CN104062608A - 一种serf原子自旋磁强计光位移消除方法 - Google Patents

一种serf原子自旋磁强计光位移消除方法 Download PDF

Info

Publication number
CN104062608A
CN104062608A CN201410214025.1A CN201410214025A CN104062608A CN 104062608 A CN104062608 A CN 104062608A CN 201410214025 A CN201410214025 A CN 201410214025A CN 104062608 A CN104062608 A CN 104062608A
Authority
CN
China
Prior art keywords
light
displacement
pumping
frequency
pumping light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410214025.1A
Other languages
English (en)
Other versions
CN104062608B (zh
Inventor
陈熙源
张红
邹升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201410214025.1A priority Critical patent/CN104062608B/zh
Publication of CN104062608A publication Critical patent/CN104062608A/zh
Application granted granted Critical
Publication of CN104062608B publication Critical patent/CN104062608B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

本发明公开了一种SERF原子自旋磁强计光位移消除方法,其针对光位移影响SERF原子自旋磁强计灵敏度测量这一问题,提出基于二向色性理论的光位移测量及消除方法。本发明弥补缺乏有效测量、监测和消除光位移方法的不足,同时为提升SERF原子自旋磁强计灵敏度提供保障。

Description

一种SERF原子自旋磁强计光位移消除方法
技术领域
本发明涉及一种SERF原子自旋磁强计光位移消除方法,属于光学检测及弱磁探测技术领域。
背景技术
SERF原子自旋磁强计(以下简称原子磁强计)因其超高的理论灵敏度成为国外各军事强国争先研制的项目。原子磁强计是以超精细能级原子跃迁为基础,工作在弱磁环境下的磁场测量装置,它主要包括:抽运光系统、检测光系统、磁场屏蔽和磁场补偿系统、无磁电加热系统以及碱金属气室等。
在光和外磁场的作用下,原子能级会发生塞曼效应(Zeemaneffect)和斯塔克效应(Starkeffect)从而使得其跃迁频率偏离抽运光频率,产生光位移(LightShift),光位移仅由圆偏振光引起,线偏振光不会引起光位移。在原子磁强计中光位移等效为一个虚拟磁场,它携带抽运激光功率、频率等信息:
上式中,BLS为抽运光产生的光位移、re为电子半径、c为光速、f为震荡强度、为光通量与抽运激光功率P及频率ν有关、γe为电子旋磁比、ν0为谐振峰处对应的频率、s为光子自旋。由于抽运激光器的不稳定性导致光功率、频率波动,光位移会将这些波动以噪声形式输出,成为抽运光系统中重要误差来源之一,极大限制SERF原子自旋磁强计的灵敏度。
光位移普遍存在于原子器件中,譬如原子钟、原子频标等,目前针对上述两种原子器件国外学者曾提出许多行而有效的光位移消除方法,例如,采用单模激光器来产生多模激光,再使这些多模激光产生大小相等但方向相反的光位移,这样各方向光位移相互抵消即可达到消除目的;再有利用可调微波来激发气室中的碱金属原子,锁定谐振峰处的频率,并调节激光器频率来消除光位移,然而,这些方法都不适用于SERF原子自旋磁强计。
发明内容
发明目的:本发明提出一种SERF原子自旋磁强计光位移消除方法,消除光位移。
技术方案:本发明采用的技术方案为一种SERF原子自旋磁强计光位移消除方法,其特征在于,包括:
对磁屏蔽筒内的剩磁进行磁补偿,将三个方向的磁场均补偿至接近零值,使剩磁不影响后续的测量;
将检测激光器发出的检测光分为相互垂直的两束,一束与抽运光同向共线,在经过碱金属气室后,抽运光与该束检测光分开,该束检测光被光电探测器接收,抽运光被中性滤波片吸收;
另一束检测光与抽运光在碱金属气室内正交后,被光电探测器接收;
在抽运光方向施加锯齿波扫场,使用函数:
y = a · k 2 + ( x + b ) 2 k 2 + c 2 + d 2 + ( x + b ) 2 + e
上式中,y为z轴光电探测器30探测到的光强信号,是已知量,x为z轴方向磁场Bz,a为系数b为z轴方向光位移Lz、c为x轴方向磁场Bx、d为y方向磁场By,拟合出光位移值b;
改变抽运光频率,重复上述四个步骤,即得到同一功率不同频率下的光位移值b,并根据下式拟合同一功率不同频率下的光位移曲线:
B LS = - π r e cfΦ γ e Im [ V ( ν - ν 0 ) ] s
上式中,BLS为抽运光产生的光位移、re为电子半径、c为光速、f为震荡强度、为光通量与抽运激光功率P及频率ν有关、γe为电子旋磁比、ν0为谐振峰处对应的频率、s为光子自旋;
找出光位移为零时的抽运光频率,并将抽运光调至该频率,即可消除光位移。
优选地,利用三维原位磁补偿方法,进行磁场补偿。
优选地,所述抽运光采用铯原子D1线,波长894nm;所述检测光采用铯原子D2线,波长852nm。
优选地,所述检测光被偏振分光棱镜分为两束。
优选地,同向共线的抽运光和检测光由二向色镜分开,同向共线的抽运光和 检测光由二向色镜分开。
优选地,在抽运光方向施加-500~500nT的锯齿波扫场。
有益效果:本发明弥补了现有原子磁强计缺乏有效测量、监测和消除光位移方法的不足,降低了抽运光系统的误差,提高了SERF原子自旋磁强计的灵敏度。
附图说明
图1为本发明的光路示意图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等同形式的修改均落于本申请所附权利要求所限定的范围。
如图1所示,本发明包括以下步骤:
1)光路调节。图1中,位于z轴的抽运激光器9发出铯原子D1线(894nm),即抽运光;位于x轴的检测激光器11发出铯原子D2线(852nm),即检测光。抽运光经第一起偏器8和波片7变成圆偏振光并沿z方向传播,检测光经第二起偏器12后变成线偏振光。
起偏后的检测光被偏振分光棱镜13分成两束线偏振光,其中一束沿x方向与抽运光正交于碱金属气室2内部,最后被x轴光电探测器3接收;而另一束经全反射镜10和第一二向色镜6(允许D1线透射,D2线反射)与抽运光同向共线。在光场和磁场的作用下碱金属气室2内的原子发生能级跃迁,进而使抽运光产生光位移,而所有检测光的光位移为零。共线的抽运光和检测光在碱金属气室2的后端被第二二向色镜15(允许D2线透射,D1线反射)分开,抽运光被反射后由中性滤波片16吸收,检测光透射过去被z轴光电探测器30接收。
2)系统准备。碱金属气室2一般都放置在磁屏蔽筒内,然而磁屏蔽筒并不能完全屏蔽外部磁场,所以需要对其进行补偿,将磁屏蔽筒内的剩磁补偿至接近零值。开启位于碱金属气室2外的无磁电加热装置1,将碱金属气室2内部加热至170℃左右,根据x轴光电探测器3的输出信号,根据三维原位磁补偿方法,利用三维补偿线圈14将Bx、By、Bz补偿至接近零值。所谓接近零值是指碱金属气室2内的剩磁不影响后续的测量。
3)z轴方向光位移的测量。磁补偿结束后,在z方向施加-500nT~500nT 的锯齿波扫场。
4)数据处理。记录下一个扫场周期内的响应曲线,并记录下此时的抽运激光器频率和功率。z方向光电探测器接收到的信号包含有z方向光位移信息,通过函数:
y = a · k 2 + ( x + b ) 2 k 2 + c 2 + d 2 + ( x + b ) 2 + e - - - ( 2 )
上式中,y为z轴光电探测器30探测到的光强信号,是已知量,x为z轴方向磁场Bz,a为系数b为z轴方向光位移Lz、c为x轴方向磁场Bx、d为y方向磁场By,因此可通过拟合可以得到光位移值b。
5)改变激光器频率,重复上述(1)~(4)步骤,可以得到同一功率不同频率下的光位移值。
6)根据公式(1)拟合同一功率不同频率下的光位移,找到光位移为零时的激光频率,并将激光调至该频率,即可达到消除光位移的目的。

Claims (5)

1.一种SERF原子自旋磁强计光位移消除方法,其特征在于,包括:
对磁屏蔽筒内的剩磁进行磁补偿,将三个方向的磁场均补偿至接近零值,使剩磁不影响后续的测量;
将检测激光器发出的检测光分为相互垂直的两束,一束与抽运光同向共线,在经过碱金属气室后,抽运光与该束检测光分开,该束检测光被光电探测器接收,抽运光被中性滤波片吸收;
另一束检测光与抽运光在碱金属气室内正交后,被光电探测器接收;
在抽运光方向施加锯齿波扫场,使用函数:
y = a · k 2 + ( x + b ) 2 k 2 + c 2 + d 2 + ( x + b ) 2 + e
上式中,y为z轴光电探测器30探测到的光强信号,是已知量,x为z轴方向磁场Bz,a为系数b为z轴方向光位移Lz、c为x轴方向磁场Bx、d为y方向磁场By,拟合出光位移值b;
改变抽运光频率,重复上述四个步骤,即得到同一功率不同频率下的光位移值b,并根据下式拟合同一功率不同频率下的光位移曲线:
B LS = - π r e cfΦ γ e Im [ V ( ν - ν 0 ) ] s
上式中,BLS为抽运光产生的光位移、re为电子半径、c为光速、f为震荡强度、为光通量与抽运激光功率P及频率ν有关、γe为电子旋磁比、ν0为谐振峰处对应的频率、s为光子自旋;
找出光位移为零时的抽运光频率,并将抽运光调至该频率,即可消除光位移。
2.根据权利要求1所述的SERF原子自旋磁强计光位移消除方法,其特征在于,所述抽运光采用铯原子D1线,波长894nm;所述检测光采用铯原子D2线,波长852nm。
3.根据权利要求1所述的SERF原子自旋磁强计光位移消除方法,其特征在于,所述检测光被偏振分光棱镜分为两束。
4.根据权利要求1所述的SERF原子自旋磁强计光位移消除方法,其特征在于,同向共线的抽运光和检测光由二向色镜分开。
5.根据权利要求1所述的SERF原子自旋磁强计光位移消除方法,其特征在于,在抽运光方向施加-500~500nT的锯齿波扫场。
CN201410214025.1A 2014-05-20 2014-05-20 一种serf原子自旋磁强计光位移消除方法 Active CN104062608B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410214025.1A CN104062608B (zh) 2014-05-20 2014-05-20 一种serf原子自旋磁强计光位移消除方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410214025.1A CN104062608B (zh) 2014-05-20 2014-05-20 一种serf原子自旋磁强计光位移消除方法

Publications (2)

Publication Number Publication Date
CN104062608A true CN104062608A (zh) 2014-09-24
CN104062608B CN104062608B (zh) 2016-11-09

Family

ID=51550411

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410214025.1A Active CN104062608B (zh) 2014-05-20 2014-05-20 一种serf原子自旋磁强计光位移消除方法

Country Status (1)

Country Link
CN (1) CN104062608B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301526A (zh) * 2015-11-10 2016-02-03 北京航空航天大学 一种磁显微成像方法及装置
CN106226713A (zh) * 2016-07-18 2016-12-14 北京航空航天大学 一种serf原子磁强计的光频移抑制方法
CN106291409A (zh) * 2016-08-04 2017-01-04 北京航天控制仪器研究所 一种基于超精细能级稳频的原子传感器装置
CN106443520A (zh) * 2016-11-09 2017-02-22 北京航空航天大学 一种双轴原子自旋磁强计
CN106725342A (zh) * 2017-01-09 2017-05-31 上海理工大学 基于矢量漩涡光束的脑磁图检测装置
CN106932318A (zh) * 2015-12-30 2017-07-07 中国科学院电子学研究所 半导体泵浦碱金属蒸气激光器的诊断装置及方法
CN110244242A (zh) * 2019-07-23 2019-09-17 中国人民解放军军事科学院国防科技创新研究院 一种基于相位延迟的碱金属原子自旋极化调控装置及方法
CN110411433A (zh) * 2019-07-26 2019-11-05 北京航空航天大学 一种基于磁场补偿的原子自旋陀螺仪检测光功率误差抑制方法
CN111025202A (zh) * 2019-12-23 2020-04-17 之江实验室 一种扫描式立体三维磁场探测方法和装置
CN112379319A (zh) * 2020-11-18 2021-02-19 北京自动化控制设备研究所 原子磁强计航向误差测试装置
CN112946539A (zh) * 2021-01-04 2021-06-11 北京航空航天大学 一种基于serf的单光束反射式三轴磁场测量装置
CN113075594A (zh) * 2021-03-24 2021-07-06 北京航空航天大学 一种serf原子磁强计的电子极化率双轴原位测量系统及方法
CN113091723A (zh) * 2021-03-23 2021-07-09 北京自动化控制设备研究所 基于光场调制的高灵敏原子自旋进动检测方法及装置
CN113126006A (zh) * 2021-04-01 2021-07-16 电子科技大学 一种消除原子磁力仪中交流斯塔克效应的加热结构及方法
CN115047383A (zh) * 2022-08-15 2022-09-13 之江实验室 一种反射式serf原子磁强计及其一体化表头装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270311A (ja) * 2002-03-13 2003-09-25 National Institute Of Advanced Industrial & Technology 磁場計測装置
US20120112749A1 (en) * 2010-11-01 2012-05-10 The Regents Of The University Of California Apparatus and method for increasing spin relaxation times for alkali atoms in alkali vapor cells
CN102901939A (zh) * 2012-10-16 2013-01-30 北京航空航天大学 一种用于原子自旋器件稳定的原子自旋serf态的精密操控方法
CN102914298A (zh) * 2012-10-18 2013-02-06 北京航空航天大学 一种富勒烯分子陀螺
CN103412268A (zh) * 2013-08-07 2013-11-27 北京航空航天大学 一种单光束非屏蔽原子磁强计及其检测方法
CN103438877A (zh) * 2013-09-02 2013-12-11 北京航空航天大学 一种基于serf原子自旋效应的惯性和磁场一体化测量方法
CN103558566A (zh) * 2013-11-11 2014-02-05 东北石油大学 一种高灵敏度全光铯原子磁力仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270311A (ja) * 2002-03-13 2003-09-25 National Institute Of Advanced Industrial & Technology 磁場計測装置
US20120112749A1 (en) * 2010-11-01 2012-05-10 The Regents Of The University Of California Apparatus and method for increasing spin relaxation times for alkali atoms in alkali vapor cells
CN102901939A (zh) * 2012-10-16 2013-01-30 北京航空航天大学 一种用于原子自旋器件稳定的原子自旋serf态的精密操控方法
CN102914298A (zh) * 2012-10-18 2013-02-06 北京航空航天大学 一种富勒烯分子陀螺
CN103412268A (zh) * 2013-08-07 2013-11-27 北京航空航天大学 一种单光束非屏蔽原子磁强计及其检测方法
CN103438877A (zh) * 2013-09-02 2013-12-11 北京航空航天大学 一种基于serf原子自旋效应的惯性和磁场一体化测量方法
CN103558566A (zh) * 2013-11-11 2014-02-05 东北石油大学 一种高灵敏度全光铯原子磁力仪

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
E.B.ALEXANDROV ET AL.: "Double-resonance atomic magnetometers: from gas discharge to laser pumping", 《LASER PHYSICS》 *
THEO SCHOLTES ET AL.: "Light-shift suppression in a miniaturized Mx optically pumped Cs magnetometer array with enhanced resonance signal using off-resonant laser pumping", 《OPTICS EXPRESS》 *
楚中毅 等: "原子自旋陀螺仪核自旋磁场自补偿系统", 《仪器仪表学报》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301526A (zh) * 2015-11-10 2016-02-03 北京航空航天大学 一种磁显微成像方法及装置
CN105301526B (zh) * 2015-11-10 2017-12-22 北京航空航天大学 一种磁显微成像方法及装置
CN106932318A (zh) * 2015-12-30 2017-07-07 中国科学院电子学研究所 半导体泵浦碱金属蒸气激光器的诊断装置及方法
CN106226713A (zh) * 2016-07-18 2016-12-14 北京航空航天大学 一种serf原子磁强计的光频移抑制方法
CN106226713B (zh) * 2016-07-18 2019-02-01 北京航空航天大学 一种serf原子磁强计的光频移抑制方法
CN106291409A (zh) * 2016-08-04 2017-01-04 北京航天控制仪器研究所 一种基于超精细能级稳频的原子传感器装置
CN106291409B (zh) * 2016-08-04 2019-02-19 北京航天控制仪器研究所 一种基于超精细能级稳频的原子传感器装置
CN106443520A (zh) * 2016-11-09 2017-02-22 北京航空航天大学 一种双轴原子自旋磁强计
CN106725342A (zh) * 2017-01-09 2017-05-31 上海理工大学 基于矢量漩涡光束的脑磁图检测装置
CN110244242A (zh) * 2019-07-23 2019-09-17 中国人民解放军军事科学院国防科技创新研究院 一种基于相位延迟的碱金属原子自旋极化调控装置及方法
CN110411433A (zh) * 2019-07-26 2019-11-05 北京航空航天大学 一种基于磁场补偿的原子自旋陀螺仪检测光功率误差抑制方法
CN110411433B (zh) * 2019-07-26 2021-03-16 北京航空航天大学 一种基于磁场补偿的原子自旋陀螺仪检测光功率误差抑制方法
CN111025202A (zh) * 2019-12-23 2020-04-17 之江实验室 一种扫描式立体三维磁场探测方法和装置
CN111025202B (zh) * 2019-12-23 2021-10-19 之江实验室 一种扫描式立体三维磁场探测方法和装置
CN112379319A (zh) * 2020-11-18 2021-02-19 北京自动化控制设备研究所 原子磁强计航向误差测试装置
CN112946539A (zh) * 2021-01-04 2021-06-11 北京航空航天大学 一种基于serf的单光束反射式三轴磁场测量装置
CN112946539B (zh) * 2021-01-04 2023-09-01 北京航空航天大学 一种基于serf的单光束反射式三轴磁场测量装置
CN113091723A (zh) * 2021-03-23 2021-07-09 北京自动化控制设备研究所 基于光场调制的高灵敏原子自旋进动检测方法及装置
CN113075594A (zh) * 2021-03-24 2021-07-06 北京航空航天大学 一种serf原子磁强计的电子极化率双轴原位测量系统及方法
CN113126006A (zh) * 2021-04-01 2021-07-16 电子科技大学 一种消除原子磁力仪中交流斯塔克效应的加热结构及方法
CN115047383A (zh) * 2022-08-15 2022-09-13 之江实验室 一种反射式serf原子磁强计及其一体化表头装置
CN115047383B (zh) * 2022-08-15 2022-11-15 之江实验室 一种反射式serf原子磁强计及其一体化表头装置

Also Published As

Publication number Publication date
CN104062608B (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
CN104062608A (zh) 一种serf原子自旋磁强计光位移消除方法
CN108693488B (zh) 一种基于双抽运光束的无自旋交换弛豫原子自旋磁场测量装置
US20170363696A1 (en) Magneto-optical defect center magnetometer
CN107179450B (zh) 一种微波电场强度测量方法和测量装置
CN103076155B (zh) 一种基于双光路的光纤Verdet常数测量系统
CN106226713B (zh) 一种serf原子磁强计的光频移抑制方法
CN103701030B (zh) 一种用于激光稳频的单峰87Rb同位素原子滤光器及其滤光方法
CN102799103B (zh) 具有高对比度鉴频信号的铷原子钟
WO2015105527A1 (en) Methods and apparatus for optically detecting magnetic resonance
CN108195367B (zh) 具有双倍灵敏度的光纤陀螺仪
CN103115628A (zh) 一种谐振式光学陀螺标度因数测试装置及方法
CN113075594A (zh) 一种serf原子磁强计的电子极化率双轴原位测量系统及方法
CN111854724B (zh) 原子自旋进动检测装置及方法
CN102129050B (zh) 基于光栅调制相位比较等离子体磁场测量方法与装置
CN105449512A (zh) 一种采用气固界面亚多普勒反射光谱偏频稳频装置及方法
Spector ALPS II technical overview and status report
CN110426652A (zh) 一种serf磁强计光频移虚拟磁场抑制实验装置及方法
CN106768867A (zh) LiNbO3相位调制器性能检测系统
CN107656220A (zh) 一种基于铷原子磁光旋转效应测量磁场的方法
CN103471815A (zh) 一种同时测量高反镜s和p偏振光反射率的方法
CN103345129B (zh) 一种光刻机中照明全系统及各组件透过率的测量方法
CN205027888U (zh) 一种全光学设计的磁传感装置
CN206497197U (zh) 光纤敏感环性能检测系统
CN208488536U (zh) 一种多通道光泵原子磁力传感装置
CN205002778U (zh) 环形谐振腔及其谐振式光纤陀螺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant