CN104063674A - 场强自适应电路、场强自适应方法及智能卡 - Google Patents

场强自适应电路、场强自适应方法及智能卡 Download PDF

Info

Publication number
CN104063674A
CN104063674A CN201310096564.5A CN201310096564A CN104063674A CN 104063674 A CN104063674 A CN 104063674A CN 201310096564 A CN201310096564 A CN 201310096564A CN 104063674 A CN104063674 A CN 104063674A
Authority
CN
China
Prior art keywords
voltage
current
gear
signal
rectification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310096564.5A
Other languages
English (en)
Other versions
CN104063674B (zh
Inventor
石道林
李鸿雁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nationz Technologies Inc
Original Assignee
Nationz Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nationz Technologies Inc filed Critical Nationz Technologies Inc
Priority to CN201310096564.5A priority Critical patent/CN104063674B/zh
Publication of CN104063674A publication Critical patent/CN104063674A/zh
Application granted granted Critical
Publication of CN104063674B publication Critical patent/CN104063674B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Near-Field Transmission Systems (AREA)

Abstract

本发明适用非接触IC卡电磁场强度检测领域,提供了一种场强自适应电路及场强自适应方法、还提供了一种智能卡;场强自适应电路根据整流输出的电压信号,配置出与不同电磁场强度相匹配的恒定电流档位;使得非接触式IC卡能够根据配置出的恒定电流档位选择适合的工作模式,与读卡器进行通信;即根据电磁场强度,采用不同的工作模式与读卡器进行数据交互,适应不同场强的读卡器。

Description

场强自适应电路、场强自适应方法及智能卡
技术领域
本发明属于非接触IC卡电磁场强度检测领域,尤其涉及场强自适应电路、场强自适应方法及智能卡。
背景技术
非接触式IC卡又称射频识别卡,由IC芯片、感应天线等组成,一般封装在一个标准的PVC卡片内;目前,非接触式IC卡或射频识别标签的应用越来越广泛,其在地铁、公交、身份认证、物流、门票等行业中普遍使用,正逐步取代传统的纸质票证;而且,IC卡片的集合性强,一张卡片即可满足各种不同场合的交易。
然而,由于各种读卡器的应用环境不同,天线设计以及使用材料等差异,导致的读卡器的场强并不相同;而目前一般的非接触式IC卡片,并不具备可以根据读卡器电磁场强度的不同而采用不同工作模式进行交易的能力,为了同时兼容场强较强与场强较弱的读卡器,非接触式IC卡的设计一般采用折中方式设计,配置成较慢的工作速度;当其与电磁场强度较强的读卡器进行交易时,无法充分利用电磁场强度信号;当其与电磁场强度更弱的读卡器进行交易时,由于无法降低工作模式适应小场强,可能导致通讯失败。
发明内容
本发明实施例的目的在于提供一种电源及自动配置模块、场强自适应电路及场强自适应方法,以及一种使用该场强自适应电路的智能卡;旨在解决现有的非接触式IC卡不能根据读卡器电磁场强度的不同而配置与电磁场强度相匹配的恒定电源的电流档位以及进一步采用不同工作模式进行数据交互完成交易的问题。
为解决上述问题,本发明实施例是这样实现的,一种电源及自动配置模块,其特征在于,包括电压检测单元、自适应控制单元以及恒流型电源单元,其中:所述电压检测单元,接收外部电压信号并进行检测,将检测结果发送到所述自适应控制单元;所述自适应控制单元,根据所接收的电压检测结果,产生调节控制信号输出到所述恒流型电源单元;所述恒流型电源单元,接收外部电压信号,并根据所接收的调节控制信号配置恒定电源的输出电流档位;所述电流档位与所接收的外部电压信号相匹配并决定交易速率的快慢。
本发明实施例,还提供了一种场强自适应电路,包括天线接收器、整流限幅模块以及上述的电源及自动配置模块,其中:所述天线接收器,用于耦合接收外部的电磁场信号;所述整流限幅模块,连接所述天线接收器,将所接收的电磁信号进行整流处理;所述电源及自动配置模块,连接所述整流限幅模块,根据整流后的电压信号,配置与所述电压信号相匹配,并决定交易速率快慢的恒定电源的电流档位。
本发明实施例,还提供了一种智能卡,所述智能卡用于通过无线方式与读卡器进行通讯,并接收读卡器发出的通讯信号进行交易;所述的智能卡包括上述的场强自适应电路。
本发明实施例,还提供了上述场强自适应电路的自适应方法,包括以下步骤:耦合接收电磁场信号,将所接收的电磁场信号进行整流处理;根据整流处理后的电压信号大小配置恒定电源的电流档位;其中,当整流处理后的电压信号大于第一检测档位电压(VDDH1)时,按第一步长值(△I1)增加恒定电流档位;当整流处理后的电压信号小于第一检测档位电压(VDDH1)但大于第二检测档位电压(VDDH2)时,按第二步长值(△I2)增加恒定电流档位;当整流处理后的电压信号小于第三检测档位电压(VDDH3)时,按第三步长值(△I3)减小恒定电流档位;当整流处理后的电压信号大小为小于第二检测档位电压(VDDH2)但大于第三检测档位电压(VDDH3)时,恒定电流值配置完成,固定当前的电流档位;其中,第一步长值(△I1)、第二步长值(△I2)、第三步长值(△I3)为设定步长值,且第三步长值>第一步长值>第二步长值>0;第一检测档位电压(VDDH1)、第二检测档位电压(VDDH2)、第三检测档位电压(VDDH3)为设定的检测电压;且第一检测档位电压>第二检测档位电压>第三检测档位电压;根据配置的恒定电源的电流档位向负载电路输出恒定电流。
在本发明实施例中,通过接收整流限幅模块输出整流处理的电压信号,并根据整流后输出的电压信号的强度大小配置得出与不同读卡器电磁场强度相匹配的恒定电源的电流档位;使得非接触式IC卡能够根据当前的供电能力,采用不同的工作模式进行数据交互,完成交易,适应不同电磁场强度的读卡器。
附图说明
图1是本发明实施例一提供的电源及自动配置模块结构示意图;
图2是图1中电压检测单元结构示意图;
图3是图1中自适应控制单元结构示意图;
图4是图1中恒流型电源单元结构示意图;
图5是本发明实施例二提供的场强自适应电路结构图;
图6是本发明实施例3提供的场强自适应方法流程图;
图7是本发明实施例3提供的另一场强自适应方法流程图;
图8是本发明实施例4提供的自适应电路中配置电流档位随检测电压变化的关系示意图;
图9是本发明实施例4提供的场强自适应方法流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明实施例中,电源及自动配置模块,根据接收的外部电压信号进行处理,配置出于外部电压相匹配的恒定电源的输出电流档位;根据该电流档位输出恒定的电流;进一步的,场强自适应电路根据天线接收的电磁场信号,整流成便于检测的直流电压信号,并根据检测电压信号大小配置出与电磁场强度相匹配的恒定电源的电流档位,根据该配置的恒定电流档位调节芯片工作速度,能够实现根据电磁场强度的不同,采用不同的工作模式,即不同的交易速率与读卡器进行数据交互完成交易。
实施例一:
请参考图1,图1为本实施例提供的电源及自动配置模块结构示意图;所述电源及自动配置模块200包括电压检测单元201,自适应控制单元202以及恒流型电源单元203;所述电压检测单元201,接收外部电压信号(整流限幅模块100输出的信号)VDDH并进行检测;将检测结果输出到所述自适应控制单元202中;所述自适应控制单元202,根据所接收的检测结果进行判断,并产生调节的控制信号Itrim,将所述控制信号Itrim输出到所述恒流型电源单元203;所述恒流型电源单元203,连接所述整流限幅模块100以及所述自适应控制单元202;接收所述外部电压信号VDDH,并根据所接收的控制信号Itrim,配置与所述整流限幅模块100输出电压信号VDDH相匹配的恒定电源的电流档位,并根据电流档位调节数字的工作速度,实现负载电路能够根据电流大小采用相匹配的工作模式进行数据处理,完成交易。
请参考图2,图2是图1中电压检测单元结构示意图;所述场强检测单元201包括三个比较器以及四个比较电阻,所述四个电阻依次串联连接成比较电阻串联电路,该串联电路一端连接所述外部电压信号VDDH,另一端接地;即所述第一电阻R1、第二电阻R2、第三电阻R3以及第四电阻R4串联连接,所述第一电阻R1的另一端连接外部电压信号VDDH,所述第四电阻R4的另一端接地GND;所述第一比较器的正极输入端连接所述第一电阻R1与所述第二电阻R2的连接点A,负极输入端连接参考基准电压Vref;所述第二比较器的正极输入端连接所述第二电阻R2与所述第三电阻R3的连接点B,负极输入端连接参考基准电压Vref;所述第三比较器的正极输入端连接所述第三电阻R3与所述第四电阻R4的连接点C,负极输入端连接参考基准电压Vref;从所述比较器的输出端输出比较结果VDH1、VDH2或者VDH3。
通过取样电阻R,即第一至第四电阻,从电压信号VDDH上的三个采样点进行电压采样,然后将采样得到的电压VA、VB、VC分别与参考基准电压Vref通过所述比较器进行比较,来确定当前VDDH的电压的范围:
VA=k1*VDDH;
VB=K2*VDDH;
VC=K3*VDDH;其中K1、K2、K3为采样系数,1>K1>K2>K3;K1=(R2+R3+R4)/(R1+R2+R3+R4)、K2=(R3+R4)/(R1+R2+R3+R4)、K3=(R4)/(R1+R2+R3+R4);
当检测电压超过参考基准电压Vref时,对应的比较器输出值为1,否则,该比较器输出值为0。
即:当VA>Vref时,
则K1*VDDH>Vref,VDDH>Vref/K1=VDDH1;VDH1=1;
当VA<Vref时,VDH1=0;
同理,当VB>Vref时,
则K2*VDDH>Vref,VDDH>Vref/K2=VDDH2;VDH2=1;
当VB<Vref时,VDH2=0;
当VC>Vref时,
则K3*VDDH>Vref,VDDH>Vref/K3=VDDH3;VDH3=1;
当VC<Vref时,VDH3=0;其中,VDDH1、VDDH2、VDDH3为设定的检测电压。
当然,本实施例中采样点数为3个只作为本发明较优的实施例作说明,并不作为本发明实施例的限定;本发明方案可以根据实际设计的精度要求采用其他个数的采样点对电压信号进行采样,同样属于本申请的保护范围。例如,场强检测单元可以包括第一至第N比较器以及第一至第N+1比较电阻,所述第一至第N+1电阻依次串联连接成比较电阻串联电路,所述比较电阻串联电路一端连接所述外部电压信号VDDH,另一端连接接地端;所述第一至第N比较器的正极输入端分别依次连接两相邻比较电阻的连接点,负极分别连接参考基准电压;其中,所述N为大于1的正整数。
请参考图3,图3是图1中自适应控制单元结构示意图;所述自适应控制单元202包括强度判定子单元2021以及配置控制子单元2022,所述强度判定子单元2021,接收所述电压检测单元201输出信号VDH,根据所接收的信号VDH判断出电磁场强度范围,并将判定结果输出到所述配置控制子单元2022;所述配置控制子单元2022,根据所接收的判定结果产生调节控制信号Itrim,并将所述调节控制信号Itrim输出到所述恒流型电源单元203。
所述自适应控制单元202还可以通过数字方式实现控制。
请参考图4,图4是图1中恒流型电源单元结构示意图;所述恒流型电源单元包括电流镜像子单元2031、参考基准电流源以及运算放大器;所述电流镜像子单元2031电流输出端的电流大小与电流输入端的电流大小成正比;所述电流镜像子单元2031的电流输入端连接所述参考基准电流源;电流输出端连接一泄放管;所述电流镜像子单元2031的公共端连接外部电压信号VDDH;其中,所述参考基准电流源的电流流入端连接所述电流镜像子单元2031的电流输入端,所述参考基准电流源的电流流出端接地GND;所述参考基准电流源的控制端连接所述自适应控制单元202输出的控制信号,根据所接收的调节控制信号Itrim输出不同的参考基准电流;所述泄放管的电流输入端连接所述电流镜像子单元2031的电流输出端,电流输出端接地GND,所述泄放管的控制端连接所述运算放大器的输出端。
所述运算放大器,其中一个输入端通过电阻连接所述电流镜像子单元2031的电流输出端,另一输入端连接参考基准电压端Vref,输出端连接所述泄放管的控制端,对所述泄放管的电流进行反馈控制。
从所述电流镜像子单元的输出端以及接地端分别引出连接负载电路的接线端子,通过所述接线端子连接负载电路并向所述负载电路输出需要的电流。
进一步,所述电流镜像子单元2031包括第一PMOS管和第二PMOS管,所述第一PMOS管与所述第二PMOS管的衬底端相互连接,所述第一PMOS管PM0的源极连接外部电压信号VDDH,漏极连接衬底;所述第二PMOS管PM1的源极端连接所述第一PMOS管PM0的源极端;所述第一PMOS管PM0的漏极为所述电流镜像子电路2031的电流输入端;所述第二PMOS管PM1的漏极为所述电流镜像子电路2031的电流输出端。
由于恒流型电源单元203输出电流可以屏蔽芯片负载波动,干扰小,被广泛应用于非接触卡设计中;由于电流镜输出端的电流大小与输入端的电流大小成正比例,即PM1管的总电流I0与所述参考基准电流源输出的参考基准电流Iref成正比,即I0=K*Iref(其中,K为电流镜像系数,K>1)。同时由于I0=I1+I2;I1是流过泄放管NM1的电流,I2是射频卡芯片负载电路Rload的工作电流。所述负载电路Rload的工作电压VDD通过一运放器EA反馈调节控制所述泄放管NM1的泄放电流。一般通过所接收的控制信号Itrim信号改变参考基准电流源输出的参考基准电流Iref的大小来改变电流镜输出端的最大电流I0,并根据I0的大小配置不同的数字负载,进一步实现芯片负载电路根据电压大小,即电磁场强度的不同来采用相匹配的工作模式进行数据处理完成交易。
进一步的,请参考图5,图5示出了本实施例提供的场强自适应电路结构图;所述场强自适应电路包括天线接收器、整流限幅模块100和前述的电源及自动配置模块200,所述天线接收器,用于耦合接收外部的电磁场信号,将所接收的电磁场信号转化成电压信号;所述整流限幅模块100连接所述天线接收器,将从所述天线接收器中接收的电压信号(即电磁场信号),进行整流处理,将整流处理后的直流电压信号VDDH输出;所述电源及自动配置模块200,连接所述整流限幅模块100,接收所述整流限幅模块100整流输出的直流电压信号VDDH,根据所接收到的电压信号VDDH的大小,配置出与所述电磁场相匹配,并决定工作模式即交易速率快慢的恒定电源的电流档位,并根据该恒定电源的电流档位选择适当的恒定电流,并将恒定电流输出到芯片负载进行恒流供电;其中,配置出的恒流电流大小,通过调节泄放管的电流,确保输出的电压VDD也恒定不变;与所接收的电压信号大小相匹配,即与读卡器的电磁场强度相匹配,根据当前得最匹配的恒定电流,调节数字工作速度,能够实现芯片负载电路采用不同的工作模式进行数据处理,从而可以实现非接触式IC射频卡根据读卡器的电磁场信号采用不同交易速率进行数据交互完成交易。
实施例二:
本实施例中,提供一种智能卡,所述智能卡,能够通过无线通讯的方式与读卡器进行通讯,并接收读卡器发出的电磁场信号,并将电磁场信号转化为芯片负载工作的电源输出;所述智能卡包括上述实施例一所述的场强自适应电路,通过上述场强自适应电路,能够检测出读卡器的电磁场强度信息,并根据检测出的场强信息,配置与所述电磁场信号相匹配,并决定交易速率快慢的恒定电源的电流档位;所述智能卡,其芯片负载电路根据相匹配的恒定电流大小,能够采用相匹配的工作模式与读卡器进行数据交互;即根据不同电磁场强度的读卡器,能够采用不同的工作模式进行数据交互完成交易;当读卡器的电磁场强度较强时,通过场强检测能够匹配较大的电流输出,所述芯片负载电路能够采用较快的工作模式进行数据交互完成交易;而当读卡器的电磁场强度比够弱时,通过场强检测匹配得到较小的电流输出,所述芯片负载电路能够采用较慢的工作模式进行数据交互完成交易。
实施例三:
请参考图6,图6是本实施例提供的场强自适应方法流程图;所述场强自适应方法包括以下步骤:
S601:耦合接收电磁场信号,将接收的电磁场信号进行整流处理;射频信号通过一般的方法难以进行检测,因此,将其转换成便于检测的直流电压信号VDDH并进行整流限幅等处理。
S602:根据整流处理后的电压信号大小配置恒定电源的电流档位;其中,当整流处理后的电压信号大于第一检测档位电压(VDDH1)时,按第一步长值(△I1)增加恒定电流档位;当整流处理后的电压信号小于第一检测档位电压(VDDH1)但大于第二检测档位电压(VDDH2)时,按第二步长值(△I2)增加恒定电流档位;当整流处理后的电压信号小于第三检测档位电压(VDDH3)时,按第三步长值(△I3)减小恒定电流档位;当整流处理后的电压信号大小为小于第二检测档位电压(VDDH2)但大于第三检测档位电压(VDDH3)时,恒定电流值配置完成,固定当前的电流档位;其中,第一步长值(△I1)、第二步长值(△I2)、第三步长值(△I3)为设定步长值,且第三步长值>第一步长值>第二步长值>0(即△I3>△I1>△I2>0);第一检测档位电压(VDDH1)、第二检测档位电压(VDDH2)、第三检测档位电压(VDDH3)为设定的检测电压;且第一检测档位电压>第二检测档位电压>第三检测档位电压(即即VDDH1>VDDH2>VDDH3)。
S603:根据配置的恒定电源的电流档位向负载电路输出恒定电流;便于负载电路根据电磁场强度的不同采用不同的工作模式与读卡器进行数据交互完成交易。
进一步,请参考图7,图7是本实施例提供的另一场强自适应方法流程图;上述步骤S602,根据整流处理后的电压信号大小配置恒定电源的电流档位的步骤可以具体包括以下的步骤:
S701:接收整流处理后的电压信号;
S702:将所接收的电压信号与设定的检测电压进行比较,得出信号强度大小范围;其中,一般将所接收的电压信号分成几个点进行电压采样,然后通过将采样点的电压与设定的检测电压值进行比较,确定电磁场强度范围;例如:可以采用实施例一所述的场强检测单元设置三个采样点对输入电压信号进行电压采样,将采样得到的电压VA、VB、VC分别与设定的检测电压值通过比较器进行比较,来确定当前VDDH的电压的范围;当检测电压超过设定的检测电压值时,对应的比较器输出值VDH为1,否则,比较器输出值为0;
S703:根据比较得出的信号强度大小范围,产生调节控制信号;
S704:根据调节控制信号配置与所述电压信号相匹配,并决定交易工作模式快慢的恒定电源的电流档位。
进一步的,步骤S704、根据调节控制信号配置与所述电压信号相匹配,并决定工作模式快慢的恒定电源的电流档位的步骤具体可以包括:
参考基准电流源接收调节控制信号;
根据调节控制信号输出参考基准电流大小,并输入到电流镜像子单元的电流输入端;
从电流镜子单元的电流输出端输出恒定电流,其中,所述恒定电流大小与所述参考基准电流成正比例关系,完成配置与所述电压信号相匹配(即与电磁场信号相匹配),并决定工作模式快慢的恒定电源的电流档位。
实施例四:
请参考图8和图9,其中,图8是本实施例提供的自适应电路中配置电流随检测电压变化的关系示意图;图9是本实施例提供的场强自适应方法流程图;所述场强自适应方法具体包括以下步骤:
S901:芯片上电;
S902:检测整流限幅模块输出的电压信号VDDH;
S903:根据所述电压信号VDDH进行判断,当VDDH>VDDH1时,转步骤S904,当VDDH≤VDDH1时,转步骤S905;
S904:配置恒流型电源单元输出的恒定电流值Ishunt按照设定的第一调整步长值△I1增加电流输出值,即Ishunt=Ishunt+△I1;返回步骤S902,重新检测整流限幅模块输出的电压信号VDDH;
当VDDH>VDDH1时,表示当前电磁场场强还可以提供更大的电流,而且远未达到最大输出电流范围,因此,可以按照较大的步长调整值进行调整;
S905:根据所述电压信号VDDH进行判断,当VDDH>VDDH2时,转步骤S906,当VDDH≤VDDH2时,转步骤S907;
S906:配置恒流型电源单元输出的恒定电流值Ishunt按照设定的第二调整步长值△I2增加电流输出值,即Ishunt=Ishunt+△I2;返回步骤S902,重新检测整流限幅模块输出的电压信号VDDH;
当VDDH>VDDH2时,表示当前电磁场场强还可以提供部分的电流,但电流接近最大输出电流范围,因此,可以按照较小的步长调整值进行调整;
S907:根据所述电压信号VDDH进行判断,当VDDH≤VDDH3时,转步骤S908,当VDDH>VDDH3时,转步骤S909;
S908:配置恒流型电源单元输出的恒定电流值Ishunt按照设定的第三调整步长值△I3减小电流输出值,即Ishunt=Ishunt-△I3;返回步骤S902,重新检测整流限幅模块输出的电压信号VDDH;
当VDDH≤VDDH3时,表示当前电磁场场强值无法提供当前配置的输出电流,因此,应该减小当前配置的电流输出值;
S909:恒定电源电流档位配置完成,固定配置恒定电流,输出配置恒定电流Ishunt;即当检测电压大小范围在VDDH2和VDDH3之间时,配置的电流值与检测的电磁场强度相匹配。
其中,上述的VDDH3、VDDH2与VDDH1的大小关系为VDDH1>VDDH2>VDDH3>0,上述的调整步长值△I3、△I2、与△I1的大小关系为△I3>△I1>△I2>0。
进一步的,本实施例还提供一种智能卡的使用方法,具体包括以下步骤:
S1001:智能卡与读卡器进行通信连接;
S1002:识别出读卡器的电磁场强度信息,根据读卡器的磁场强度大小,配置相匹配的恒定电源电流档位;其中,识别方式以及配置恒定电源的电流档位可以按照前述场强自适应的方法进行识别和配置;
S1003:芯片负载电路根据相匹配的电流档位采用相匹配的工作模式与读卡器进行数据交互,完成交易。
在本发明实施例中,所述场强自适应电路通过将天线接收到的电磁场信息转换成便于检测的直流电压信号,并通过电压检测单元通过将采样电压信号与设定的检测电压进行比较,确定电压强度范围,即可检测出电磁场强度信息;通过自适应控制单元,能够根据检测出的电压范围产生调节信号;恒流型电源单元再根据调节信号按照不同的调整步长值控制配置恒定电源的电流档位;负载电路根据不同恒定电流能够实现采用不同的工作模式进行数据处理以及与读卡器进行数据交互以完成交易;即可以实现非接触式IC卡根据电磁场强度采用不同的工作模式进行数据交互,适应不同电磁场强度的读卡器。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种电源及自动配置模块,其特征在于,包括电压检测单元、自适应控制单元以及恒流型电源单元,其中:
所述电压检测单元,接收外部电压信号并进行检测,将检测结果发送到所述自适应控制单元;
所述自适应控制单元,根据所接收的电压检测结果,产生调节控制信号输出到所述恒流型电源单元;
所述恒流型电源单元,接收外部电压信号,并根据所接收的调节控制信号配置恒定电源的输出电流档位;所述电流档位与所接收的外部电压信号相匹配并决定交易速率的快慢。
2.如权利要求1所述的电源及自动配置模块,其特征在于,所述电压检测单元包括第一至第N比较器以及第一至第N+1比较电阻,所述第一至第N+1电阻依次串联连接成比较电阻串联电路,所述比较电阻串联电路一端连接外部电压信号,另一端连接接地端;所述第一至第N比较器的正极输入端分别依次连接两个相邻比较电阻之间的连接点,负极分别连接设定的检测电压;其中,N为大于1的正整数。
3.如权利要求1所述的电源及自动配置模块,其特征在于,所述自适应控制单元包括:
强度判定子单元,接收所述电压检测单元输出的电压强度信息,根据所述电压强度信息判定电磁场强度,并将判定结果输出;
配置控制子单元,接收所述强度判定子单元输出的判定结果,并根据判定结果产生调节控制信号。
4.如权利要求1所述的电源及自动配置模块,其特征在于,所述恒流型电源单元包括电流镜像子单元、参考基准电流源以及运算放大器,其中:
所述电流镜像子单元,其电流输入端连接所述参考基准电流源,电流输出端连接泄放管,公共端连接所述整流限幅模块,所述电流镜像子单元的输出端连接负载电路并向所述负载电路输出恒定电流;
所述参考基准电流源,还连接所述自适应控制单元,根据所接收的调节控制信号输出参考基准电流;
所述运算放大器,其中一个输入端通过电阻连接所述恒流型电源模块输出,另一输入端连接参考基准电压;输出端连接所述泄放管的控制端。
5.一种场强自适应电路,用于根据接收的电磁场信号配置恒定电源的输出电流档位并输出恒定电流,其特征在于,包括天线接收器、整流限幅模块以及权利要求1-4任一项所述电源及自动配置模块:
所述天线接收器,用于耦合接收外部的电磁场信号;
所述整流限幅模块,连接所述天线接收器,对所接收的电磁场信号进行整流处理;
所述电源及自动配置模块,连接所述整流限幅模块,根据整流后的电压信号,配置恒定电源的输出电流档位;所述电流档位与所接收的外部电压信号相匹配并决定交易速率的快慢。
6.一种智能卡,用于通过无线方式与读卡器进行通讯,并接收读卡器发出的通讯信号进行交易;其特征在于,包括权利要求5所述的场强自适应电路。
7.一种场强自适应方法,其特征在于,包括以下步骤:
耦合接收电磁场信号,将所接收的电磁场信号进行整流处理;
根据整流处理后的电压信号大小配置恒定电源的电流档位;其中,当整流处理后的信号大于第一检测档位电压(VDDH1)时,按第一步长值(△I1)增加恒定电流档位;当整流处理后的电压信号小于第一检测档位电压(VDDH1)但大于第二检测档位电压(VDDH2)时,按第二步长值(△I2)增加恒定电流档位;当整流处理后的电压信号小于第三检测档位电压(VDDH3)时,按第三步长值(△I3)减小恒定电流档位;当整流处理后的电压信号大小为小于第二检测档位电压(VDDH2)但大于第三检测档位电压(VDDH3)时,恒定电流值配置完成,固定当前的电流档位;其中,第一步长值(△I1)、第二步长值(△I2)、第三步长值(△I3)为设定步长值,且第三步长值>第一步长值>第二步长值>0;第一检测档位电压(VDDH1)、第二检测档位电压(VDDH2)、第三检测档位电压(VDDH3)为设定的检测电压;且第一检测档位电压>第二检测档位电压>第三检测档位电压;
根据配置的恒定电源的电流档位向负载电路输出恒定电流。
8.如权利要求7所述的场强自适应方法,其特征在于,根据整流处理后的电压信号大小配置恒定电源的电流档位的步骤具体包括:
接收整流处理后的电压信号;
将所接收的电压信号与设定的检测电压进行比较,得出信号强度大小范围;
根据比较得出的信号强度大小范围,产生调节控制信号;
根据调节控制信号配置与所述电压信号相匹配,并决定工作模式快慢的恒定电源的电流档位。
9.如权利要求8所述的场强自适应方法,其特征在于,根据调节控制信号配置与所述电压信号相匹配,并决定工作模式快慢的恒定电源的电流档位的步骤具体包括:
参考基准电流源接收调节控制信号;
根据调节控制信号控制输出参考基准电流,并输入到电流镜像子单元的电流输入端;
从电流镜像子单元的电流输出端输出与所述参考基准电流成正比例关系的输出电流,完成配置与所述电压信号相匹配,并决定工作模式快慢的恒定电源的电流档位。
CN201310096564.5A 2013-03-22 2013-03-22 场强自适应电路、场强自适应方法及智能卡 Active CN104063674B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310096564.5A CN104063674B (zh) 2013-03-22 2013-03-22 场强自适应电路、场强自适应方法及智能卡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310096564.5A CN104063674B (zh) 2013-03-22 2013-03-22 场强自适应电路、场强自适应方法及智能卡

Publications (2)

Publication Number Publication Date
CN104063674A true CN104063674A (zh) 2014-09-24
CN104063674B CN104063674B (zh) 2017-10-10

Family

ID=51551381

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310096564.5A Active CN104063674B (zh) 2013-03-22 2013-03-22 场强自适应电路、场强自适应方法及智能卡

Country Status (1)

Country Link
CN (1) CN104063674B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106874810A (zh) * 2015-12-14 2017-06-20 上海华虹集成电路有限责任公司 场强自适应电路
CN107103353A (zh) * 2017-04-14 2017-08-29 深圳中科讯联科技股份有限公司 一种射频sim卡、控制方法及移动终端
CN108152604A (zh) * 2016-12-05 2018-06-12 北京同方微电子有限公司 一种非接触卡场强检测电路
CN111164386A (zh) * 2017-10-05 2020-05-15 ams有限公司 位置传感器以及用于位置感测和诊断的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329739A (zh) * 2008-05-20 2008-12-24 深圳市中兴集成电路设计有限责任公司 射频智能卡的读写转换装置
CN102769474A (zh) * 2011-05-03 2012-11-07 国民技术股份有限公司 一种射频装置及低频交变磁场距离控制方法
CN102968655A (zh) * 2011-08-31 2013-03-13 北京中电华大电子设计有限责任公司 一种用于非接触卡芯片的工作频率调节方法和电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329739A (zh) * 2008-05-20 2008-12-24 深圳市中兴集成电路设计有限责任公司 射频智能卡的读写转换装置
CN102769474A (zh) * 2011-05-03 2012-11-07 国民技术股份有限公司 一种射频装置及低频交变磁场距离控制方法
CN102968655A (zh) * 2011-08-31 2013-03-13 北京中电华大电子设计有限责任公司 一种用于非接触卡芯片的工作频率调节方法和电路

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106874810A (zh) * 2015-12-14 2017-06-20 上海华虹集成电路有限责任公司 场强自适应电路
CN106874810B (zh) * 2015-12-14 2019-05-14 上海华虹集成电路有限责任公司 场强自适应电路
CN108152604A (zh) * 2016-12-05 2018-06-12 北京同方微电子有限公司 一种非接触卡场强检测电路
CN107103353A (zh) * 2017-04-14 2017-08-29 深圳中科讯联科技股份有限公司 一种射频sim卡、控制方法及移动终端
CN111164386A (zh) * 2017-10-05 2020-05-15 ams有限公司 位置传感器以及用于位置感测和诊断的方法
CN111164386B (zh) * 2017-10-05 2022-08-09 ams有限公司 位置传感器以及用于位置感测和诊断的方法
US11946774B2 (en) 2017-10-05 2024-04-02 Ams Ag Position sensor and method for position sensing and diagnostic

Also Published As

Publication number Publication date
CN104063674B (zh) 2017-10-10

Similar Documents

Publication Publication Date Title
EP2988427B1 (en) Method for a phase calibration in a frontend circuit of a near field communication, NFC, tag device, frontend circuit and NFC tag device
KR101379867B1 (ko) 일정 범위의 필드 세기에 대한 nfc-지원 장치에서의 부하 변조 가변
CN1711682B (zh) 适用于非接触式集成电路阅读器的可调天线电路
US8082012B2 (en) Semiconductor integrated circuit device, and non-contact type IC card and portable information terminal using the semiconductor integrated circuit device
US8730016B2 (en) Non-contact communication device and method of operating the same
WO2022165363A1 (en) Automatic gain control for communications demodulation in wireless power transfer systems
CN101930034A (zh) 电磁应答器的耦合因子的电阻估计
US20190068248A1 (en) Transmission Apparatus, Antenna Drive Apparatus, Tuning Method, and Program for Realizing Tuning Method
CN104063674A (zh) 场强自适应电路、场强自适应方法及智能卡
CN206894365U (zh) 应用于无线充电的电抗偏移补偿装置、无线功率发射单元及无线充电系统
CN107748909A (zh) 一种非接触式智能卡芯片中功耗自适应的方法及电路
CN204904282U (zh) 电磁应答器
CN104980193B (zh) 接收机输入电压稳定的非接触式通信设备
CN202583439U (zh) 一种临界场强检测保护电路及射频识别芯片
US7801109B2 (en) Information processing terminal, data selection processing method, and program
CN110070166B (zh) 提高超高频rfid标签芯片最大工作场强的电路及方法
CN109857099A (zh) 一种磁循迹传感器以及应用该传感器的传感方法
CN104218789B (zh) 一种用于rfid的电压转换电路
US10984301B2 (en) Method for limiting the level of a modulated signal received by a tag and corresponding limiter
CN100514350C (zh) 一种用于第二代居民身份证的检测方法及其设备
CN204143449U (zh) 一种非接触式金融ic卡读卡器
CN102456151B (zh) Rfid系统的电子标签的箝位电路
CN208060603U (zh) 可在线退磁的闭环霍尔电流传感器
Zhang et al. A fully integrated analog front-end circuit for 13.56 MHz passive RFID tags in conformance with ISO/IEC 18000-3 protocol
CN105160386A (zh) 射频识别系统中的无源标签电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant