CN104063584A - Control parameter setting method for steam turbine speed governing system - Google Patents

Control parameter setting method for steam turbine speed governing system Download PDF

Info

Publication number
CN104063584A
CN104063584A CN201410254317.8A CN201410254317A CN104063584A CN 104063584 A CN104063584 A CN 104063584A CN 201410254317 A CN201410254317 A CN 201410254317A CN 104063584 A CN104063584 A CN 104063584A
Authority
CN
China
Prior art keywords
characteristic
parameters
root
delta
transfer function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410254317.8A
Other languages
Chinese (zh)
Other versions
CN104063584B (en
Inventor
李阳海
潘剑
刘魏然
杨涛
高伟
黄树红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Hubei Electric Power Co Ltd
Original Assignee
Huazhong University of Science and Technology
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Hubei Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology, State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Hubei Electric Power Co Ltd filed Critical Huazhong University of Science and Technology
Priority to CN201410254317.8A priority Critical patent/CN104063584B/en
Publication of CN104063584A publication Critical patent/CN104063584A/en
Application granted granted Critical
Publication of CN104063584B publication Critical patent/CN104063584B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Turbines (AREA)

Abstract

一种汽轮机调速系统控制参数整定方法,包括以下步骤:1)建立包括了电网模型时的单机无穷大系统的汽轮机调速系统的数学模型及传递函数;2)当控制参数Ki和Kp在0~10范围内发生变化时,不断求出给定参数下系统传递函数特征根的数值解;特征根表达式为:s=A+Bj;3)再求出每组特征根特征参数ξ的大小,并获得其中值最小的ξ;4)绘制每组特征参数ξ最小值随控制参数Ki和Kp变化趋势图;5)根据特征参数ξ的正负来判断系统的稳定与否,从图中获取使系统稳定的控制参数的取值范围,采用试凑法进行微调,整定出真正实用于机组的最优控制参数。本发明对于进一步规范汽轮机控制系统参数设置,减少系统低频振荡的发生具有十分重要的意义。

A method for tuning control parameters of a steam turbine speed control system, comprising the following steps: 1) establishing a mathematical model and a transfer function of the steam turbine speed control system of the single-machine infinite system when the grid model is included; 2) when the control parameters K i and K p are in When changes occur within the range of 0 to 10, continuously find the numerical solution of the characteristic root of the system transfer function under the given parameters; the expression of the characteristic root is: s=A+Bj; 4) draw the change trend diagram of the minimum value of each characteristic parameter ξ with the control parameters K i and K p ; 5) judge whether the system is stable or not according to the positive or negative of the characteristic parameter ξ, from The value range of the control parameters that make the system stable is obtained in the figure, and the trial and error method is used for fine-tuning to set the optimal control parameters that are actually applicable to the unit. The invention has very important significance for further standardizing the parameter setting of the steam turbine control system and reducing the occurrence of low-frequency oscillation of the system.

Description

一种汽轮机调速系统控制参数整定方法A Method for Tuning Control Parameters of Steam Turbine Speed Governing System

技术领域technical field

本发明属于汽轮机调速及电网安全稳定运行的控制方法,特别是用以提高电力系统动态稳定性、防止电网低频振荡领域的对汽轮机控制器参数整定的方法。The invention belongs to a control method for speed regulation of a steam turbine and a safe and stable operation of a power grid, in particular to a method for setting parameters of a steam turbine controller in the field of improving the dynamic stability of a power system and preventing low-frequency oscillation of the power grid.

背景技术Background technique

近年来,随着我国电力需求逐年增加,电力系统的规模越来越大,主力输电线路上输送的功率也不断增加,整个电力系统的运行条件变得日益恶劣,低频振荡时有发生,已经成为制约联络线功率传输和互联电网安全稳定运行的重要因素之一。由于近年来几起由电源侧引起的低频振荡事故,使得电源侧低频振荡研究逐渐得到人们的重视。许多专家通过对南方电网几起功率振荡事件进行分析,表明低频振荡与汽机侧调速系统不稳定存在相关性。In recent years, as my country's electricity demand has increased year by year, the scale of the power system has become larger and larger, and the power transmitted on the main transmission line has also continued to increase. The operating conditions of the entire power system have become increasingly harsh, and low-frequency oscillations occur from time to time. It is one of the important factors restricting the power transmission of the tie line and the safe and stable operation of the interconnected grid. Due to several low-frequency oscillation accidents caused by the power supply side in recent years, the research on low-frequency oscillation on the power supply side has gradually attracted people's attention. Many experts have analyzed several power oscillation events in the Southern Power Grid, indicating that there is a correlation between low-frequency oscillation and the instability of the speed regulation system on the turbine side.

通过对汽轮机做功原理的分析,结合低频振荡的共振机制,分析了汽机侧引发强迫功率振荡的可能原因,表明汽轮机的压力脉动,以及调节汽门摆动都可能引发电网的强迫低频振荡。虽然强迫功率振荡机制可以解释一些低频振荡现象,但是在以往的研究当中,为模拟强迫扰动源,往往都是直接在系统某环节人为附加了一个周期性扰动,这与实际情况是不相符的。有研究表明如果电源侧某些控制参数设置不当,会向系统提供一个负阻尼转矩,从而减小系统阻尼,引发电网的负阻尼振荡。一些专家利用简化了的调速系统的模型,分析了主要参数对电网阻尼特性的影响,指出控制器中比例系数设置不当,会导致一次调频回路投入后产生负阻尼作用,从而产生电网低频振荡。但是控制器参数变化会对系统稳定性产生何种影响,以及如何基于电力系统稳定性分析给出控制器参数的合理范围,目前尚缺乏研究。Through the analysis of the working principle of the steam turbine, combined with the resonance mechanism of low-frequency oscillation, the possible causes of forced power oscillation on the turbine side are analyzed. Although the forced power oscillation mechanism can explain some low-frequency oscillation phenomena, in previous studies, in order to simulate the forced disturbance source, a periodic disturbance was often artificially added directly to a certain link of the system, which is inconsistent with the actual situation. Studies have shown that if some control parameters on the power supply side are not set properly, a negative damping torque will be provided to the system, thereby reducing system damping and causing negative damping oscillation of the power grid. Some experts analyzed the influence of the main parameters on the damping characteristics of the power grid by using the simplified model of the speed control system, and pointed out that the improper setting of the proportional coefficient in the controller will lead to negative damping effect after the primary frequency regulation circuit is put into operation, resulting in low-frequency oscillation of the power grid. However, there is still a lack of research on how controller parameter changes will affect system stability, and how to give a reasonable range of controller parameters based on power system stability analysis.

