh sequences.

背景技术Background technique

随着数字化产品的广泛普及和网络技术的快速发展,数字产品的安全问题越来越受到人们的重视。怎样才能有效的保护产品的版权成为人们极为关心的问题。With the widespread popularization of digital products and the rapid development of network technology, people pay more and more attention to the security of digital products. How to effectively protect the copyright of products has become an issue of great concern to people.

数字水印技术能对数字产品的版权进行很好的保护。但数字水印技术一般都采用对称水印,对于传统的对称数字水印技术,水印嵌入和水印检测采用相同的密钥,水印检测只能由版权所有者和授权机构来完成,在发生版权纠纷时,版权拥有者需要出示私人密钥来证明其合法拥有。而密钥一旦暴露,攻击者就能够移去或伪造水印,这样就不能很好的保护版权。Digital watermarking technology can protect the copyright of digital products very well. However, digital watermarking technology generally uses symmetric watermarking. For traditional symmetric digital watermarking technology, the same key is used for watermark embedding and watermark detection. Watermark detection can only be completed by copyright owners and authorized institutions. The owner needs to show the private key to prove its legal possession. And once the key is exposed, the attacker can remove or forge the watermark, so the copyright cannot be well protected.

发明内容Contents of the invention

本发明的目的是提供一种基于Logistic混沌映射和Walsh序列的非对称水印方法,以解决上述问题。The purpose of the present invention is to provide an asymmetric watermarking method based on Logistic chaotic map and Walsh sequence to solve the above problems.

为了实现上述目的,本发明所采用的技术方案是:In order to achieve the above object, the technical solution adopted in the present invention is:

一种基于Logistic混沌映射和Walsh序列的非对称水印方法,其特征在于,包括如下步骤:A kind of asymmetrical watermark method based on Logistic chaotic map and Walsh sequence, it is characterized in that, comprises the steps:

步骤一:特征矩阵S的构建Step 1: Construction of the feature matrix S

取m×m的图像Am×m作为载体图像,对载体图像进行DCT变换,从DCT系数中选取4k×4k个中频系数,构成矩阵B4k×4kTake the m×m image A m×m as the carrier image, perform DCT transformation on the carrier image, select 4k×4k intermediate frequency coefficients from the DCT coefficients, and form a matrix B 4k×4k ,

将矩阵B4k×4k分割成N块互不重叠的4×4系数块,N=k×k,Divide the matrix B 4k×4k into N blocks of non-overlapping 4×4 coefficient blocks, N=k×k,

将第i块系数块记为Bi,i∈[1,N],根据[ui,si,vi]=svd(Bi),对每块系数块进行奇异值分解并提取每块的最大奇异值,共得到N个最大奇异值,将N个最大奇异值构成特征矩阵S;Denote the i-th coefficient block as B i , i∈[1,N], according to [u i , s i , v i ]=svd(B i ), perform singular value decomposition on each coefficient block and extract each block The largest singular value of , a total of N largest singular values are obtained, and the N largest singular values form a characteristic matrix S;

步骤二:公钥水印Wp和私钥水印Ws的构建Step 2: Construction of public key watermark W p and private key watermark W s

选取与特征矩阵S不相关的长度为N的Walsh序列为公钥水印Wp,即 Select a Walsh sequence of length N that is not related to the feature matrix S as the public key watermark W p , namely

根据Logistic映射动力学方程xn+1=μ0xn(1-xn),得到混沌序列X={x1,x2,Λ,xn},式中,μ0为分支参数,μ0∈(0,4),x的初值x0∈(0,1),According to the Logistic mapping dynamic equation x n+1 = μ 0 x n (1-x n ), the chaotic sequence X={x 1 ,x 2 ,Λ,x n } is obtained, where μ 0 is the branch parameter, μ 0 ∈ (0,4), the initial value of x x 0 ∈ (0,1),

根据xi=mod(round(xi×108),2),将混沌序列X转换为取值为±1的序列,mod表示取模运算,round表示就近取整,According to x i =mod(round(x i ×10 8 ),2), Convert the chaotic sequence X into a sequence with a value of ±1, mod means modulo operation, round means rounding to the nearest integer,

从取值为±1的序列中,截取一个与特征矩阵S不相关的长度为N的序列Y={y1,y2,Λ,yN}作为私钥水印Ws,即 From the sequence with a value of ±1, intercept a sequence Y={y 1 ,y 2 ,Λ,y N } with a length of N that is not related to the feature matrix S as the private key watermark W s , namely

上述公钥水印Wp和私钥水印Ws的构建无先后顺序;The construction of the above public key watermark W p and private key watermark W s has no sequence;

步骤三:生成水印图像A'm×m Step 3: Generate watermark image A' m×m

计算公钥水印Wp和私钥水印Ws的加权和,根据加权和构造得到嵌入水印WwCalculate the weighted sum of the public key watermark W p and the private key watermark W s , and get the embedded watermark W w according to the weighted sum construction,

根据S'=S+λWw,将嵌入水印Ww的信息采用加法嵌入特征矩阵S中,得到特征矩阵S',对特征矩阵S'中每块系数块对应的奇异值进行奇异值反变换,得到修改后的DCT系数,采用修改后的DCT系数对载体图像进行DCT反变换,得到m×m的水印图像A'm×mAccording to S'=S+λW w , the information embedded in the watermark W w is embedded in the feature matrix S by addition to obtain the feature matrix S', and the singular value corresponding to each coefficient block in the feature matrix S' is subjected to singular value inverse transformation, Obtain the modified DCT coefficients, and use the modified DCT coefficients to perform DCT inverse transformation on the carrier image to obtain an m×m watermark image A′ m×m ;

步骤四:水印检测Step 4: Watermark detection

对水印图像A'm×m采用步骤一的操作,得到特征矩阵S',特征矩阵S'=S+λWw+n0=S+λ(αWs+βWp)+n0,n0表示由各种攻击所引起的干扰信号,For the watermark image A' m×m , adopt the operation of step 1 to obtain the characteristic matrix S', the characteristic matrix S'=S+λW w +n 0 =S+λ(αW s +βW p )+n 0 , n 0 means Interference signals caused by various attacks,

采用Wp_threshold、Ws_threshold分别表示公钥检测阈值和私钥检测阈值,Use W p _threshold and W s _threshold to represent the public key detection threshold and private key detection threshold respectively,

公钥检测阈值Wp_threshold的设定方法为:其中,为特征矩阵S的均值,为公钥水印Wp的均值,为公钥水印Wp的能量,The method of setting the public key detection threshold W p _threshold is: in, is the mean value of the characteristic matrix S, is the mean value of the public key watermark W p , is the energy of the public key watermark W p ,

根据上述公钥检测阈值Wp_threshold的设定方法,设定私钥检测阈值Ws_threshold,According to the setting method of the public key detection threshold W p _threshold, set the private key detection threshold W s _threshold,

采用Wp_test、Ws_test分别表示公钥检测的检测值和私钥检测的检测值,根据公式:Use W p _test and W s _test to represent the detection value of the public key detection and the detection value of the private key detection respectively, according to the formula:

计算得到Wp_test,参照相同计算方法计算得到Ws_test,Calculate W p _test, refer to the same calculation method to calculate W s _test,

将Wp_test与Wp_threshold进行比较,当Wp_test≥Wp_threshold,则判定公钥水印Wp存在,反之,则判定公钥水印Wp不存在,Comparing W p _test with W p _threshold , when W p _test ≥ W p _threshold, it is determined that the public key watermark W p exists, otherwise, it is determined that the public key watermark W p does not exist,

将Ws_test与Ws_threshold进行比较,当Ws_test≥Ws_threshold,则判定私钥水印Ws存在,反之,则判定私钥水印Ws不存在。Comparing W s _test with W s _threshold , when W s _test≥W s _threshold, it is determined that the private key watermark W s exists, otherwise, it is determined that the private key watermark W s does not exist.

本发明的技术方案的进一步特征在于:步骤一中对DCT系数进行‘之’字形扫描,把DCT系数按频率从低到高排序。The further feature of the technical solution of the present invention is that in step 1, the DCT coefficients are zigzag scanned, and the DCT coefficients are sorted by frequency from low to high.

本发明的技术方案的进一步特征在于:图像Am×m为灰度图像。A further feature of the technical solution of the present invention is that the image A m×m is a grayscale image.

本发明的技术方案的进一步特征在于:步骤二中分支参数μ0的取值范围为3.5699456≤μ0≤4。The further feature of the technical solution of the present invention is that in step 2, the value range of the branch parameter μ 0 is 3.5699456≤μ 0 ≤4.

本发明的技术方案的进一步特征在于:步骤三中嵌入水印Ww的构造方法为:Ww=αWs+βWp,其中,α,β∈(0,1)。The technical solution of the present invention is further characterized in that: the construction method of the embedded watermark W w in Step 3 is: W w =αW s +βW p , where α,β∈(0,1).

与背景技术相比,本发明的技术方案的优点和积极效果如下:Compared with the background technology, the advantages and positive effects of the technical solution of the present invention are as follows:

1.安全性高,能够较好的保护版权1. High security, better copyright protection

根据本发明所提供的技术方案,采用公钥水印Wp和私钥水印Ws的加权和来构造嵌入水印,与背景技术相比,在发生版权纠纷时,版权所有者不需要暴露私钥水印,可以直接利用公钥水印进行检测,水印攻击者即使掌握了私钥水印,也无法推导出嵌入密钥。According to the technical solution provided by the present invention, the weighted sum of the public key watermark W p and the private key watermark W s is used to construct the embedded watermark. Compared with the background technology, when a copyright dispute occurs, the copyright owner does not need to expose the private key watermark , the public key watermark can be directly used for detection. Even if the watermark attacker masters the private key watermark, he cannot deduce the embedded key.

2.检测性能好,鲁棒性强2. Good detection performance and strong robustness

本发明的技术方案采用了基于Logistic混沌映射和Walsh序列的非对称水印方法对载体图像嵌入水印,检测性能良好,对加性噪声、有损压缩、裁剪等攻击都具有很好的鲁棒性。The technical scheme of the present invention adopts the asymmetric watermarking method based on the Logistic chaotic map and the Walsh sequence to embed the watermark in the carrier image, has good detection performance, and has good robustness against attacks such as additive noise, lossy compression, and cropping.

附图说明Description of drawings

图1为本发明的技术方案在实施例中的载体图像;Fig. 1 is the carrier image of the technical solution of the present invention in an embodiment;

图2为本发明的技术方案在实施例中的水印嵌入流程图;Fig. 2 is a watermark embedding flow chart of the technical solution of the present invention in an embodiment;

图3为本发明的技术方案在实施例中的水印检测流程图;Fig. 3 is the flow chart of watermark detection in the embodiment of the technical solution of the present invention;

图4为本发明的技术方案在实施例中的水印图像;Fig. 4 is the watermark image of the technical solution of the present invention in the embodiment;

图5为本发明的技术方案在实施例中的JPEG压缩下水印检测结果;以及Fig. 5 is the watermark detection result under JPEG compression of the technical solution of the present invention in the embodiment; And

图6为本发明的技术方案在实施例中加高斯噪声时不同检测序列的检测结果说明图。Fig. 6 is an explanatory diagram of the detection results of different detection sequences when Gaussian noise is added in the embodiment of the technical solution of the present invention.

具体实施方式detailed description

以下结合附图,对本发明所涉及的基于Logistic混沌映射和Walsh序列的非对称水印方法做进一步说明。The asymmetric watermarking method based on the Logistic chaotic map and the Walsh sequence involved in the present invention will be further described below in conjunction with the accompanying drawings.

<实施例><Example>

图1为本发明的技术方案在实施例中的载体图像。Fig. 1 is a carrier image of the technical solution of the present invention in an embodiment.

本实施例在matlab 2013a环境下,以如图1所示的512×512的灰度图像为载体图像(即m=512)。取一维Logistic混沌序列的分支参数μ0=3.711,初值x0=0.773。公钥Wp选用的是4096×4096的Hadamard矩阵的第112行所构成的Walsh序列。嵌入水印Ww时,参数α=0.73,β=0.64,λ=17。In this embodiment, under the environment of matlab 2013a, a 512×512 grayscale image as shown in FIG. 1 is used as a carrier image (ie, m=512). Take the branch parameter μ 0 =3.711 of the one-dimensional Logistic chaotic sequence, and the initial value x 0 =0.773. The public key W p is selected as the Walsh sequence formed by the 112th row of the 4096×4096 Hadamard matrix. When embedding watermark W w , parameters α=0.73, β=0.64, λ=17.

图2为本发明的技术方案在实施例中的水印嵌入流程图。Fig. 2 is a flow chart of watermark embedding in an embodiment of the technical solution of the present invention.

图3为本发明的技术方案在实施例中的水印检测流程图。Fig. 3 is a flow chart of watermark detection in an embodiment of the technical solution of the present invention.

本实施例所提供的基于Logistic混沌映射和Walsh序列的非对称水印方法,首先利用Logistic混沌映射和Walsh序列构造嵌入水印,然后将水印嵌入到由载体图像的最大奇异值构成的特征矩阵,并采用相关值计算方法对水印进行检测。具体包括如图2和图3所示的以下步骤:In the asymmetric watermarking method based on the Logistic chaotic map and the Walsh sequence provided in this embodiment, the Logistic chaotic map and the Walsh sequence are first used to construct the embedded watermark, and then the watermark is embedded into the feature matrix composed of the largest singular value of the carrier image, and the The correlation value calculation method detects the watermark. Specifically include the following steps as shown in Figure 2 and Figure 3:

步骤一:特征矩阵S的构建Step 1: Construction of the feature matrix S

取如图1所示的m×m的图像Am×m作为载体图像,m=512,对该载体图像进行DCT变换,并对DCT系数进行‘之’字形扫描,从DCT系数中选取4k×4k个中频系数,构成矩阵B4k×4kTake the m×m image A m×m shown in Figure 1 as the carrier image, m=512, carry out DCT transformation on the carrier image, and perform zigzag scanning on the DCT coefficients, and select 4k× from the DCT coefficients 4k intermediate frequency coefficients form a matrix B 4k×4k ,

将矩阵B4k×4k分割成N块互不重叠的4×4系数块,N=k×k,将第i块系数块记为Bi,i∈[1,N],根据[ui,si,vi]=svd(Bi),对每块系数块进行奇异值分解并提取每块的最大奇异值,即si(1,1),共得到N个最大奇异值,将N个最大奇异值构成特征矩阵S。Divide the matrix B 4k×4k into N non-overlapping 4×4 coefficient blocks, N=k×k, denote the i-th coefficient block as B i , i∈[1,N], according to [u i , s i ,v i ]=svd(B i ), perform singular value decomposition on each block of coefficients and extract the maximum singular value of each block, that is, s i (1,1), to obtain N maximum singular values in total, and take N The largest singular values constitute the characteristic matrix S.

步骤二:公钥水印Wp和私钥水印Ws的构建Step 2: Construction of public key watermark W p and private key watermark W s

选取与特征矩阵S不相关的长度为N的Walsh序列为公钥水印Wp,即 Select a Walsh sequence of length N that is not related to the feature matrix S as the public key watermark W p , namely

取分支参数μ0=3.711,初值x0=0.773,代入Logistic映射动力学方程xn+1=μ0xn(1-xn)中,得到混沌序列X={x1,x2,Λ,xn}。Take the branch parameter μ 0 = 3.711, the initial value x 0 = 0.773, and substitute it into the Logistic mapping dynamic equation x n+1 = μ 0 x n (1-x n ), to obtain the chaotic sequence X={x 1 ,x 2 , Λ,x n }.

根据xi=mod(round(xi×108),2),将混沌序列X转换为取值为±1的序列,mod表示取模运算,round表示就近取整。According to x i =mod(round(x i ×10 8 ),2), Convert the chaotic sequence X to a sequence with a value of ±1, mod means modulo operation, and round means round to the nearest integer.

从取值为±1的序列中,截取一个与特征矩阵S不相关的长度为N的序列Y={y1,y2,Λ,yN}作为私钥水印Ws,即 From the sequence with a value of ±1, intercept a sequence Y={y 1 ,y 2 ,Λ,y N } with a length of N that is not related to the feature matrix S as the private key watermark W s , namely

图4为本发明的技术方案在实施例中的水印图像。Fig. 4 is a watermark image in an embodiment of the technical solution of the present invention.

步骤三:生成水印图像A'm×m Step 3: Generate watermark image A' m×m

设定参数α=0.73,β=0.64,λ=17。Set parameters α=0.73, β=0.64, λ=17.

利用公钥水印Wp和私钥水印Ws的加权和来构造嵌入水印Ww,Ww=αWs+βWpThe weighted sum of the public key watermark W p and the private key watermark W s is used to construct the embedded watermark W w , W w =αW s +βW p .

根据S'=S+λWw,将嵌入水印Ww的信息采用加法嵌入特征矩阵S中,得到特征矩阵S',对特征矩阵S'中每块系数块对应的奇异值进行奇异值反变换,得到修改后的DCT系数,采用修改后的DCT系数对载体图像进行DCT反变换,得到如图4所示的m×m的水印图像A'm×mAccording to S'=S+λW w , the information embedded in the watermark W w is embedded in the feature matrix S by addition to obtain the feature matrix S', and the singular value corresponding to each coefficient block in the feature matrix S' is subjected to singular value inverse transformation, The modified DCT coefficients are obtained, and the carrier image is subjected to inverse DCT transformation using the modified DCT coefficients to obtain an m×m watermark image A' m×m as shown in Figure 4 .

步骤四:水印检测Step 4: Watermark detection

对水印图像A'm×m采用步骤一的操作,得到特征矩阵S',特征矩阵S'=S+λWw+n0=S+λ(αWs+βWp)+n0,n0表示由各种攻击所引起的干扰信号,For the watermark image A' m×m , adopt the operation of step 1 to obtain the characteristic matrix S', the characteristic matrix S'=S+λW w +n 0 =S+λ(αW s +βW p )+n 0 , n 0 means Interference signals caused by various attacks,

采用Wp_threshold、Ws_threshold分别表示公钥检测阈值和私钥检测阈值,Use W p _threshold and W s _threshold to represent the public key detection threshold and private key detection threshold respectively,

公钥检测阈值Wp_threshold的设定方法为:其中,为特征矩阵S的均值,为公钥水印Wp的均值,为公钥水印Wp的能量,The method of setting the public key detection threshold W p _threshold is: in, is the mean value of the characteristic matrix S, is the mean value of the public key watermark W p , is the energy of the public key watermark W p ,

根据上述公钥检测阈值Wp_threshold的设定方法,设定私钥检测阈值Ws_threshold,According to the setting method of the public key detection threshold W p _threshold, set the private key detection threshold W s _threshold,

采用Wp_test、Ws_test分别表示公钥检测的检测值和私钥检测的检测值,根据公式:Use W p _test and W s _test to represent the detection value of the public key detection and the detection value of the private key detection respectively, according to the formula:

由于构造的Wp、Ws与特征矩阵S满足以下关系:Since the constructed W p , W s and the characteristic matrix S satisfy the following relationship:

则:公钥检测阈值Wp_threshold设为:其中为特征矩阵S中所有元素的均值,为公钥的均值,为公钥的能量。同理可得私钥检测阈值Ws_threshold。 but: The public key detection threshold W p _threshold is set as: in is the mean value of all elements in the feature matrix S, is the mean value of the public key, is the energy of the public key. Similarly, the private key detection threshold W s _threshold can be obtained.

将Wp_test与Wp_threshold进行比较,当Wp_test≥Wp_threshold,则判定公钥水印Wp存在,反之,则判定公钥水印Wp不存在;将Ws_test与Ws_threshold进行比较,当Ws_test≥Ws_threshold,则判定私钥水印Ws存在,反之,则判定私钥水印Ws不存在。Compare W p _test with W p _threshold , when W p _test ≥ W p _threshold, it is determined that the public key watermark W p exists, otherwise, it is determined that the public key watermark W p does not exist; compare W s _test with W s _threshold In comparison, when W s _test≥W s _threshold, it is determined that the private key watermark W s exists, otherwise, it is determined that the private key watermark W s does not exist.

对如图4所示的水印图像A'm×m分别进行JPEG压缩、加高斯噪声、加椒盐噪声和剪切等攻击。The watermarked image A' m×m shown in Figure 4 is subjected to JPEG compression, Gaussian noise, salt and pepper noise, and shearing attacks.

图5为本发明的技术方案在实施例中的JPEG压缩下水印检测结果。Fig. 5 is the watermark detection result under JPEG compression in the embodiment of the technical solution of the present invention.

JPEG压缩:对图4所示的水印图像A'm×m进行不同程度的JPEG压缩处理,然后进行水印检测,检测效果如图5所示。从图5可以看出,对水印图像进行质量因子为20%的JPEG压缩,公钥检测和私钥检测仍然有效,检测性能良好。JPEG compression: The watermark image A' m×m shown in Figure 4 is subjected to different degrees of JPEG compression processing, and then the watermark detection is performed, and the detection effect is shown in Figure 5. It can be seen from Figure 5 that the public key detection and private key detection are still effective and the detection performance is good when the watermark image is compressed by JPEG with a quality factor of 20%.

加高斯噪声:Add Gaussian noise:

(1)对图4所示的水印图像A'm×m加高斯噪声,噪声的方差分别为0.006、0.009、0.012,水印检测结果如表1所示。从表1可以看出,本实施例所提供的方法具有较好的抗高斯噪声干扰的能力。(1) Gaussian noise is added to the watermark image A' m×m shown in Figure 4. The variance of the noise is 0.006, 0.009, and 0.012 respectively. The watermark detection results are shown in Table 1. It can be seen from Table 1 that the method provided by this embodiment has better ability to resist Gaussian noise interference.

表1加高斯噪声后水印的检测结果Table 1 Watermark detection results after adding Gaussian noise

图6为本发明的技术方案在实施例中加高斯噪声时不同检测序列的检测结果说明图。Fig. 6 is an explanatory diagram of the detection results of different detection sequences when Gaussian noise is added in the embodiment of the technical solution of the present invention.

(2)对图4所示的水印图像A'm×m加高斯噪声,噪声方差为:0.009,用1000个序列进行检测,其中第200个检测序列为私钥水印,第400检测序列为公钥水印,其他检测序列为4096×4096的Hadamard矩阵的第200行至第1197行所构成的998个Walsh序列。水印检测结果图6所示。(2) Gaussian noise is added to the watermark image A' m×m shown in Figure 4, the noise variance is: 0.009, and 1000 sequences are used for detection, of which the 200th detection sequence is the private key watermark, and the 400th detection sequence is the public key watermark. key watermark, and other detection sequences are 998 Walsh sequences formed from the 200th row to the 1197th row of the 4096×4096 Hadamard matrix. The results of watermark detection are shown in Figure 6.

加椒盐噪声:对图4所示的水印图像A'm×m加椒盐噪声,噪声强度分别为0.01、0.03、0.04,水印检测结果如表2所示。从表2可以看出,本发明方法具有较好的抗椒盐噪声干扰的能力。Add salt and pepper noise: Add salt and pepper noise to the watermark image A' m×m shown in Figure 4, the noise intensity is 0.01, 0.03, 0.04 respectively, and the watermark detection results are shown in Table 2. It can be seen from Table 2 that the method of the present invention has a better ability to resist salt and pepper noise interference.

表2加不同强度的椒盐噪声后水印的检测结果Table 2 Watermark detection results after adding different intensities of salt and pepper noise

剪切:对图4所示的水印图像A'm×m进行不同程度的剪切,水印检测结果如表3所示。从表3可以看出,本发明方法具有较好的抗剪切能力。Cutting: The watermark image A' m×m shown in Figure 4 is cut to different degrees, and the watermark detection results are shown in Table 3. As can be seen from Table 3, the method of the present invention has better shear resistance.

表3不同程度的剪切后水印的检测结果Table 3 Detection results of different degrees of cut watermarks

与背景技术相比,本实施例所提供的技术方案的优点和积极效果如下:Compared with the background technology, the advantages and positive effects of the technical solution provided by this embodiment are as follows:

1.安全性高,能够较好的保护版权1. High security, better copyright protection

根据本实施例所提供的技术方案,采用公钥水印Wp和私钥水印Ws的加权和来构造嵌入水印,与背景技术相比,在发生版权纠纷时,版权所有者不需要暴露私钥水印,可以直接利用公钥水印进行检测,水印攻击者即使掌握了私钥水印,也无法推导出嵌入密钥。According to the technical solution provided by this embodiment, the weighted sum of the public key watermark W p and the private key watermark W s is used to construct the embedded watermark. Compared with the background technology, when a copyright dispute occurs, the copyright owner does not need to disclose the private key The watermark can be detected directly by using the public key watermark. Even if the watermark attacker has mastered the private key watermark, he cannot deduce the embedded key.

2.检测性能好,鲁棒性强2. Good detection performance and strong robustness

本实施例所提供的技术方案采用了基于Logistic混沌映射和Walsh序列的非对称水印方法对载体图像嵌入水印,JPEG压缩、加高斯噪声、加椒盐噪声和剪切等攻击测试显示,本实施例所提供的技术方案检测性能良好,对加性噪声、有损压缩、裁剪等攻击都具有很好的鲁棒性。The technical solution provided in this embodiment adopts the asymmetric watermark method based on Logistic chaotic map and Walsh sequence to embed watermark in the carrier image, and the attack tests such as JPEG compression, adding Gaussian noise, adding salt and pepper noise, and shearing show that the method described in this embodiment The provided technical solution has good detection performance and is robust to attacks such as additive noise, lossy compression, and cropping.

当然,本发明所涉及的基于Logistic混沌映射和Walsh序列的非对称水印方法并不仅仅限定于上述实施例中的内容。以上内容仅为本发明构思下的基本说明,而依据本发明的技术方案所作的任何等效变换,均属于本发明的保护范围。Of course, the asymmetric watermarking method based on the Logistic chaotic map and the Walsh sequence involved in the present invention is not limited to the content in the above-mentioned embodiments. The above content is only a basic description of the concept of the present invention, and any equivalent transformation made according to the technical solution of the present invention belongs to the protection scope of the present invention.

另外,在上述实施例中,选取的是512×512的灰度图像作为载体图像,本发明的技术方案,可以选择任意长度的方形图像作为载体图像,该方形图像可以为灰度图像,也可以为彩色图像,均能达到相同的作用效果。In addition, in the above-mentioned embodiment, a grayscale image of 512×512 is selected as the carrier image. In the technical solution of the present invention, a square image of any length can be selected as the carrier image. The square image can be a grayscale image, or For color images, the same effect can be achieved.

另外,在上述实施例中,分支参数μ0=3.711,初值x0=0.773,本发明的技术方案分支参数μ0可以选自0-4之间的任意数值,x0可以选自0~1之间的任意数值,均能达到相同的作用效果。In addition, in the above example, the branch parameter μ 0 =3.711, the initial value x 0 =0.773, the branch parameter μ 0 of the technical solution of the present invention can be selected from any value between 0-4, and x 0 can be selected from 0 to Any value between 1 can achieve the same effect.

另外,在上述实施例中,参数α=0.73,β=0.64,本发明的技术方案α和β可以选自0~1之间的任意数值,均能达到相同的作用效果。In addition, in the above embodiment, the parameters α=0.73 and β=0.64, the technical solution of the present invention α and β can be selected from any value between 0 and 1, and the same effect can be achieved.

Claims (4)

1.一种基于Logistic混沌映射和Walsh序列的非对称水印方法,其特征在于,包括如下步骤:1. a kind of asymmetrical watermark method based on Logistic chaotic map and Walsh sequence, is characterized in that, comprises the steps: 步骤一:特征矩阵S的构建Step 1: Construction of the feature matrix S 取m×m的图像Am×m作为载体图像,对所述载体图像进行DCT变换,从DCT系数中选取4k×4k个中频系数,构成矩阵B4k×4kTake an m×m image A m×m as a carrier image, perform DCT transformation on the carrier image, select 4k×4k intermediate frequency coefficients from the DCT coefficients, and form a matrix B 4k×4k , 将所述矩阵B4k×4k分割成N块互不重叠的4×4系数块,N=k×k,Divide the matrix B 4k×4k into N blocks of non-overlapping 4×4 coefficient blocks, N=k×k, 将第i块所述系数块记为Bi,i∈[1,N],根据[ui,si,vi]=svd(Bi),对每块所述系数块进行奇异值分解并提取每块的最大奇异值,共得到N个最大奇异值,将N个所述最大奇异值构成特征矩阵S;Denote the coefficient block of the i-th block as B i , i∈[1,N], according to [u i , s i , v i ]=svd(B i ), perform singular value decomposition on the coefficient block of each block And extract the maximum singular value of each block, obtain N maximum singular values altogether, form characteristic matrix S with N described maximum singular values; 步骤二:公钥水印Wp和私钥水印Ws的构建Step 2: Construction of public key watermark W p and private key watermark W s 选取与所述特征矩阵S不相关的长度为N的Walsh序列为公钥水印Wp,即 Select a Walsh sequence of length N that is not related to the feature matrix S as the public key watermark W p , namely 根据Logistic映射动力学方程xn+1=μ0xn(1-xn),得到混沌序列X={x1,x2,Λ,xn},式中,μ0为分支参数,μ0∈(0,4),x的初值x0∈(0,1),According to the Logistic mapping dynamic equation x n+1 = μ 0 x n (1-x n ), the chaotic sequence X={x 1 ,x 2 ,Λ,x n } is obtained, where μ 0 is the branch parameter, μ 0 ∈ (0,4), the initial value of x x 0 ∈ (0,1), 根据xi=mod(round(xi×108),2),将所述混沌序列X转换为取值为±1的序列,mod表示取模运算,round表示就近取整,According to x i =mod(round(x i ×10 8 ),2), The chaotic sequence X is converted into a sequence with a value of ±1, mod represents a modulo operation, and round represents rounding to the nearest integer, 从取值为±1的序列中,截取一个与所述特征矩阵S不相关的长度为N的序列Y={y1,y2,Λ,yN}作为私钥水印Ws,即 From the sequence with a value of ±1, intercept a sequence Y={y 1 ,y 2 ,Λ,y N } with a length of N that is not related to the feature matrix S as the private key watermark W s , namely 上述公钥水印Wp和私钥水印Ws的构建无先后顺序;The construction of the above public key watermark W p and private key watermark W s has no sequence; 步骤三:生成水印图像A'm×m Step 3: Generate watermark image A' m×m 计算所述公钥水印Wp和所述私钥水印Ws的加权和,根据所述加权和构造得到嵌入水印Ww,该嵌入水印Ww的构造方法为:Ww=αWs+βWp,α、β均为预设参数,α,β∈(0,1),Calculate the weighted sum of the public key watermark W p and the private key watermark W s , and obtain the embedded watermark W w according to the weighted sum construction. The construction method of the embedded watermark W w is: W w =αW s +βW p , α, β are preset parameters, α, β∈(0, 1), 根据S'=S+λWw,λ为预设参数,将所述嵌入水印Ww的信息采用加法嵌入所述特征矩阵S中,得到特征矩阵S',对所述特征矩阵S'中每块所述系数块对应的奇异值进行奇异值反变换,得到修改后的DCT系数,采用修改后的DCT系数对所述载体图像进行DCT反变换,得到m×m的水印图像A'm×mAccording to S'=S+λW w , where λ is a preset parameter, the information of the embedded watermark W w is embedded in the feature matrix S by addition to obtain the feature matrix S', and for each block in the feature matrix S' The singular value corresponding to the coefficient block is subjected to singular value inverse transformation to obtain a modified DCT coefficient, and the modified DCT coefficient is used to perform DCT inverse transformation on the carrier image to obtain an m×m watermark image A′ m×m ; 步骤四:水印检测Step 4: Watermark detection 对所述水印图像A'm×m采用所述步骤一的操作,得到特征矩阵S”,所述特征矩阵S”=S+λWW+n0=S+λ(αWs+βWp)+n0,n0表示由各种攻击所引起的干扰信号,Using the operation of the first step for the watermark image A' m×m , the characteristic matrix S" is obtained, and the characteristic matrix S"=S+λW W +n 0 =S+λ(αW s +βW p )+ n 0 , n 0 represents the interference signal caused by various attacks, 采用Wp_threshold、Ws_threshold分别表示公钥检测阈值和私钥检测阈值,Use W p _threshold and W s _threshold to represent the public key detection threshold and private key detection threshold respectively, 所述公钥检测阈值Wp_threshold的设定方法为:其中,为所述特征矩阵S的均值,为所述公钥水印Wp的均值,为所述公钥水印Wp的能量,The setting method of the public key detection threshold Wp_threshold is: in, is the mean value of the feature matrix S, is the mean value of the public key watermark W p , is the energy of the public key watermark W p , 根据上述公钥检测阈值Wp_threshold的设定方法,设定所述私钥检测阈值Ws_threshold,According to the setting method of the above public key detection threshold W p _threshold, set the private key detection threshold W s _threshold, 采用Wp_test、Ws_test分别表示公钥检测的检测值和私钥检测的检测值,根据公式:Use W p _test and W s _test to represent the detection value of the public key detection and the detection value of the private key detection respectively, according to the formula: <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>W</mi> <mi>p</mi> </msub> <mo>_</mo> <mi>t</mi> <mi>e</mi> <mi>s</mi> <mi>t</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <msup> <msub> <mi>W</mi> <mi>p</mi> </msub> <mi>T</mi> </msup> <mo>*</mo> <msup> <mi>S</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <msup> <msub> <mi>W</mi> <mi>p</mi> </msub> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>S</mi> <mo>+</mo> <mi>&amp;lambda;</mi> <mo>(</mo> <msub> <mi>&amp;alpha;W</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>&amp;beta;W</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>n</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <msup> <msub> <mi>W</mi> <mi>p</mi> </msub> <mi>T</mi> </msup> <mo>*</mo> <mi>S</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <msup> <msub> <mi>W</mi> <mi>p</mi> </msub> <mi>T</mi> </msup> <mo>*</mo> <msub> <mi>n</mi> <mn>0</mn> </msub> <mo>+</mo> <mfrac> <mrow> <mi>&amp;lambda;</mi> <mi>&amp;alpha;</mi> </mrow> <mi>N</mi> </mfrac> <msup> <msub> <mi>W</mi> <mi>p</mi> </msub> <mi>T</mi> </msup> <mo>*</mo> <msub> <mi>W</mi> <mi>s</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <mrow> <mi>&amp;lambda;</mi> <mi>&amp;beta;</mi> </mrow> <mi>N</mi> </mfrac> <msup> <msub> <mi>W</mi> <mi>p</mi> </msub> <mi>T</mi> </msup> <mo>*</mo> <msub> <mi>W</mi> <mi>p</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>W</mi> <mi>p</mi> </msub> <mo>_</mo> <mi>t</mi> <mi>e</mi> <mi>s</mi> <mi>t</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <msup> <msub> <mi>W</mi> <mi>p</mi> </msub> <mi>T</mi> </msup> <mo>*</mo> <msup> <mi>S</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <msup> <msub> <mi>W</mi> <mi>p</mi> </msub> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>S</mi> <mo>+</mo> <mi>&amp;lambda;</mi> <mo>(</mo> <msub> <mi>&amp;alpha;W</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>&amp;beta;W</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>n</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <msup> <msub> <mi>W</mi> <mi>p</mi> </msub> <mi>T</mi> </msup> <mo>*</mo> <mi>S</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <msup> <msub> <mi>W</mi> <mi>p</mi> </msub> <mi>T</mi> </msup> <mo>*</mo> <msub> <mi>n</mi> <mn>0</mn> </msub> <mo>+</mo> <mfrac> <mrow> <mi>&amp;lambda;</mi> <mi>&amp;alpha;</mi> </mrow> <mi>N</mi> </mfrac> <msup> <msub> <mi>W</mi> <mi>p</mi> </msub> <mi>T</mi> </msup> <mo>*</mo> <msub> <mi>W</mi> <mi>s</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <mrow> <mi>&amp;lambda;</mi> <mi>&amp;beta;</mi> </mrow> <mi>N</mi> </mfrac> <msup> <msub> <mi>W</mi> <mi>p</mi> </msub> <mi>T</mi> </msup> <mo>*</mo> <msub> <mi>W</mi> <mi>p</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> 计算得到所述Wp_test,参照相同计算方法计算得到所述Ws_test,The W p _test is calculated, and the W s _test is calculated with reference to the same calculation method, 将所述Wp_test与所述Wp_threshold进行比较,当Wp_test≥Wp_threshold,则判定所述公钥水印Wp存在,反之,则判定所述公钥水印Wp不存在,Comparing the W p _test with the W p _threshold , when W p _test ≥ W p _threshold, it is determined that the public key watermark W p exists, otherwise, it is determined that the public key watermark W p does not exist, 将所述Ws_test与所述Ws_threshold进行比较,当Ws_test≥Ws_threshold,则判定所述私钥水印Ws存在,反之,则判定所述私钥水印Ws不存在。Comparing the W s _test with the W s _threshold , when W s _test≥W s _threshold, it is determined that the private key watermark W s exists, otherwise, it is determined that the private key watermark W s does not exist. 2.根据权利要求1所述的基于Logistic混沌映射和Walsh序列的非对称水印方法,其特征在于:2. the asymmetric watermark method based on Logistic chaotic map and Walsh sequence according to claim 1, is characterized in that: 所述步骤一中对DCT系数进行‘之’字形扫描,把DCT系数按频率从低到高排序。In the first step, zigzag scanning is performed on the DCT coefficients, and the DCT coefficients are sorted from low to high in frequency. 3.根据权利要求1所述的基于Logistic混沌映射和Walsh序列的非对称水印方法,其特征在于:3. the asymmetric watermark method based on Logistic chaotic map and Walsh sequence according to claim 1, is characterized in that: 所述图像Am×m为灰度图像。The image A m×m is a grayscale image. 4.根据权利要求1所述的基于Logistic混沌映射和Walsh序列的非对称水印方法,其特征在于:4. the asymmetric watermark method based on Logistic chaotic map and Walsh sequence according to claim 1, is characterized in that: 所述步骤二中所述分支参数μ0的取值范围为3.5699456≤μ0<4。The value range of the branch parameter μ 0 in the second step is 3.5699456≤μ 0 <4.
CN201410298407.7A 2014-06-26 2014-06-26 Asymmetric Watermarking Schemes method based on Logistic chaotic maps and Walsh sequences Expired - Fee Related CN104063838B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410298407.7A CN104063838B (en) 2014-06-26 2014-06-26 Asymmetric Watermarking Schemes method based on Logistic chaotic maps and Walsh sequences

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410298407.7A CN104063838B (en) 2014-06-26 2014-06-26 Asymmetric Watermarking Schemes method based on Logistic chaotic maps and Walsh sequences

Publications (2)

Publication Number Publication Date
CN104063838A CN104063838A (en) 2014-09-24
CN104063838B true CN104063838B (en) 2017-09-12

Family

ID=51551532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410298407.7A Expired - Fee Related CN104063838B (en) 2014-06-26 2014-06-26 Asymmetric Watermarking Schemes method based on Logistic chaotic maps and Walsh sequences

Country Status (1)

Country Link
CN (1) CN104063838B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104702403A (en) * 2015-04-01 2015-06-10 哈尔滨工业大学 Chaotic system internal disturbance implementation method in finite precision
EP3624391A1 (en) * 2018-09-12 2020-03-18 Koninklijke Philips N.V. Public/private key system with decreased encrypted message size
TWI763474B (en) * 2021-05-06 2022-05-01 國立勤益科技大學 Public key encryption QR code method and its application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853484A (en) * 2010-05-21 2010-10-06 天津大学 A construction method and detection method of a three-dimensional mesh non-embedded robust watermark
CN103106636A (en) * 2013-02-28 2013-05-15 大连民族学院 Gray image watermark embedding and extracting method based on singular value decomposition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060239501A1 (en) * 2005-04-26 2006-10-26 Verance Corporation Security enhancements of digital watermarks for multi-media content

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853484A (en) * 2010-05-21 2010-10-06 天津大学 A construction method and detection method of a three-dimensional mesh non-embedded robust watermark
CN103106636A (en) * 2013-02-28 2013-05-15 大连民族学院 Gray image watermark embedding and extracting method based on singular value decomposition

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"A Watermark Preprocessing Algorithm Based on Arnold Transformation and Logistic Chaotic Map";WS Fang,LL Wu,R Zhang;《Advanced Materials Research》;20110927;第341-342卷;第720-724页 *
"基于DCT域的静态图像数字水印算法研究";傅俊;《中国优秀硕士学位论文全文数据库-信息科技辑》;20070815(第02期);第25-34页 *
"基于变换域的非对称水印技术研究与应用";王伟;《中国优秀硕士学位论文全文数据库-信息科技辑》;20111215(第S1期);第16-36页、43-44页 *
"非对称数字水印技术研究";邹潇湘,锦涛,彭聪;《计算机工程与应用》;20020801(第16期);第1页第2节,第2页第3节 *

Also Published As

Publication number Publication date
CN104063838A (en) 2014-09-24

Similar Documents

Publication Publication Date Title
Makbol et al. A new robust and secure digital image watermarking scheme based on the integer wavelet transform and singular value decomposition
CN102208097B (en) Network image copyright real-time distinguishing method
CN105335924A (en) Wavelet domain color image watermark encryption algorithm based on differential evolution
CN103955880A (en) DWT-SVD robust blind watermark method based on Zernike moments
CN102930498B (en) A kind of digital watermark embedding based on Lifting Wavelet and extracting method
Khalifa et al. A robust non-blind algorithm for watermarking color images using multi-resolution wavelet decomposition
CN102956025B (en) Image watermark detection method and system
CN104063838B (en) Asymmetric Watermarking Schemes method based on Logistic chaotic maps and Walsh sequences
Kukreja et al. Copyright protection scheme for color images using extended visual cryptography
Makbol et al. A hybrid robust image watermarking scheme using integer wavelet transform, singular value decomposition and arnold transform
Hurrah et al. A transform domain based robust color image watermarking scheme for single and dual attacks
CN103123719A (en) Zero watermark method for image authentication and tamper localization
CN103996164A (en) Medical image zero watermarking embedding and extracting method based on real fractional Fourier transform
Kalra et al. Robust blind digital image watermarking using DWT and dual encryption technique
Cheddad et al. Securing information content using new encryption method and steganography
Mohammed et al. A new robust binary image embedding algorithm in discrete wavelet domain
Zhang et al. Robust watermarking scheme based on singular value of decomposition in DWT domain
Kekre et al. Robust Watermarking Technique using Hybrid Wavelet Transform Generated from Kekre Transform and Discrete Cosine Transform
Tang et al. Image authentication using relation measures of wavelet coefficients
Kekre et al. Performance Comparison of Wavelets Generated from Four Different Orthogonal Transforms for Watermarking With Various Attacks
CN114297674A (en) High-capacity and high-robustness information hiding method
Wang et al. A novel robust zero watermarking scheme based on DWT and SVD
Hu et al. A blind watermarking algorithm for color image based on wavelet transform and Fourier transform
Ernawan et al. Dual Watermarking Based on DCT with Human Visual Characteristics for Authentication and Copyright Protection
Luyen et al. A Novel Public Key Robust Watermarking Method for Still Images Based on Intentional Permutation Based on DCT and DWT

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170912

Termination date: 20200626

CF01 Termination of patent right due to non-payment of annual fee