CN104062667A - GPS weak signal tracking system based on I/Q branch correlation integral observation filtering - Google Patents

GPS weak signal tracking system based on I/Q branch correlation integral observation filtering Download PDF

Info

Publication number
CN104062667A
CN104062667A CN201410314405.2A CN201410314405A CN104062667A CN 104062667 A CN104062667 A CN 104062667A CN 201410314405 A CN201410314405 A CN 201410314405A CN 104062667 A CN104062667 A CN 104062667A
Authority
CN
China
Prior art keywords
mrow
msub
code
signal
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410314405.2A
Other languages
Chinese (zh)
Inventor
沈锋
李伟东
马娜娜
韩浩
李强
桑静
迟晓彤
张金丽
周阳
兰晓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201410314405.2A priority Critical patent/CN104062667A/en
Publication of CN104062667A publication Critical patent/CN104062667A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/246Acquisition or tracking or demodulation of signals transmitted by the system involving long acquisition integration times, extended snapshots of signals or methods specifically directed towards weak signal acquisition

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

The invention discloses a GPS weak signal tracking system based on I/Q branch correlation integral observation filtering. A receiver is used for receiving a satellite signal which is converted into an intermediate frequency signal through down conversion and transmitted to a frequency mixer. The frequency mixer is also used for receiving local sine and cosine reproduction carrier signals outputted by a local carrier digital-controlled oscillator, and outputting a I-branch output signal and a II-branch output signal to a correlation arithmetic unit. The correlation arithmetic unit also receives a local advanced C/A code, an instant reproduction C/A code and a lagged reproduction C/A code, wherein the local advanced C/A code, the instant reproduction C/A code and the lagged reproduction C/A code are generated by a code generator. Results are outputted to an integral eraser, and six-way relevant integral values are generated and outputted to a Kalman filter. The Kalman filter obtains an estimated carrier phase difference, an estimated carrier frequency difference and an estimated code phase difference, and the estimated carrier phase difference, the estimated carrier frequency difference and the estimated code phase difference are transmitted to the local carrier digital-controlled oscillator and the code generator. The system effectively reduces the noise intensity of the satellite signal, can trace the satellite signal better in a weak-signal environment, and improves the tracing precision.

Description

GPS weak signal tracking system based on I/Q branch correlation integral observation filtering
Technical Field
The invention belongs to the field of GPS signal tracking, and particularly relates to a GPS weak signal tracking system based on I/Q branch correlation integral observation filtering.
Background
The signals received by the GPS receiver from the satellite are spread spectrum modulation signals, and the navigation message can be obtained only by despreading and demodulating the satellite signals in the acquisition and tracking stages. In the GPS signal tracking stage, a signal channel starts from the rough estimated values of the carrier frequency and the code phase of the current satellite signal obtained in the acquisition stage, and the two signal parameters are gradually and finely estimated through a tracking loop. Under a weak condition, the tracking requirement cannot be met by simply increasing the integration time, and the situation that the loop integration time crosses the data bit edge of the navigation message can be avoided by using a bit synchronization method. Multipath effect can be eliminated by using Extended Kalman Filtering (EKF) during signal tracking, and the model is simple in structure but cannot effectively track weak signals. By adopting a fitting means at the triangular wave peak point of the signal autocorrelation function characteristic, the discontinuity of the Jacobian equation in the EKF operation process can be avoided, but the tracking error is larger.
Disclosure of Invention
The invention aims to provide a GPS weak signal tracking system based on I/Q branch correlation integral observation filtering, which can effectively track GPS weak signals.
The invention is realized by the following technical scheme:
a GPS weak signal tracking system based on I/Q branch correlation integral observation filtering comprises a receiver, a local carrier numerical control oscillator, a frequency mixer, a code generator, an integral cleaner, a correlation arithmetic unit and a Kalman filter,
the receiver is used for receiving satellite signals, converting the satellite signals into intermediate frequency signals through down-conversion and transmitting the intermediate frequency signals to the mixer;
the mixer also receives local sine and cosine recurrence carrier signals output by the local carrier numerically-controlled oscillator, performs frequency mixing operation on the intermediate frequency signal and the local sine recurrence carrier signal to obtain an I branch output signal, transmits the I branch output signal to the correlation arithmetic unit, performs frequency mixing operation on the intermediate frequency signal and the local cosine recurrence carrier signal to obtain a Q branch output signal, and transmits the Q branch output signal to the correlation arithmetic unit;
the correlation arithmetic unit also receives the local advanced reproduction C/A code, the instantaneous reproduction C/A code and the delayed reproduction C/A code generated by the code generator, and carries out correlation operation on the I branch output signal and the Q branch output signal respectively with the local advanced reproduction C/A code, the instantaneous reproduction C/A code and the delayed reproduction C/A code, and the result is transmitted to the integral clearing unit;
the integral cleaner generates six-path correlation integral value I according to the received informationE,IP,IL,QE,QP,QLAnd then transmitted to a Kalman filter; the Kalman filter obtains estimated carrier phase difference, carrier frequency difference and code phase difference, transmits the carrier phase difference and the carrier frequency difference to a local carrier numerical control oscillator, and transmits the code phase difference to a code generator;
the local carrier wave numerically controlled oscillator generates local sine and cosine reproduction carrier wave signals according to the received information and transmits the signals to the frequency mixer; a code generator generates a local advanced reproduction C/A code, an instantaneous reproduction C/A code and a delayed reproduction C/A code based on the received information, and transmits them to a correlation operator.
The GPS weak signal tracking system based on I/Q branch correlation integral observation filtering of the invention can also comprise:
1. the intermediate frequency signal of the ith satellite signal output by the receiver is:
wherein A is the normalized signal amplitude, D (k) is the data code, C (k) is the C/A code played by the satellite, f1For the input frequency, f, of the radio-frequency signaldFor signal doppler shift, k is epoch time,is the first carrier initial phase;
local sine reproduction carrier signal S generated by local carrier digital controlled oscillatorOSAnd a local cosine reproduction carrier signal SOCComprises the following steps:
wherein A isOIs the amplitude, fOIn order to be the frequency of the radio,in order to be the phase position,
intermediate frequency signal and local sinusoidal reproduction carrier signal SOSThe result of doing the mixing budget is:
wherein,
<math> <mrow> <msub> <mi>A</mi> <mi>e</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>A</mi> <mo>&CenterDot;</mo> <msub> <mi>A</mi> <mi>O</mi> </msub> </mrow> </math>
fe=f1+fd-fO
intermediate frequency signal and local cosine reproduction carrier signal SOCThe result of doing the mixing budget is:
2. the correlation operation method in the correlation operator comprises the following steps:
<math> <mrow> <mi>R</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>C</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>C</mi> <mi>O</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein C (k) is C/A code in output signal of the mixer, CO(k) For a locally advanced or instantaneous or late reproduction C/a code generated by the code generator, N is the number of discrete data points participating in the correlation operation.
3. The state quantities of the kalman filter are:
wherein A is the normalized signal amplitude,is the carrier phase difference, δ w is the carrier frequency difference, δ a is the carrier frequency rate of change, δ τ is the code phase difference, λLFor the satellite signal carrier wavelength, λCAIs C/A code wavelength, WkIs process noise, also known as system noise, noted <math> <mrow> <msub> <mi>W</mi> <mi>k</mi> </msub> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&omega;</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>&omega;</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>&omega;</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>&omega;</mi> <mn>4</mn> </msub> </mtd> <mtd> <msub> <mi>&omega;</mi> <mn>5</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> WkIs a zero mean white noise sequence;
output six-way correlation integral value I of integral removerE,IP,IL,QE,QP,QLFor the observations of the kalman filter:
where δ is the lead-lag interval of the locally reproduced C/A code, R (ε)i) For locally reproducing the autocorrelation function of the C/A code, VkTo measure noise.
4. The UT transform is adopted in the Kalman filter to generate a Sigma point chi and a weighting sequence w of symmetrical sampling:
<math> <mrow> <msub> <mi>&chi;</mi> <mn>0</mn> </msub> <mo>=</mo> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> </mrow> </math>
<math> <mrow> <msub> <mi>&chi;</mi> <mi>i</mi> </msub> <mo>=</mo> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mo>+</mo> <msubsup> <mrow> <mo>(</mo> <msqrt> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>P</mi> </msqrt> <mo>)</mo> </mrow> <mi>i</mi> <mi>T</mi> </msubsup> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mi>n</mi> </mrow> </math>
<math> <mrow> <msub> <mi>&chi;</mi> <mrow> <mi>i</mi> <mo>+</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mo>-</mo> <msubsup> <mrow> <mo>(</mo> <msqrt> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>P</mi> </msqrt> <mo>)</mo> </mrow> <mi>i</mi> <mi>T</mi> </msubsup> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mi>n</mi> </mrow> </math>
wherein the state variable XKMean value of initial distribution ofMean square error matrix is P, lambda ═ alpha2(n + κ) -n is a scalar quantity, α is used to control the distance of each point from the mean, 10-4Alpha is more than or equal to 1, kappa is a scalar quantity, and scalar quantity beta is used for reducing the influence of high-order moment;
the time updating process of the Kalman filter is as follows:
χi,k|k-1=f(χi,k-1|k-1)i=1,2,…,2n
<math> <mrow> <msub> <mover> <mi>&chi;</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>m</mi> </msubsup> <msub> <mi>&chi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&chi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&chi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>Q</mi> <mi>k</mi> </msub> </mrow> </math>
wherein, χi,k-1|k-1Is an estimate of the ith Sigma sample point at time k-1, f (-) is a non-linear function,predicting the state quantity prediction value at time k for time k-1, Pk|k-1Mean square error matrix, Q, for predicting state quantities at time k-1kIs a covariance matrix of process noise;
the measurement updating process of the Kalman filter comprises the following steps:
<math> <mrow> <msub> <mi>P</mi> <mi>ZZ</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>Z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>Z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>R</mi> <mi>k</mi> </msub> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mi>XZ</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>c</mi> </msubsup> <msup> <mrow> <mrow> <mo>(</mo> <msub> <mi>&chi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>Z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mi>T</mi> </msup> </mrow> </math>
PZZmeasuring mean square error matrix, P, for the values after updatingXZCross-correlation mean square error matrix, R, for state and quantity measurements after updating of measurement valueskTo measure a noise covariance matrix.
The invention has the beneficial effects that:
the invention can overcome the error caused by the output of the traditional discriminator, can accurately model the nonlinear system, effectively reduce the noise intensity of satellite signals, can better track the satellite signals in the weak signal environment and improve the tracking precision. The I/Q branch correlation integral value of the receiver is used as the most original data of the tracking loop, so that the error caused by the output of the traditional discriminator is overcome; the influence of thermal noise and dynamic stress error in the receiver is reduced, and the phenomenon of tracking loop lock losing is reduced. And a UKF filtering algorithm is applied to process and filter the loop, so that the nonlinear relation between the output of the traditional receiver discriminator and the state quantity is overcome. The processing of the nonlinear signal is fast in convergence, and the dynamic parameters can be accurately estimated.
Drawings
FIG. 1 is a diagram of a tracking loop based on I/Q branch correlation integral observation filtering;
FIG. 2 is a block diagram of a Kalman filter tracking loop.
Detailed Description
The present invention will be described in further detail with reference to the accompanying drawings.
The core technology of GPS signal tracking based on I/Q branch correlation integral observation filtering is to use I/Q branch correlation integral to construct a centralized filtering model and apply UKF filtering algorithm, the basic idea is to use the I/Q branch correlation integral of a receiver tracking loop as observed quantity, use a centralized filter to replace a discriminator in the traditional GPS tracking loop, and use UKF filtering algorithm to jointly estimate the characteristic quantity in a carrier loop and a code loop, so as to achieve the accurate tracking of parameters such as carrier frequency, carrier phase, code phase and the like. Because the correlation integral value of the I/Q branch of the receiver and the state quantity in the centralized filter have a nonlinear relation, the problem can be well overcome by adopting a UKF filtering algorithm.
The system modeling accuracy is a key technical problem faced by GPS signal tracking based on the I/Q branch correlation integral value as the observed quantity, and the selection of the state quantity is particularly important for the system modeling accuracy because the system observed quantity and the state quantity to be estimated have a nonlinear relation. For a nonlinear system, the increase of the dimension of the state quantity can more accurately reflect the information of each state of the system, and meanwhile, the calculation quantity is correspondingly increased. In order to simplify the system structure and reduce the system computation, parameters such as carrier phase, carrier frequency and code phase are usually selected as the state quantities of the system when establishing the model.
As shown in fig. 1, a satellite signal received by a receiver through an antenna is down-converted into an intermediate frequency signal, the intermediate frequency signal is subjected to frequency mixing operation with a local carrier signal generated by a local carrier Numerically Controlled Oscillator (NCO), the frequency mixing result is subjected to six-path correlation operation with a locally reproduced C/a code generated by a code generator, and the six-path correlation operation is used as an input signal of a centralized filter to participate in UKF filtering after passing through an integrating-removing device, and the filtering result is fed back to the local NCO, so that the loop is closed.
Fig. 2 is a diagram of a tracking loop structure of a centralized filter, and it can be seen from the diagram that after the intermediate frequency signals of n tracking channels are subjected to carrier stripping and code correlation operation, the intermediate frequency signals are respectively subjected to an integral-cleaner to eliminate high frequency signal components and noise in I/Q branch signals so as to improve a carrier-to-noise ratio, and then enter the centralized filter, and the I/Q branch correlation integral of each channel is used as an observed quantity of the UKF filtering.
The invention specifically comprises the following steps:
step one, carrier stripping and code correlation operation;
the receiver utilizes the satellite signal received by the antenna to send to the radio frequency front-end processing, converts the radio frequency signal into an intermediate frequency signal through multi-stage frequency mixing, and carries out frequency mixing operation with the local sine and cosine reproduction carrier signal generated by the local carrier digital controlled oscillator, so that the intermediate frequency carrier including Doppler frequency shift in the input signal is thoroughly stripped, the processed intermediate frequency signal carries out correlation operation with the advanced, instantaneous and delayed six paths of C/A codes generated by the C/A code generator, and six paths of correlation integral values are formed after passing through the integral-cleaner.
The ith satellite signal output by the receiver rf front end can be written as:
a is normalized signal amplitude, D (k) is data code, C (k) is C/A code played by satellite, f1For the input frequency, f, of the radio-frequency signaldIn order to shift the doppler of the signal,k is the time of the epoch, k is the epoch time,the first carrier initial phase.
The local sine and cosine reproduction signals generated by the local carrier NCO are:
in the formula, AOFor local reproduction of the signal amplitude, fOIn order to locally reproduce the frequency of the signal,the signal phase is reproduced locally.
The intermediate frequency signal S and the local sinusoidal reproduction signal S are combinedOSThe mixed loop is branched into I branch to obtain intermediate frequency signal S and local cosine reproduction signal SOCThe loop branch of the frequency mixing becomes the Q branch, where the intermediate frequency signal S is reproduced with the local sine on the I branchOSWhen multiplying and mixing operation is carried out in a mixer, the product i is obtainedp(k) Is composed of
Wherein,
<math> <mrow> <msub> <mi>A</mi> <mi>e</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>A</mi> <mo>&CenterDot;</mo> <msub> <mi>A</mi> <mi>O</mi> </msub> </mrow> </math>
fe=f1+fd-fO (4)
in the formula (3), the first term on the right of the equal sign is a low-frequency component, the second term is a high-frequency component, and feAndrespectively, an intermediate frequency signal S and a local sinusoidal reproduction signal SOSThe carrier frequency difference and the carrier phase difference between them.
Mixing result ip(k) Filtering out high frequency component by low pass filter to obtain the following filtering result
And the state quantity error information fed back by the Kalman filter is sent to the carrier NCO to update and output a local reproduction signal, so that the phase time between the local reproduction signal and the input intermediate frequency signal is kept consistent. F in equation (5) when the phases of the input and output signals are substantially coincidenteAndtowards zero value, ip(k) Only the signal amplitude, the data code D (k) and the pseudo code C (k) are left, so that the carrier stripping effect is completely achieved.
Similarly, the intermediate frequency signal S can be derived on the Q branch and the local cosine reproduction signal SOCThe mixing result is obtained by filtering the high frequency component by a low pass filter
The C/A code in the received signal is C (k), and the locally reproduced C/A code CO(k) Performing a correlation operation to obtain the following correlation results:
<math> <mrow> <mi>R</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>C</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>C</mi> <mi>O</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
where N is the number of discrete data points participating in the correlation operation, typically corresponding to a 1ms long acquisition data volume.
Mixing result I on branch Ip(k) Respectively and simultaneously correlating with the local early, real-time and late reproduction C/A codes to generate iE,iPAnd iLThe epoch time k in the signal is omitted for simplicity of representation. Mixing result Q on branch Qp(k) Also respectively and simultaneously performing correlation operation with the three C/A code signals to generate qE,qPAnd q isLA signal. At this time, C/A code in the intermediate frequency signal is thoroughly stripped, and the despread iE,iP,iL,qE,qPAnd q isLOnly contains the data code information D (k) which is wanted to be obtained, and the six paths of related integral values I are formed after the data code information D (k) passes through the integral-elimination deviceE,IP,IL,QE,QPAnd QLAs an observed quantity of the kalman filter, as shown in fig. 1.
Secondly, observing a filtered signal tracking model based on coherent integration;
selecting normalized signal amplitude A and carrier phase differenceAnd the carrier frequency difference delta w, the carrier frequency change rate delta a and the code phase difference state delta tau are state quantity column writing state equations.
And taking the six paths of correlation integral values of the I/Q branch, which are advanced, real-time and delayed, as observed quantities of UKF filtering, and writing a measurement equation.
The GPS tracking loop is essentially a digital phase-locked loop, the angular analysis from a control system is a classical phase tracking control system, the Kalman filtering algorithm is an optimal estimation method using a minimum variance criterion, the state parameters of the system can be accurately estimated, the system can be more effectively controlled, and in order to accurately track the frequency and the phase of an input signal, the state quantity of a filter at the moment k is selected as follows:
wherein A is the normalized signal amplitude,for the carrier phase difference, δ w is the carrier frequency difference, δ a is the carrier frequency change rate, and δ τ is the code phase difference. The state equation of the kalman filter is as follows:
in the formula, λLIs a satellite signal L1Carrier wavelength, λCAIs C/A code wavelength and has a value of about 293m, WkIs process noise, also called system noise, noted as: <math> <mrow> <msub> <mi>W</mi> <mi>k</mi> </msub> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&omega;</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>&omega;</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>&omega;</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>&omega;</mi> <mn>4</mn> </msub> </mtd> <mtd> <msub> <mi>&omega;</mi> <mn>5</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> Wkis a zero mean white noise sequence.
And (3) taking the I/Q branch six-path correlation integral output value in the step one as the observed quantity of the Kalman filter, and establishing a nonlinear equation related to the state quantity as follows:
where δ is the lag-lead interval of the local C/A code, R (ε)i) Is the autocorrelation function of the C/A code. VkTo measure noise, the variance matrix of the noise is:
<math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>R</mi> <mi>k</mi> </msub> <mo>=</mo> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>k</mi> </msub> <msup> <msub> <mi>V</mi> <mi>k</mi> </msub> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <msub> <mi>&sigma;</mi> <mi>N</mi> </msub> <mi>N</mi> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> <mo>-</mo> <mi>&delta;</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mi>&delta;</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> <mo>-</mo> <mi>&delta;</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mi>&delta;</mi> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>-</mo> <mi>&delta;</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> <mo>-</mo> <mi>&delta;</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> <mo>-</mo> <mi>&delta;</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> <mo>-</mo> <mi>&delta;</mi> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mi>&delta;</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> <mo>-</mo> <mi>&delta;</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mi>&delta;</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> <mo>-</mo> <mi>&delta;</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, σNIs the noise strength after processing of the correlation signal I, Q.
Due to the fact that the observation equation and the state quantity have a nonlinear relation, the application of the traditional Kalman filtering algorithm can cause poor estimation precision, and therefore the UKF filtering algorithm is adopted to carry out loop processing filtering, and the estimated carrier phase difference is obtained finallyThe carrier frequency difference δ w and the code phase difference δ τ.
Step three, Kalman filter based on UKF
And a UKF filtering algorithm is adopted to replace a loop filter, so that the contradiction between the dynamic property and the filtering precision of the traditional tracking method is eliminated. The strong nonlinear tracking capability of UKF is utilized to replace a discriminator to accurately track the phase, frequency and code phase of multi-channel carrier waves in a weak signal environment.
The UKF filtering algorithm adopts effective combination of UT transformation and traditional Kalman filtering framework, and obtains state estimation through estimation of nonlinear function probability density function, and the UT transformation is the core and the basis of the UKF algorithm. The idea of the UT transform is: ensuring that the mean and covariance of the samples areAnd on the premise of P, selecting 2n +1 point sets (Sigma point sets), wherein n is a state variable dimension, applying nonlinear transformation to each sampled Sigma point to obtain point sets subjected to nonlinear transformationAnd pyIs the statistic of the transformed Sigma point set.
The nonlinear system model after the discretization of the Kalman filter is as follows:
X K + 1 = f ( X K ) + W K Z K + 1 = h ( X K ) + V K - - - ( 12 )
state variable XKMean value of initial distribution ofThe mean square error matrix is P. The UT transform produces a Sigma point χ and a symmetrically sampled weighted sequence w, expressed as:
<math> <mrow> <msub> <mi>&chi;</mi> <mn>0</mn> </msub> <mo>=</mo> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>&chi;</mi> <mi>i</mi> </msub> <mo>=</mo> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mo>+</mo> <msubsup> <mrow> <mo>(</mo> <msqrt> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>P</mi> </msqrt> <mo>)</mo> </mrow> <mi>i</mi> <mi>T</mi> </msubsup> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mi>n</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>&chi;</mi> <mrow> <mi>i</mi> <mo>+</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mo>-</mo> <msubsup> <mrow> <mo>(</mo> <msqrt> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>P</mi> </msqrt> <mo>)</mo> </mrow> <mi>i</mi> <mi>T</mi> </msubsup> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mi>n</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula,is the ith row (or column) of the root mean square matrix obtained by Cholesky decomposition; λ ═ α2(n + κ) -n is a scalar quantity, α is used to control the distance of each point from the mean, and is typically in the range of (10)-4Alpha is more than or equal to 1); κ is also a scalar, usually taken to be 0; the function of the scalar β is to reduce the effect of high order moments, and when the state quantities are gaussian distributed, the optimal value is 2.
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msubsup> <mi>w</mi> <mn>0</mn> <mi>m</mi> </msubsup> <mo>=</mo> <mi>&lambda;</mi> <mo>/</mo> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> </mtd> <mtd> <msubsup> <mi>w</mi> <mn>0</mn> <mi>c</mi> </msubsup> <mo>=</mo> <msubsup> <mi>w</mi> <mn>0</mn> <mi>m</mi> </msubsup> <mo>+</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&alpha;</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>&beta;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
<math> <mrow> <msubsup> <mi>w</mi> <mi>i</mi> <mi>m</mi> </msubsup> <mo>=</mo> <msubsup> <mi>w</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mn>2</mn> <mi>n</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mmultiscripts> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mmultiscripts> </mrow> </math>
And (3) time updating process:
χi,k|k-1=f(χi,k-1|k-1)i=1,2,…,2n (18)
where the estimate χ at time k-1 of the ith Sigma samplei,k-1|k-1Obtaining k-1 time prediction k time estimation value χ after nonlinear function f (-) conversioni,k|k-1,χi,k|k-1And weight of the ith Sigma sample PointObtaining the state quantity predicted value of k-1 moment predicted k moment after operation
<math> <mrow> <msub> <mover> <mi>&chi;</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>m</mi> </msubsup> <msub> <mi>&chi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&chi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&chi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula, Pk|k-1Mean square error matrix, Q, for predicting state quantities at time k-1kIs a covariance matrix of process noise.
And (3) measurement updating process:
<math> <mrow> <msub> <mi>P</mi> <mi>ZZ</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>Z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>Z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>R</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mi>XZ</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>c</mi> </msubsup> <msup> <mrow> <mrow> <mo>(</mo> <msub> <mi>&chi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>Z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, PZZMeasuring mean square error matrix, P, for the values after updatingXZCross-correlation mean square error of state quantity and quantity measurement after updating of measurement valueDifferential array, RkTo measure a noise covariance matrix.
Kk=PXZ(PZZ)-1 (23)
X ^ k | k = X ^ k | k - 1 + K k ( Z k - Z ^ k | k - 1 ) - - - ( 24 )
Pk|k=Pk|k-1-KkPZZKk T (25)
In the formula,optimum estimated value of state variable at time K after updating of measured value, KkFor filtering the gain matrix, Pk|kIs a mean square error matrix of the state quantity at the k moment.
The Kalman filter adopts a UKF filtering algorithm, selects a series of Sigma sampling points in the time updating process, and synthesizes the sampling points after nonlinear transformation according to respective weights to obtain an estimated value of the system state quantity at the current moment after passing through a state equation and a measurement equation. In the measurement updating process, the estimated value of the state quantity of the Kalman filter is corrected by utilizing the six paths of related integral values, the corrected carrier frequency, carrier phase and code phase difference are sent to a local carrier and code NCO, and locally reproduced carrier and code output signals are updated in real time, so that a complete closed loop is formed.

Claims (5)

1. GPS weak signal tracking system based on I/Q branch correlation integral observation filtering, its characterized in that: the satellite signal acquisition device comprises a receiver, a local carrier numerical control oscillator, a mixer, a code generator, an integral cleaner, a correlation arithmetic unit and a Kalman filter, wherein the receiver is used for receiving a satellite signal, converting the satellite signal into an intermediate frequency signal through down-conversion and transmitting the intermediate frequency signal to the mixer;
the mixer also receives local sine and cosine recurrence carrier signals output by the local carrier numerically-controlled oscillator, performs frequency mixing operation on the intermediate frequency signal and the local sine recurrence carrier signal to obtain an I branch output signal, transmits the I branch output signal to the correlation arithmetic unit, performs frequency mixing operation on the intermediate frequency signal and the local cosine recurrence carrier signal to obtain a Q branch output signal, and transmits the Q branch output signal to the correlation arithmetic unit;
the correlation arithmetic unit also receives the local advanced reproduction C/A code, the instantaneous reproduction C/A code and the delayed reproduction C/A code generated by the code generator, and carries out correlation operation on the I branch output signal and the Q branch output signal respectively with the local advanced reproduction C/A code, the instantaneous reproduction C/A code and the delayed reproduction C/A code, and the result is transmitted to the integral clearing unit;
the integral cleaner generates six-path correlation integral value I according to the received informationE,IP,IL,QE,QP,QLAnd then transmitted to a Kalman filter; the Kalman filter obtains estimated carrier phase difference, carrier frequency difference and code phase difference, transmits the carrier phase difference and the carrier frequency difference to a local carrier numerical control oscillator, and transmits the code phase difference to a code generator;
the local carrier wave numerically controlled oscillator generates local sine and cosine reproduction carrier wave signals according to the received information and transmits the signals to the frequency mixer;
a code generator generates a local advanced reproduction C/A code, an instantaneous reproduction C/A code and a delayed reproduction C/A code based on the received information, and transmits them to a correlation operator.
2. The GPS weak signal tracking system based on I/Q branch correlation integral observation filtering according to claim 1, characterized in that: the intermediate frequency signal of the ith satellite signal output by the receiver is:
wherein A is the normalized signal amplitude, D (k) is the data code, C (k) is the C/A code played by the satellite, f1For the input frequency, f, of the radio-frequency signaldFor signal doppler shift, k is epoch time,is the first carrier initial phase;
local sine reproduction carrier signal S generated by local carrier digital controlled oscillatorOSAnd a local cosine reproduction carrier signal SOCComprises the following steps:
wherein A isOIs the amplitude, fOIn order to be the frequency of the radio,in order to be the phase position,
intermediate frequency signal and local sinusoidal reproduction carrier signal SOSThe result of doing the mixing budget is:
wherein,
<math> <mrow> <msub> <mi>A</mi> <mi>e</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>A</mi> <mo>&CenterDot;</mo> <msub> <mi>A</mi> <mi>O</mi> </msub> </mrow> </math>
fe=f1+fd-fO
intermediate frequency signal and local cosine reproduction carrier signal SOCAs a result of the mixing budget:
3. The I/Q branch correlation integral observation filtering based GPS weak signal tracking system according to claim 2, wherein: the correlation operation method in the correlation operator comprises the following steps:
<math> <mrow> <mi>R</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>C</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>C</mi> <mi>O</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein C (k) is C/A code in output signal of the mixer, CO(k) For a locally advanced or instantaneous or late reproduction C/a code generated by the code generator, N is the number of discrete data points participating in the correlation operation.
4. The GPS weak signal tracking system based on I/Q branch correlation integral observation filtering according to claim 3, characterized in that: the state quantities of the kalman filter are:
wherein A is the normalized signal amplitude,is the carrier phase difference, δ w is the carrier frequency difference, δ a is the carrier frequency rate of change, δ τ is the code phase difference, λLFor the satellite signal carrier wavelength, λCAIs C/A code wavelength, WkIs process noise, also known as system noise, noted <math> <mrow> <msub> <mi>W</mi> <mi>k</mi> </msub> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&omega;</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>&omega;</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>&omega;</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>&omega;</mi> <mn>4</mn> </msub> </mtd> <mtd> <msub> <mi>&omega;</mi> <mn>5</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> WkIs a zero mean white noise sequence;
output six-way correlation integral value I of integral removerE,IP,IL,QE,QP,QLFor the observations of the kalman filter:
where δ is the lead-lag interval of the locally reproduced C/A code, R (ε)i) For locally reproducing the autocorrelation function of the C/A code, VkTo measure noise.
5. The GPS weak signal tracking system based on I/Q branch correlation integral observation filtering according to claim 4, characterized in that: the UT transform is adopted in the Kalman filter to generate a Sigma point chi and a weighting sequence w of symmetrical sampling:
<math> <mrow> <msub> <mi>&chi;</mi> <mn>0</mn> </msub> <mo>=</mo> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> </mrow> </math>
<math> <mrow> <msub> <mi>&chi;</mi> <mi>i</mi> </msub> <mo>=</mo> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mo>+</mo> <msubsup> <mrow> <mo>(</mo> <msqrt> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>P</mi> </msqrt> <mo>)</mo> </mrow> <mi>i</mi> <mi>T</mi> </msubsup> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mi>n</mi> </mrow> </math>
<math> <mrow> <msub> <mi>&chi;</mi> <mrow> <mi>i</mi> <mo>+</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mo>-</mo> <msubsup> <mrow> <mo>(</mo> <msqrt> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>P</mi> </msqrt> <mo>)</mo> </mrow> <mi>i</mi> <mi>T</mi> </msubsup> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mi>n</mi> </mrow> </math>
wherein the state variable XKMean value of initial distribution ofMean square error matrix is P, lambda ═ alpha2(n + κ) -n is a scalar quantity, α is used to control the distance of each point from the mean, 10-4Alpha is more than or equal to 1, kappa is a scalar quantity, and scalar quantity beta is used for reducing the influence of high-order moment;
the time updating process of the Kalman filter is as follows:
χi,k|k-1=f(χi,k-1|k-1)i=1,2,…,2n
<math> <mrow> <msub> <mover> <mi>&chi;</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>m</mi> </msubsup> <msub> <mi>&chi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&chi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&chi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>Q</mi> <mi>k</mi> </msub> </mrow> </math>
wherein, χi,k-1|k-1Is an estimate of the ith Sigma sample point at time k-1F (-) is a non-linear function,prediction of state quantity at time k, Pk|k-1Mean square error matrix, Q, for predicting state quantities at time k-1kIs a covariance matrix of process noise;
the measurement updating process of the Kalman filter comprises the following steps:
<math> <mrow> <msub> <mi>P</mi> <mi>ZZ</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>Z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>Z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>R</mi> <mi>k</mi> </msub> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mi>XZ</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>w</mi> <mi>i</mi> <mi>c</mi> </msubsup> <msup> <mrow> <mrow> <mo>(</mo> <msub> <mi>&chi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>Z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mi>T</mi> </msup> </mrow> </math>
PZZmeasuring mean square error matrix, P, for the values after updatingXZCross-correlation mean square error matrix, R, for state and quantity measurements after updating of measurement valueskTo measure a noise covariance matrix.
CN201410314405.2A 2014-07-03 2014-07-03 GPS weak signal tracking system based on I/Q branch correlation integral observation filtering Pending CN104062667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410314405.2A CN104062667A (en) 2014-07-03 2014-07-03 GPS weak signal tracking system based on I/Q branch correlation integral observation filtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410314405.2A CN104062667A (en) 2014-07-03 2014-07-03 GPS weak signal tracking system based on I/Q branch correlation integral observation filtering

Publications (1)

Publication Number Publication Date
CN104062667A true CN104062667A (en) 2014-09-24

Family

ID=51550465

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410314405.2A Pending CN104062667A (en) 2014-07-03 2014-07-03 GPS weak signal tracking system based on I/Q branch correlation integral observation filtering

Country Status (1)

Country Link
CN (1) CN104062667A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316941A (en) * 2014-10-16 2015-01-28 哈尔滨工程大学 Vector tracking method based on carrier frequency assisted phase
CN105629268A (en) * 2015-02-15 2016-06-01 航天恒星科技有限公司 Loop tracking method and system.
CN106291604A (en) * 2016-08-02 2017-01-04 桂林电子科技大学 The improvement code tracking method of satellite navigation signals receiver and loop
CN106500588A (en) * 2016-11-18 2017-03-15 烟台职业学院 A kind of phase-interferometer inter-channel phase difference noise covariance method of estimation
CN106526625A (en) * 2015-09-11 2017-03-22 北京大学 Frequency discriminating method and frequency discriminating device based on energy
CN106646544A (en) * 2016-11-14 2017-05-10 北京瑞德基业光电技术有限公司 Navigation data processing method and system
CN106646543A (en) * 2016-12-22 2017-05-10 成都正扬博创电子技术有限公司 High-dynamic satellite navigation signal carrier tracking method based on master-slave AUKF algorithm
CN108663697A (en) * 2018-07-18 2018-10-16 中国人民解放军火箭军工程大学 A kind of carrier wave correlation intergal improved method for satellite navigation
CN109612500A (en) * 2019-01-23 2019-04-12 北京东方计量测试研究所 A kind of navigation equipment test macro and method
CN110531385A (en) * 2019-09-25 2019-12-03 和芯星通科技(北京)有限公司 A kind of tracking engine and tracking of multi-channel parallel
CN112731475A (en) * 2020-12-25 2021-04-30 中国科学院国家空间科学中心 GNSS occultation double-branch signal open-loop tracking method
CN115085802A (en) * 2022-08-23 2022-09-20 成都川美新技术股份有限公司 Weak satellite signal tracking method and system for non-cooperative reception

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125135A (en) * 1998-11-25 2000-09-26 Navcom Technology, Inc. System and method for demodulating global positioning system signals

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125135A (en) * 1998-11-25 2000-09-26 Navcom Technology, Inc. System and method for demodulating global positioning system signals

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FEI XIE: "Adaptive robust ultra-gightly coupled global navigation satellite system/inertial navigation system based on global positioning system/BeiDou vector tracking loops", 《IET RADAR,SONAR AND NAVIGATION》 *
曾庆喜: "基于UKF的GPS L1 C/A码微弱信号跟踪算法", 《舰船电子工程》 *
王先毅: "GPS软件接收机设计与弱信号处理", 《中国优秀硕士学位论文全文数据库》 *
王璐: "基于极大似然准则和最大期望算法的自适应UKF算法", 《自动化学报》 *
蔡凡: "GPS接收机的中频信号处理算法研究", 《天文学进展》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316941A (en) * 2014-10-16 2015-01-28 哈尔滨工程大学 Vector tracking method based on carrier frequency assisted phase
CN105629268A (en) * 2015-02-15 2016-06-01 航天恒星科技有限公司 Loop tracking method and system.
CN106526625A (en) * 2015-09-11 2017-03-22 北京大学 Frequency discriminating method and frequency discriminating device based on energy
CN106291604A (en) * 2016-08-02 2017-01-04 桂林电子科技大学 The improvement code tracking method of satellite navigation signals receiver and loop
CN106646544A (en) * 2016-11-14 2017-05-10 北京瑞德基业光电技术有限公司 Navigation data processing method and system
CN106500588A (en) * 2016-11-18 2017-03-15 烟台职业学院 A kind of phase-interferometer inter-channel phase difference noise covariance method of estimation
CN106646543A (en) * 2016-12-22 2017-05-10 成都正扬博创电子技术有限公司 High-dynamic satellite navigation signal carrier tracking method based on master-slave AUKF algorithm
CN108663697A (en) * 2018-07-18 2018-10-16 中国人民解放军火箭军工程大学 A kind of carrier wave correlation intergal improved method for satellite navigation
CN109612500A (en) * 2019-01-23 2019-04-12 北京东方计量测试研究所 A kind of navigation equipment test macro and method
CN109612500B (en) * 2019-01-23 2021-02-26 北京东方计量测试研究所 Navigation equipment testing system and method
CN110531385A (en) * 2019-09-25 2019-12-03 和芯星通科技(北京)有限公司 A kind of tracking engine and tracking of multi-channel parallel
CN110531385B (en) * 2019-09-25 2021-05-28 和芯星通科技(北京)有限公司 Multichannel parallel tracking engine and tracking method
CN112731475A (en) * 2020-12-25 2021-04-30 中国科学院国家空间科学中心 GNSS occultation double-branch signal open-loop tracking method
CN112731475B (en) * 2020-12-25 2023-08-08 中国科学院国家空间科学中心 GNSS occultation double-branch signal open-loop tracking method
CN115085802A (en) * 2022-08-23 2022-09-20 成都川美新技术股份有限公司 Weak satellite signal tracking method and system for non-cooperative reception
CN115085802B (en) * 2022-08-23 2022-11-01 成都川美新技术股份有限公司 Weak satellite signal tracking method and system for non-cooperative reception

Similar Documents

Publication Publication Date Title
CN104062667A (en) GPS weak signal tracking system based on I/Q branch correlation integral observation filtering
Sahmoudi et al. Fast iterative maximum-likelihood algorithm (FIMLA) for multipath mitigation in the next generation of GNSS receivers
Arikan et al. Regularized estimation of vertical total electron content from GPS data for a desired time period
RU2407025C2 (en) Weakening of phase multipath propagation
JP3806425B2 (en) Satellite positioning method and satellite positioning system
CN103926603A (en) Extremely-weak signal tracking method of GNSS receiver
CN106443726A (en) GNSS vector tracking loop based on pre-filtering, and implementation method for GNSS vector tracking loop
CN106019333B (en) A kind of Beidou navigation signal phasor tracking based on incoherent discriminator
WO2006030575A1 (en) L2c signal tracking device and gps receiver using same
CN104049262A (en) Beam forming anti-interference method based on vector tracking loop
CN104765052A (en) GEO navigation satellite high-sensitivity carrier tracking method
CN103338024B (en) The complementary Kalman filtering apparatus and method of time delay in antenna array
CN103439719B (en) GPS L2C signal tracking method
Vila-Valls et al. On the identifiability of noise statistics and adaptive KF design for robust GNSS carrier tracking
CN115561787A (en) Low-order EKF-based Beidou B1C signal joint tracking loop method
US6693979B1 (en) Adaptive smoothing system for fading communication channels
CN106526635A (en) GNSS signal carrier tracking and navigation solution tight combination filtering method
CN106932795B (en) A kind of the vector sum scalar mixing tracking and track loop of GNSS signal
CN104977594B (en) Codeless Doppler orbit determination method based on non-cooperative navigation satellite signals
Navarro-Gallardo et al. Analysis of side lobes cancellation methods for BOCcos (n, m) signals
Dey et al. Performance Evaluation of Vectorized NavIC Receiver Using Improved Dual-Frequency NavIC Measurements
CN104199062B (en) Antenna array carrier wave combined tracking method based on Kinematic Decomposition
Sokolova et al. Doppler rate measurements in standard and high sensitivity GPS receivers: Theoretical analysis and comparison
Luo et al. Improving GNSS Positioning by De-noising Consecutive Correlator Outputs Using Graph Fourier Transform Filtering
Li et al. A high-sensitivity acquisition algorithm for BeiDou signals with NH code

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140924