发明内容Contents of the invention

为解决上面所述的关于控制器参数的合理设定的合理范围,本发明提供一种汽轮机调速系统控制参数整定方法,的目的在于进一步规范汽轮机控制系统参数的设置,减少系统低频震荡的发生,维护电力系统的稳定。In order to solve the above-mentioned reasonable range of the reasonable setting of the controller parameters, the present invention provides a method for setting the control parameters of the steam turbine speed control system, the purpose of which is to further standardize the setting of the parameters of the steam turbine control system and reduce the occurrence of low frequency oscillations in the system , to maintain the stability of the power system.

为了实现上述目的,本发明按照如下方法步骤实现:In order to achieve the above object, the present invention realizes according to the following method steps:

步骤1:建立包括了电网模型时的单机无穷大系统的汽轮机调速系统的数学模型,利用现有工况系统中相应的对象模型识别模块得到被控对象的数学模型以及各种参数,各主要参数之间的传递函数亦即包括电网模型时的汽轮机调速系统的数学模型的传递函数,如下式所示:Step 1: Establish the mathematical model of the steam turbine speed control system of the single-unit infinite system including the power grid model, and use the corresponding object model identification module in the existing working condition system to obtain the mathematical model of the controlled object and various parameters, the main parameters The transfer function between is the transfer function of the mathematical model of the steam turbine speed control system when the grid model is included, as shown in the following formula:

-- ΔΔ PP mm == (( 11 (( 11 ++ TT 11 sthe s )) δδ (( 11 ++ GG pidpid )) ++ 11 sthe s GG 11 GG pidpid )) GG ee GG tt ΔωΔω ;;

(( ΔΔ PP mm -- ΔΔ PP ee )) 11 TT σσ sthe s == ΔωΔω ;;

ΔΔ PP ee == (( KK 11 -- KK 22 KK 33 [[ KK 44 (( 11 ++ sthe s TT RR ++ KK 55 KK AA )) ]] sthe s 22 TT 33 TT RR ++ sthe s (( TT 33 ++ TT RR )) ++ 11 ++ KK 33 KK 66 KK AA )) ΔδΔδ ;;

⇒⇒ ΔΔ PP mm ΔΔ ωω rr == GG 22 (( 11 ++ GG pidpid )) GG ee GG tt 11 ++ GG 33 GG 44 ;;

上述公式中K1,K2,K3,K4,K5,K6分别为比例系数,KA为励磁机比例系数,s为经拉氏变换后的微分算子,δ为转速的调差系数,Δw为转速角速度偏量,Δwr为转速扰动值,Δδ为发电机功角偏差,ΔPm为机械功率增量,ΔPe为电磁功率增量,T1表示转速变送器时间常数,T3为励磁回路时间常数,TR为电压传感器时间常数,Tσ为汽轮机转子的时间常数,G1为单机无穷大系统的传递函数,G2为控制系统中的转速变送器的一阶惯性传递函数,Ge为电液伺服器的传递函数,Gt为串联组合、单再热汽轮机的传递函数,Gpid为控制器的传递函数,G3为汽轮机调速系统地传递函数,G4是为简化形式而建立的没有相应的物理含义。其中G1、G2、G3、G4定义为:In the above formulas, K 1 , K 2 , K 3 , K 4 , K 5 , and K 6 are proportional coefficients, K A is the proportional coefficient of the exciter, s is the differential operator after Laplace transformation, and δ is the speed adjustment Difference coefficient, Δw is the rotational speed angular velocity deviation, Δw r is the rotational speed disturbance value, Δδ is the generator power angle deviation, ΔP m is the mechanical power increment, ΔP e is the electromagnetic power increment, T 1 represents the time constant of the speed transmitter , T 3 is the time constant of the excitation circuit, T R is the time constant of the voltage sensor, T σ is the time constant of the steam turbine rotor, G1 is the transfer function of the single-machine infinite system, G2 is the first-order inertia transfer of the speed transmitter in the control system function, G e is the transfer function of the electro-hydraulic servo, G t is the transfer function of the series combination and single reheat steam turbine, G pid is the transfer function of the controller, G3 is the transfer function of the steam turbine speed control system, and G 4 is the Simplified forms have no corresponding physical meaning. Among them, G1, G2, G3, and G4 are defined as:

GG 11 == (( KK 11 -- KK 22 KK 33 [[ KK 44 (( 11 ++ sthe s TT RR ++ KK 55 KK AA )) ]] sthe s 22 TT 33 TT RR ++ sthe s (( TT 33 ++ TT RR )) ++ 11 ++ KK 33 KK 66 KK AA )) ;;

GG 22 == 11 (( 11 ++ TT 11 sthe s )) ;;

GG 33 == (( 11 (( 11 ++ TT 11 sthe s )) δδ (( 11 ++ GG pidpid )) ++ 11 sthe s GG 11 GG pidpid )) GG ee GG tt ;;

GG 44 == 11 TT σσ sthe s ++ GG 11 11 sthe s ;;

步骤2:对控制系统模型传递函数中的调速系统控制参数Kp和Ki在0~10范围内设置多组不同的数组,分别求出各组数组参数下被控对象的传递函数的特征根,通过求取数值方法求取特征根的数值解,进而求取调速系统的控制参数的取值范围,式中Ki为调速系统积分控制参数、Kp为比例控制参数、Kd为微分控制参数,s为微分算子;Step 2: Transfer function to the control system model The control parameters Kp and Ki of the speed control system in , set multiple groups of different arrays in the range of 0 to 10, and respectively calculate the characteristic root of the transfer function of the controlled object under each group of array parameters, and obtain the characteristic root by calculating the numerical method The value range of the control parameters of the speed control system is obtained, where K i is the integral control parameter of the speed control system, K p is the proportional control parameter, K d is the differential control parameter, and s is the differential operator;

分析被控对象的传递函数,得到被控对象传递函数的特征根可为实轴上的非零根以及共轭复数根,用下式表示:Analyzing the transfer function of the controlled object, it can be obtained that the characteristic root of the controlled object transfer function can be a non-zero root and a conjugate complex root on the real axis, expressed by the following formula:

s=A+Bj,s=A+Bj,

式中A和B分别为特征根的实部和虚部;where A and B are the real and imaginary parts of the characteristic root, respectively;

对于二阶振荡环节,其特征根为一对共轭复数根,表达式如下所示:For the second-order oscillation link, its characteristic root is a pair of conjugate complex roots, and the expression is as follows:

sthe s 1,21,2 == -- ξξ ωω nno ±± jj ωω nno 11 -- ξξ 22 ,,

其中特征参数ξ为阻尼比,ωn为无阻尼振荡频率。Among them, the characteristic parameter ξ is the damping ratio, and ω n is the undamped oscillation frequency.

步骤3:求出每组特征根的特征参数ξ的大小,并获得其中值最小的ξ,由上述公式可知,Step 3: Calculate the size of the characteristic parameter ξ of each group of characteristic roots, and obtain the smallest value of ξ, as can be seen from the above formula,

A=-ξωnA=-ξω n ,

BB == ±± jj ωω nno 11 -- ξξ 22 ,,

将上述方程中A、B当作已知,联立方程求得阻尼比Taking A and B in the above equation as known, the damping ratio can be obtained by the simultaneous equation

ξξ == -- AA AA 22 ++ BB 22 ,,

由上式知ξ小于零时,系统特征根实部不为负,二阶系统不稳定,二阶系统的阻尼比可以反映二阶系统的稳定与否,在分析考虑电网模型的汽轮机调速系统是否稳定时,对每个特征根求取其特征参数ξ;It is known from the above formula that when ξ is less than zero, the real part of the characteristic root of the system is not negative, and the second-order system is unstable. The damping ratio of the second-order system can reflect the stability of the second-order system. In the analysis of the steam turbine speed control system considering the grid model Whether it is stable or not, obtain its characteristic parameter ξ for each characteristic root;

步骤4:根据步骤3中求得的调速系统中各组参数对应的特征根的最小特征参数ξ绘制特征参数ξ随调速器的参数Kp、Ki变化的曲线,当该特征根为共轭复根时,ξ为其二阶环节的阻尼比;当该特征根为非零实根时,ξ则取±1,若此实根小于零则ξ为1,若此实根大于零则ξ为-1;当系统稳定时,则系统全部特征根均具有负实部,同时可以推出所有特征根的特征参数ξ均取正值,由此可根据被控对象所呈现的特征参数ξ随各组控制参数的变化图像确定使系统稳定的控制参数的取值范围;Step 4: According to the minimum characteristic parameter ξ of the characteristic root corresponding to each group of parameters in the speed control system obtained in step 3, draw the curve of the characteristic parameter ξ changing with the parameters K p and K i of the governor. When the characteristic root is When the complex conjugate root is used, ξ is the damping ratio of the second-order link; when the characteristic root is a non-zero real root, ξ takes ±1, if the real root is less than zero, ξ is 1, and if the real root is greater than zero Then ξ is -1; when the system is stable, all the characteristic roots of the system have negative real parts, and at the same time, it can be deduced that the characteristic parameters ξ of all characteristic roots take positive values, so according to the characteristic parameters ξ presented by the controlled object Determine the value range of the control parameters that make the system stable with the change image of each group of control parameters;

步骤5:根据前述步骤1至3所建立的汽轮机调速系统的数学模型以及步骤4绘制的变化趋势图,采用试凑法进行微调,整定出真正实用于机组的最优控制参数。Step 5: According to the mathematical model of the steam turbine speed control system established in the above steps 1 to 3 and the change trend diagram drawn in step 4, fine-tuning is carried out by trial and error method, and the optimal control parameters that are actually applicable to the unit are adjusted.

本发明提出了一种基于电力系统稳定性的汽轮机调速系统控制参数的整定方法,由于该方法的模型包含了电网侧系统,与真实的模型更加相似,所以相对与以往的整定方法大大缩小了不导致系统失稳的控制器参数的合理范围;而且具有很强的实用型,不会像以前的整定方法,虽然单机运行时是稳定的,但是多机运行时可能会出现振荡;这对于进一步规范汽轮机控制系统参数设置,减少系统低频振荡的发生具有十分重要的意义。The present invention proposes a method for setting the control parameters of the steam turbine speed control system based on the stability of the power system. Since the model of this method includes the power grid side system, it is more similar to the real model, so it is greatly reduced compared with the previous setting method. Reasonable range of controller parameters that will not cause system instability; and it is very practical, unlike the previous tuning method, although it is stable when a single machine is running, it may oscillate when multiple machines are running; this is for further It is of great significance to standardize the parameter setting of the steam turbine control system and reduce the occurrence of low-frequency oscillation of the system.

附图说明Description of drawings

图1是本发明调速器控制系统参数整定方法的实施例流程示意图;Fig. 1 is the schematic flow chart of the embodiment of the governor control system parameter setting method of the present invention;

图2是本发明调速系统控制参数整定方法的实施例的结构图;Fig. 2 is the structural diagram of the embodiment of the speed control system control parameter tuning method of the present invention;

图3是本发明实施实例的控制系统模型示意图;Fig. 3 is the schematic diagram of the control system model of the embodiment of the present invention;

图4是本发明实施实例的电液伺服器模型示意图;Fig. 4 is the schematic diagram of the model of the electro-hydraulic servo of the embodiment of the present invention;

图5是本发明实施实例的汽轮机模型示意图;Fig. 5 is the steam turbine model schematic diagram of the embodiment of the present invention;

图6是本发明实施实例的单机无穷大系统模型示意图;Fig. 6 is a schematic diagram of a stand-alone infinite system model of an embodiment of the present invention;

图7是特征参数ξ随调速器控制参数的变化趋势图。Fig. 7 is a graph showing the variation trend of the characteristic parameter ξ with the control parameters of the governor.

具体实施方式Detailed ways

以下结合附图和具体实施方式对本发明作进一步的详细描述。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.

图3为控制系统的仿真模型,忽略非线性环节后其传递函数为其中T1表示转速变送器时间常数,取值0.02;调速迟缓率取值0.025;调速迟缓率环节后面的K表示一次调频调差系数(即速度不等率),取值为20;Kp、Ki、Kd分别为负荷控制器PID的比例放大系数、积分时间常数、微分时间常数,分别取值为1、0.05、0;K2表示转速前馈控制放大系数,参数取为1,图3中1为转速变送器。2为PID负荷控制器,Pref为给定的有功功率,Pe为电网侧的反馈功率。Figure 3 is the simulation model of the control system. After ignoring the nonlinear link, its transfer function is Among them, T1 represents the time constant of the speed transmitter, with a value of 0.02; the value of the slow rate of speed regulation is 0.025; the K behind the link of the slow rate of speed regulation represents the primary frequency modulation difference coefficient (that is, the speed unequal rate), and the value is 20; K p , K i , and K d are the proportional amplification factor, integral time constant, and differential time constant of the load controller PID, respectively, and the values are 1, 0.05, and 0 respectively; K 2 represents the amplification factor of the speed feedforward control, and the parameters are taken as 1, 1 in Figure 3 is the speed transmitter. 2 is the PID load controller, Pref is the given active power, and P e is the feedback power of the grid side.

图4为电液伺服器的仿真模型,其传递函数为其中Pcv为调门指令;Kp1、Ki1、Kd1分别为阀门控制器PID参数,分别取值为9、0、0;Tc和To为油动机开启和关闭时间常数,参数分别取为1.24和1.33;其中T2表示线性位移传感器时间常数,图4中3为阀门PID控制器,4为阀门开关控制器,5为油动机开启、关闭延迟环节,6为油动机,7为线性位移变送器,参数取为0.02。Figure 4 is the simulation model of the electro-hydraulic servo, and its transfer function is Among them, P cv is the door adjustment instruction; K p1 , K i1 , and K d1 are the PID parameters of the valve controller, and the values are 9, 0, and 0; and 1.33; where T 2 represents the time constant of the linear displacement sensor, 3 in Fig. 4 is the valve PID controller, 4 is the valve switch controller, 5 is the opening and closing delay link of the oil motor, 6 is the oil motor, and 7 is the linear displacement variable Transmitter, the parameter is taken as 0.02.

图5为一次中间再热式汽轮机的仿真模型,其传递函数为Fig. 5 is a simulation model of a steam turbine with intermediate reheating, and its transfer function is

G T = ( ( 1 + λ ) ( 1 + T rh s ) ( 1 + T co s ) F hp + ( F ip - λ F hp ) ( 1 + T co s ) + F 1 p ) ( ( 1 + T ch s ) ( 1 + T rh s ) ( 1 + T co s ) ) , 其中PGV为调门开度;PM为输出的机械功率;时间常数Tch、Trh和Tco相应的表示由汽室和进气口管道、再热器以及交叉管系所产生的延时,参数取为0.1、12、1;Fhp、Fip和Flp表示高、中、低压缸做功量在总机械功率中的份额,取值为0.32、0.68、0(低压缸做功系数取0是将中低压缸视作一整体);λ表示高压缸功率自然过调系数,参数,取值为0.9,图5中8为高压蒸汽容积,9为再热蒸汽容积,10为低压联通蒸汽容积。 G T = ( ( 1 + λ ) ( 1 + T rh the s ) ( 1 + T co the s ) f hp + ( f ip - λ f hp ) ( 1 + T co the s ) + f 1 p ) ( ( 1 + T ch the s ) ( 1 + T rh the s ) ( 1 + T co the s ) ) , Among them, P GV is the opening degree of the regulating door; PM is the output mechanical power; the time constants T ch , T rh and T co respectively represent the time delay produced by the steam chamber and the air inlet pipe, the reheater and the cross pipe system , the parameters are taken as 0.1, 12, 1; F hp , F ip and F lp represent the shares of the high, medium and low pressure cylinders in the total mechanical power, and the values are 0.32, 0.68, 0 (the work coefficient of the low pressure cylinder is 0 is to regard the middle and low pressure cylinders as a whole); λ represents the natural overadjustment coefficient of the high pressure cylinder power, a parameter with a value of 0.9, 8 in Figure 5 is the volume of high pressure steam, 9 is the volume of reheated steam, and 10 is the volume of low pressure steam connected .

图6为单机无穷大系统仿真模型,忽略非线性环节后,其传递函数为Figure 6 is the simulation model of a single-machine infinite system. After ignoring the nonlinear link, its transfer function is

G 1 ( s ) = Δ P e Δδ = ( K 1 - K 2 K 3 [ K 4 ( 1 + s T R + K 5 K A ) ] s 2 T 3 T R + s ( T 3 + T R ) + 1 + K 3 K 6 K A ) , 其中K1,K2,K3,K4,K5,K6分别为比例系数;Δwr为转速扰动值,Δδ为发电机功角偏差;19ΔTm为机械功率增量;18ΔTe为电磁功率增量;Δψfd为励磁回路磁链增量;ΔEfd为励磁机输出电压增量;UPSS为电力系统稳定器输出信号;T3为励磁回路时间常数;TR为电压传感器时间常数;KA为励磁机比例系数,ΔVref为参考输出电压,ΔV1电压传感器输出电压。其参数均取典型值,图6中11为励磁机,12为转速跟功率的传递函数。13为发电机转速跟相角的传递函数,14为电压传感器,15为励磁回路。 G 1 ( the s ) = Δ P e Δδ = ( K 1 - K 2 K 3 [ K 4 ( 1 + the s T R + K 5 K A ) ] the s 2 T 3 T R + the s ( T 3 + T R ) + 1 + K 3 K 6 K A ) , Among them, K 1 , K 2 , K 3 , K 4 , K 5 , and K 6 are proportional coefficients; Δw r is the speed disturbance value, Δδ is the generator power angle deviation; 19ΔT m is the mechanical power increment; 18ΔT e is the electromagnetic Power increment; Δψ f d is the flux linkage increment of the excitation circuit; ΔE fd is the output voltage increment of the exciter; U PSS is the output signal of the power system stabilizer; T 3 is the time constant of the excitation circuit; T R is the time constant of the voltage sensor ; K A is the proportional coefficient of the exciter, ΔV ref is the reference output voltage, and ΔV 1 is the output voltage of the voltage sensor. The parameters are all typical values. In Figure 6, 11 is the exciter, and 12 is the transfer function of speed and power. 13 is the transfer function of generator speed and phase angle, 14 is a voltage sensor, and 15 is an excitation circuit.

如图1本发明调速系统控制参数整定的方法的流程示意图所示,本发明实施例中的调速系统控制参数整定方法包括步骤:As shown in the flow diagram of the method for adjusting the control parameters of the speed control system of the present invention in Fig. 1, the method for setting the control parameters of the speed control system in the embodiment of the present invention includes steps:

步骤1(S101):建立包括了电网模型时的单机无穷大系统的汽轮机调速系统的数学模型,建立当前实施实例的仿真模型图,识别当前对象的数学模型的过程一般是利用现有工况系统中的相应的对象模型识别模块得到被控对象的数学模型以及各种参数,各主要参数之间的传递函数亦即包括电网模型时的汽轮机调速系统的数学模型,如下式所示:Step 1 (S101): Establish the mathematical model of the steam turbine speed control system of the single-unit infinite system when the grid model is included, establish the simulation model diagram of the current implementation example, and the process of identifying the mathematical model of the current object generally uses the existing working condition system The corresponding object model identification module in the system obtains the mathematical model of the controlled object and various parameters, and the transfer function between the main parameters is the mathematical model of the steam turbine speed control system when the power grid model is included, as shown in the following formula:

-- ΔΔ PP mm == (( 11 (( 11 ++ TT 11 sthe s )) δδ (( 11 ++ GG pidpid )) ++ 11 sthe s GG 11 GG pidpid )) GG ee GG tt ΔωΔω ;;

(( ΔΔ PP mm -- ΔΔ PP ee )) 11 TT σσ sthe s == ΔωΔω ;;

ΔΔ PP ee == (( KK 11 -- KK 22 KK 33 [[ KK 44 (( 11 ++ sthe s TT RR ++ KK 55 KK AA )) ]] sthe s 22 TT 33 TT RR ++ sthe s (( TT 33 ++ TT RR )) ++ 11 ++ KK 33 KK 66 KK AA )) ΔδΔδ ;;

⇒⇒ ΔΔ PP mm ΔΔ ωω rr == GG 22 (( 11 ++ GG pidpid )) GG ee GG tt 11 ++ GG 33 GG 44 ;;

上述公式中K1,K2,K3,K4,K5,K6分别为比例系数,KA为励磁机比例系数,s为经拉氏变换后的微分算子,δ为转速的调差系数,Δw为转速角速度偏量,Δwr为转速扰动值,Δδ为发电机功角偏差,ΔPm为机械功率增量,ΔPe为电磁功率增量,T1表示转速变送器时间常数,T3为励磁回路时间常数,TR为电压传感器时间常数,Tσ为汽轮机转子的时间常数,G1为单机无穷大系统的传递函数,G2为控制系统中的转速变送器的一阶惯性传递函数,Ge为电液伺服器的传递函数,Gt为串联组合、单再热汽轮机的传递函数,Gpid为控制器的传递函数,G3为汽轮机调速系统地传递函数,G4是为简化形式而建立的没有相应的物理含义。In the above formulas, K 1 , K 2 , K 3 , K 4 , K 5 , and K 6 are proportional coefficients, K A is the proportional coefficient of the exciter, s is the differential operator after Laplace transformation, and δ is the speed adjustment Difference coefficient, Δw is the rotational speed angular velocity deviation, Δw r is the rotational speed disturbance value, Δδ is the generator power angle deviation, ΔP m is the mechanical power increment, ΔP e is the electromagnetic power increment, T 1 represents the time constant of the speed transmitter , T 3 is the time constant of the excitation circuit, T R is the time constant of the voltage sensor, T σ is the time constant of the steam turbine rotor, G1 is the transfer function of the single-machine infinite system, G2 is the first-order inertia transfer of the speed transmitter in the control system function, G e is the transfer function of the electro-hydraulic servo, G t is the transfer function of the series combination and single reheat steam turbine, G pid is the transfer function of the controller, G3 is the transfer function of the steam turbine speed control system, and G 4 is the Simplified forms have no corresponding physical meaning.

其中G1、G2、G3、G4定义为:Among them, G1, G2, G3, and G4 are defined as:

GG 11 == (( KK 11 -- KK 22 KK 33 [[ KK 44 (( 11 ++ sthe s TT RR ++ KK 55 KK AA )) ]] sthe s 22 TT 33 TT RR ++ sthe s (( TT 33 ++ TT RR )) ++ 11 ++ KK 33 KK 66 KK AA )) ;;

GG 22 == 11 (( 11 ++ TT 11 sthe s )) ;;

GG 33 == (( 11 (( 11 ++ TT 11 sthe s )) δδ (( 11 ++ GG pidpid )) ++ 11 sthe s GG 11 GG pidpid )) GG ee GG tt ;;

GG 44 == 11 TT σσ sthe s ++ GG 11 11 sthe s ;;

步骤2(S102):对下式控制系统模型传递函数中的调速系统控制参数Kp和Ki在0~10范围内设置多组不同的数组,分别求出各组数组参数下被控对象的传递函数的特征根,由于该系统特征方程阶数较高,不能通过求取解析解的方式求得调速系统中各参数的取值范围,而只能通过求取数值方法求取特征根的数值解,进而求取调速系统的控制参数的取值范围。Step 2 (S102): For the following control system model transfer function In the speed control system control parameters Kp and Ki in the range of 0 to 10, set multiple groups of different arrays, respectively calculate the characteristic root of the transfer function of the controlled object under each group of array parameters, because the order of the characteristic equation of the system is relatively high , the value range of each parameter in the speed control system cannot be obtained by obtaining the analytical solution, but the numerical solution of the characteristic root can only be obtained by obtaining the numerical method, and then the value of the control parameters of the speed control system can be obtained scope.

由于高阶系统均可化为零阶、一阶、二阶环节的组合,振荡分量主要是其中的二阶振荡环节。通过分析被控对象的传递函数,可知其不存在零阶环节,则被控对象的传递函数的特征根可为实轴上的非零根以及共轭复数根,可以用下式表示:Since the high-order system can be reduced to a combination of zero-order, first-order, and second-order links, the oscillation component is mainly the second-order oscillation link. By analyzing the transfer function of the controlled object, it can be known that there is no zero-order link, then the characteristic roots of the transferred function of the controlled object can be non-zero roots and conjugate complex roots on the real axis, which can be expressed by the following formula:

s=A+Bj,s=A+Bj,

式中A和B分别为特征根的实部和虚部;where A and B are the real and imaginary parts of the characteristic root, respectively;

对于二阶振荡环节,其特征根为一对共轭复数根,表达式如下所示:For the second-order oscillation link, its characteristic root is a pair of conjugate complex roots, and the expression is as follows:

sthe s 1,21,2 == -- ξξ ωω nno ±± jj ωω nno 11 -- ξξ 22 ,,

其中特征参数ξ为阻尼比,ωn为无阻尼振荡频率。Among them, the characteristic parameter ξ is the damping ratio, and ω n is the undamped oscillation frequency.

步骤3(S103):求出每组特征根的特征参数ξ的大小,并获得其中值最小的ξ。由上述公式可知,Step 3 (S103): Calculate the size of the characteristic parameter ξ of each group of characteristic roots, and obtain the smallest value of ξ. It can be seen from the above formula that,

A=-ξωnA=-ξω n ,

BB == ±± jj ωω nno 11 -- ξξ 22 ,,

将上述方程中A、B当作已知,即可联立方程求得阻尼比Taking A and B in the above equation as known, the damping ratio can be obtained from the simultaneous equations

ξξ == -- AA AA 22 ++ BB 22 ,,

由上式知ξ小于零时,系统特征根实部不为负,二阶系统不稳定,所以二阶系统的阻尼比可以反映二阶系统的稳定与否。所以在分析考虑电网模型的汽轮机调速系统是否稳定时,可对每个特征根求取其特征参数ξ。From the above formula, when ξ is less than zero, the real part of the characteristic root of the system is not negative, and the second-order system is unstable, so the damping ratio of the second-order system can reflect whether the second-order system is stable or not. Therefore, when analyzing whether the steam turbine speed control system of the grid model is stable, the characteristic parameter ξ can be obtained for each characteristic root.

步骤4(S104):根据步骤3中求得的调速系统中各组参数对应的特征根的最小特征参数ξ画出特征参数ξ随调速器的参数Kp、Ki变化的曲线,如附图6所示。当该特征根为共轭复根时,ξ为其二阶环节的阻尼比;当该特征根为非零实根时,ξ则取±1,若此实根小于零则ξ为1,若此实根大于零则ξ为-1。当系统稳定时,则系统全部特征根均具有负实部,同时可以推出所有特征根的特征参数ξ均取正值。所以可根据被控对象所呈现的特征参数ξ随各组控制参数的变化图像确定使系统稳定的控制参数的取值范围。Step 4 (S104): According to the minimum characteristic parameter ξ of the characteristic root corresponding to each group of parameters in the speed control system obtained in step 3, draw the curve of the characteristic parameter ξ changing with the parameters K p and K i of the governor, such as Shown in accompanying drawing 6. When the characteristic root is a conjugate complex root, ξ is the damping ratio of the second-order link; when the characteristic root is a non-zero real root, ξ is taken as ±1, and if the real root is less than zero, ξ is 1, if If this real root is greater than zero, then ξ is -1. When the system is stable, all the characteristic roots of the system have negative real parts, and at the same time, it can be deduced that the characteristic parameters ξ of all characteristic roots take positive values. Therefore, the value range of the control parameters that stabilize the system can be determined according to the characteristic parameter ξ presented by the controlled object with the change image of each group of control parameters.

步骤5(S105):通过之前步骤已经建立的被控对象仿真模型,在此范围内使用试凑法进行微调,整定出真正实用于机组的最优控制参数。Step 5 (S105): Through the simulation model of the controlled object established in the previous steps, use the trial and error method to fine-tune within this range, and set the optimal control parameters that are actually applicable to the unit.

本发明实施实例中采取的试凑法是根据附图7中特征参数ξ随调速器控制参数的变化趋势图,令调速系统中的积分控制参数Ki取0~3.1之间一个数值,并保证其不变的情况下,对调速系统的比例控制参数Kp在0~4范围内进行稍加变动,通过观察系统的仿真结果选取最优控制系统数组参数。The trial and error method adopted in the embodiment of the present invention is to make the integral control parameter K in the speed regulating system take a value between 0~3.1 according to the variation trend diagram of the characteristic parameter ξ in the accompanying drawing 7 with the governor control parameter, And keep it unchanged, slightly change the proportional control parameter K p of the speed control system in the range of 0 to 4, and select the optimal control system array parameters by observing the simulation results of the system.

Claims (1)

1.一种汽轮机调速系统控制参数整定方法,其特征在于包括如下步骤:1. a steam turbine speed control system control parameter tuning method, is characterized in that comprising the steps: 步骤1:建立包括了电网模型时的单机无穷大系统的汽轮机调速系统的数学模型,利用现有工况系统中相应的对象模型识别模块得到被控对象的数学模型以及各种参数,各主要参数之间的传递函数亦即包括电网模型时的汽轮机调速系统的数学模型的传递函数,如下式所示:Step 1: Establish the mathematical model of the steam turbine speed control system of the single-unit infinite system including the power grid model, and use the corresponding object model identification module in the existing working condition system to obtain the mathematical model of the controlled object and various parameters, the main parameters The transfer function between is the transfer function of the mathematical model of the steam turbine speed control system when the grid model is included, as shown in the following formula: -- ΔΔ PP mm == (( 11 (( 11 ++ TT 11 sthe s )) δδ (( 11 ++ GG pidpid )) ++ 11 sthe s GG 11 GG pidpid )) GG ee GG tt ΔωΔω ;; (( ΔΔ PP mm -- ΔΔ PP ee )) 11 TT σσ sthe s == ΔωΔω ;; ΔΔ PP ee == (( KK 11 -- KK 22 KK 33 [[ KK 44 (( 11 ++ sthe s TT RR ++ KK 55 KK AA )) ]] sthe s 22 TT 33 TT RR ++ sthe s (( TT 33 ++ TT RR )) ++ 11 ++ KK 33 KK 66 KK AA )) ΔδΔδ ;; ⇒⇒ ΔΔ PP mm ΔΔ ωω rr == GG 22 (( 11 ++ GG pidpid )) GG ee GG tt 11 ++ GG 33 GG 44 ;; 上述公式中K1,K2,K3,K4,K5,K6分别为比例系数,KA为励磁机比例系数,s为经拉氏变换后的微分算子,δ为转速的调差系数,Δw为转速角速度偏量,Δwr为转速扰动值,Δδ为发电机功角偏差,ΔPm为机械功率增量,ΔPe为电磁功率增量,T1表示转速变送器时间常数,T3为励磁回路时间常数,TR为电压传感器时间常数,Tσ为汽轮机转子的时间常数,G1为单机无穷大系统的传递函数,G2为控制系统中的转速变送器的一阶惯性传递函数,Ge为电液伺服器的传递函数,Gt为串联组合、单再热汽轮机的传递函数,Gpid为控制器的传递函数,G3为汽轮机调速系统地传递函数,G4是为简化形式而建立的没有相应的物理含义。其中G1、G2、G3、G4定义为:In the above formulas, K 1 , K 2 , K 3 , K 4 , K 5 , and K 6 are proportional coefficients, K A is the proportional coefficient of the exciter, s is the differential operator after Laplace transformation, and δ is the speed adjustment Difference coefficient, Δw is the rotational speed angular velocity deviation, Δw r is the rotational speed disturbance value, Δδ is the generator power angle deviation, ΔP m is the mechanical power increment, ΔP e is the electromagnetic power increment, T 1 represents the time constant of the speed transmitter , T 3 is the time constant of the excitation circuit, T R is the time constant of the voltage sensor, T σ is the time constant of the steam turbine rotor, G1 is the transfer function of the single-machine infinite system, G2 is the first-order inertia transfer of the speed transmitter in the control system function, G e is the transfer function of the electro-hydraulic servo, G t is the transfer function of the series combination and single reheat steam turbine, G pid is the transfer function of the controller, G3 is the transfer function of the steam turbine speed control system, and G 4 is the Simplified forms have no corresponding physical meaning. Among them, G1, G2, G3, and G4 are defined as: GG 11 == (( KK 11 -- KK 22 KK 33 [[ KK 44 (( 11 ++ sthe s TT RR ++ KK 55 KK AA )) ]] sthe s 22 TT 33 TT RR ++ sthe s (( TT 33 ++ TT RR )) ++ 11 ++ KK 33 KK 66 KK AA )) ;; GG 22 == 11 (( 11 ++ TT 11 sthe s )) ;; GG 33 == (( 11 (( 11 ++ TT 11 sthe s )) δδ (( 11 ++ GG pidpid )) ++ 11 sthe s GG 11 GG pidpid )) GG ee GG tt ;; GG 44 == 11 TT σσ sthe s ++ GG 11 11 sthe s ;; 步骤2:对控制系统模型传递函数中的调速系统控制参数Kp和Ki在0~10范围内设置多组不同的数组,分别求出各组数组参数下被控对象的传递函数的特征根,通过求取数值方法求取特征根的数值解,进而求取调速系统的控制参数的取值范围,式中Ki为调速系统积分控制参数、Kp为比例控制参数、Kd为微分控制参数,s为微分算子;Step 2: Transfer function to the control system model The control parameters Kp and Ki of the speed control system in , set multiple groups of different arrays in the range of 0 to 10, and respectively calculate the characteristic root of the transfer function of the controlled object under each group of array parameters, and obtain the characteristic root by calculating the numerical method The value range of the control parameters of the speed control system is obtained, where K i is the integral control parameter of the speed control system, K p is the proportional control parameter, K d is the differential control parameter, and s is the differential operator; 分析被控对象的传递函数,得到被控对象传递函数的特征根可为实轴上的非零根以及共轭复数根,用下式表示:Analyzing the transfer function of the controlled object, it can be obtained that the characteristic root of the controlled object transfer function can be a non-zero root and a conjugate complex root on the real axis, expressed by the following formula: s=A+Bj,s=A+Bj, 式中A和B分别为特征根的实部和虚部;where A and B are the real and imaginary parts of the characteristic root, respectively; 对于二阶振荡环节,其特征根为一对共轭复数根,表达式如下所示:For the second-order oscillation link, its characteristic root is a pair of conjugate complex roots, and the expression is as follows: sthe s 1,21,2 == -- ξξ ωω nno ±± jj ωω nno 11 -- ξξ 22 ,, 其中特征参数ξ为阻尼比,ωn为无阻尼振荡频率。Among them, the characteristic parameter ξ is the damping ratio, and ω n is the undamped oscillation frequency. 步骤3:求出每组特征根的特征参数ξ的大小,并获得其中值最小的ξ,由上述公式可知,Step 3: Calculate the size of the characteristic parameter ξ of each group of characteristic roots, and obtain the smallest value of ξ, as can be seen from the above formula, A=-ξωnA=-ξω n , BB == ±± jj ωω nno 11 -- ξξ 22 ,, 将上述方程中A、B当作已知,联立方程求得阻尼比Taking A and B in the above equation as known, the damping ratio can be obtained by the simultaneous equation ξξ == -- AA AA 22 ++ BB 22 ,, 由上式知ξ小于零时,系统特征根实部不为负,二阶系统不稳定,二阶系统的阻尼比可以反映二阶系统的稳定与否,在分析考虑电网模型的汽轮机调速系统是否稳定时,对每个特征根求取其特征参数ξ;It is known from the above formula that when ξ is less than zero, the real part of the characteristic root of the system is not negative, and the second-order system is unstable. The damping ratio of the second-order system can reflect the stability of the second-order system. Whether it is stable or not, obtain its characteristic parameter ξ for each characteristic root; 步骤4:根据步骤3中求得的调速系统中各组参数对应的特征根的最小特征参数ξ绘制特征参数ξ随调速器的参数Kp、Ki变化的曲线,当该特征根为共轭复根时,ξ为其二阶环节的阻尼比;当该特征根为非零实根时,ξ则取±1,若此实根小于零则ξ为1,若此实根大于零则ξ为-1;当系统稳定时,则系统全部特征根均具有负实部,同时可以推出所有特征根的特征参数ξ均取正值,由此可根据被控对象所呈现的特征参数ξ随各组控制参数的变化图像确定使系统稳定的控制参数的取值范围;Step 4: According to the minimum characteristic parameter ξ of the characteristic root corresponding to each group of parameters in the speed control system obtained in step 3, draw the curve of the characteristic parameter ξ changing with the parameters K p and K i of the governor. When the characteristic root is When the complex conjugate root is used, ξ is the damping ratio of the second-order link; when the characteristic root is a non-zero real root, ξ takes ±1, if the real root is less than zero, ξ is 1, and if the real root is greater than zero Then ξ is -1; when the system is stable, all the characteristic roots of the system have negative real parts, and at the same time, it can be deduced that the characteristic parameters ξ of all characteristic roots take positive values, so according to the characteristic parameters ξ presented by the controlled object Determine the value range of the control parameters that make the system stable with the change image of each group of control parameters; 步骤5:根据前述步骤1至3所建立的汽轮机调速系统的数学模型以及步骤4绘制的变变化趋势图,采用试凑法进行微调,整定出真正实用于机组的最优控制参数。Step 5: According to the mathematical model of the steam turbine speed control system established in the above steps 1 to 3 and the change trend diagram drawn in step 4, the trial and error method is used for fine-tuning to set the optimal control parameters that are actually applicable to the unit.
CN201410254317.8A 2014-06-10 2014-06-10 Control parameter setting method for steam turbine speed governing system Active CN104063584B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410254317.8A CN104063584B (en) 2014-06-10 2014-06-10 Control parameter setting method for steam turbine speed governing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410254317.8A CN104063584B (en) 2014-06-10 2014-06-10 Control parameter setting method for steam turbine speed governing system

Publications (2)

Publication Number Publication Date
CN104063584A true CN104063584A (en) 2014-09-24
CN104063584B CN104063584B (en) 2017-02-08

Family

ID=51551294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410254317.8A Active CN104063584B (en) 2014-06-10 2014-06-10 Control parameter setting method for steam turbine speed governing system

Country Status (1)

Country Link
CN (1) CN104063584B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808705A (en) * 2015-04-27 2015-07-29 贵州电力试验研究院 Hydroelectric generating set speed regulating system control parameter setting method based on characteristic parameters
CN105275730A (en) * 2015-10-15 2016-01-27 国家电网公司 Differentiation element coefficient and time constant identification method of water turbine governor
CN106289798A (en) * 2016-07-26 2017-01-04 华电电力科学研究院 A kind of steam turbine governing system comprehensive tester quick calibrating method
CN107942664A (en) * 2017-11-23 2018-04-20 中国南方电网有限责任公司 A kind of hydrogovernor parameter tuning method and system based on sensitivity analysis
CN108983595A (en) * 2018-07-18 2018-12-11 天津大学 A kind of automatic setting method of feedforward controller parameter
CN109196190A (en) * 2016-05-31 2019-01-11 西门子股份公司 Turbine and AC network are synchronous according to the desired trajectory of desired declinate
CN109445277A (en) * 2018-12-14 2019-03-08 国网山东省电力公司电力科学研究院 System and method for automatic adjustment of power control parameters based on automatic retrieval of data
CN109861243A (en) * 2018-12-12 2019-06-07 云南电网有限责任公司电力科学研究院 A method of GPSS suppressing ultra-low frequency oscillation based on the principle of phase compensation
RU2759419C1 (en) * 2021-03-16 2021-11-12 Общество с ограниченной ответственностью "Башкирская генерирующая компания" (ООО "БГК") Automatic control system of electro-hydraulic control system
CN118971207A (en) * 2024-10-16 2024-11-15 南昌科晨电力试验研究有限公司 A parameter setting method and system for a speed control system in a grid-connected thermal power unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101131571A (en) * 2007-08-15 2008-02-27 华北电力大学 PID Parameters Tuning Method for Coordinated Control System of Unit System Generating Sets
CN101989827A (en) * 2010-11-18 2011-03-23 东南大学 Method for automatically adjusting speed loop control parameters of alternating-current servo system based on inertia identification
CN103743560A (en) * 2014-01-14 2014-04-23 国家电网公司 Turbine DEH system high-pressure regulating valve flow characteristic testing and setting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101131571A (en) * 2007-08-15 2008-02-27 华北电力大学 PID Parameters Tuning Method for Coordinated Control System of Unit System Generating Sets
CN101989827A (en) * 2010-11-18 2011-03-23 东南大学 Method for automatically adjusting speed loop control parameters of alternating-current servo system based on inertia identification
CN103743560A (en) * 2014-01-14 2014-04-23 国家电网公司 Turbine DEH system high-pressure regulating valve flow characteristic testing and setting method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ZHIWEI GAO ET AL: "Novel Parameter Identification by Using a High-Gain Observer With Application to a Gas Turbine Engine", 《IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS》 *
姜齐荣等: "多机系统复转矩系数分析及PSS参数计算", 《电力系统及其自动化学报》 *
武海澄等: "汽轮机DEH单顺阀切换控制参数优化方法", 《万方学术会议数据库》 *
韩肖清等: "基于PSASP的PSS选址及参数整定的仿真研究", 《电力学报》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808705A (en) * 2015-04-27 2015-07-29 贵州电力试验研究院 Hydroelectric generating set speed regulating system control parameter setting method based on characteristic parameters
CN104808705B (en) * 2015-04-27 2017-07-28 贵州电力试验研究院 A kind of turbine governor system control parameter setting method of feature based parameter
CN105275730B (en) * 2015-10-15 2017-09-12 国家电网公司 A kind of hydrogovernor differentiation element coefficient and time constant discrimination method
CN105275730A (en) * 2015-10-15 2016-01-27 国家电网公司 Differentiation element coefficient and time constant identification method of water turbine governor
CN109196190A (en) * 2016-05-31 2019-01-11 西门子股份公司 Turbine and AC network are synchronous according to the desired trajectory of desired declinate
US10830106B2 (en) 2016-05-31 2020-11-10 Siemens Aktiengesellschaft Synchronising a turbine with an AC network according to a target trajectory for the target difference angle
CN109196190B (en) * 2016-05-31 2021-11-09 西门子股份公司 Synchronization of a turbine to an AC grid according to a desired trajectory at a desired difference angle
CN106289798B (en) * 2016-07-26 2019-01-04 华电电力科学研究院 A kind of steam turbine speed-regulating system comprehensive tester quick calibrating method
CN106289798A (en) * 2016-07-26 2017-01-04 华电电力科学研究院 A kind of steam turbine governing system comprehensive tester quick calibrating method
CN107942664B (en) * 2017-11-23 2020-11-06 中国南方电网有限责任公司 Sensitivity analysis-based hydraulic turbine speed regulator parameter setting method and system
CN107942664A (en) * 2017-11-23 2018-04-20 中国南方电网有限责任公司 A kind of hydrogovernor parameter tuning method and system based on sensitivity analysis
CN108983595B (en) * 2018-07-18 2021-04-20 天津大学 Automatic setting method for parameters of feedforward controller
CN108983595A (en) * 2018-07-18 2018-12-11 天津大学 A kind of automatic setting method of feedforward controller parameter
CN109861243A (en) * 2018-12-12 2019-06-07 云南电网有限责任公司电力科学研究院 A method of GPSS suppressing ultra-low frequency oscillation based on the principle of phase compensation
CN109445277A (en) * 2018-12-14 2019-03-08 国网山东省电力公司电力科学研究院 System and method for automatic adjustment of power control parameters based on automatic retrieval of data
CN109445277B (en) * 2018-12-14 2021-08-31 国网山东省电力公司电力科学研究院 System and method for automatic adjustment of power control parameters based on automatic retrieval of data
RU2759419C1 (en) * 2021-03-16 2021-11-12 Общество с ограниченной ответственностью "Башкирская генерирующая компания" (ООО "БГК") Automatic control system of electro-hydraulic control system
CN118971207A (en) * 2024-10-16 2024-11-15 南昌科晨电力试验研究有限公司 A parameter setting method and system for a speed control system in a grid-connected thermal power unit
CN118971207B (en) * 2024-10-16 2025-05-06 南昌科晨电力试验研究有限公司 Parameter setting method and system of speed regulation system in network thermal power generating unit

Also Published As

Publication number Publication date
CN104063584B (en) 2017-02-08

Similar Documents

Publication Publication Date Title
CN104063584B (en) Control parameter setting method for steam turbine speed governing system
CN105700380B (en) Double reheat power generation sets turbine regulating system simulation model and its modeling method
CN103529698B (en) Generator Governor parameter identification method
CN101446807B (en) Realization method for heat-engine plant speed regulating system model in power system simulation
CN107800146A (en) Take into account the governor parameter optimization method that primary frequency modulation and ultra-low frequency oscillation suppress
CN103401256B (en) The optimization method of large-scale steam turbine power-frequency electro-hydraulic control system of thermal power plant parameter
CN102753789B (en) The method and apparatus that steam in steam regulation power equipment produces
CN103225799A (en) Method for controlling main steam temperature in thermal power plant
CN110764417A (en) Linear quadratic optimal dynamic feedforward-feedback PID control system based on closed-loop identification model and control method thereof
CN106777944B (en) A method for adjusting the parameters of the governor of the hydroelectric generating unit via the DC transmission system
CN104734588B (en) A kind of biogas internal combustion engine generator group method for controlling number of revolution
CN103195730B (en) Compressor inlet adjustable guide vane is used to control the method for combustion turbine exhaustion temperature
CN102736640B (en) System and method for controlling water level of deaerator
CN102629293A (en) Simulation calculation method for additional mechanical damping of hydropower set
CN104330667A (en) Monitoring method for determining influence of speed regulating system on low-frequency oscillation damping
CN113031565A (en) Method and system for predicting primary frequency modulation power response performance of thermal power generating unit
CN103197542A (en) Time delay system PID controller stabilization method based on data drive
CN108181803A (en) The fuzzy self-adaption Fractional Order PID method for adjusting rotation speed and system of Turbo-generator Set
CN101718248B (en) Active stability control method of water-turbine generator set
CN104808705A (en) Hydroelectric generating set speed regulating system control parameter setting method based on characteristic parameters
CN103080504B (en) Gas turbine control device and power generation system
CN104806438B (en) The water turbine set speed adjustment system and design method of non-minimum phase control
Ming et al. Simulation study on fuzzy PID controller for DC motor based on DSP
CN106647240B (en) Subcritical Units coordinate forecast function control algolithm based on leading Disturbance Model
CN105387449B (en) A kind of control method that second-order differential is used in boiler steam temperature control

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant