CN104056708A - 基于声表面波的细胞粉碎器 - Google Patents

基于声表面波的细胞粉碎器 Download PDF

Info

Publication number
CN104056708A
CN104056708A CN201410241881.6A CN201410241881A CN104056708A CN 104056708 A CN104056708 A CN 104056708A CN 201410241881 A CN201410241881 A CN 201410241881A CN 104056708 A CN104056708 A CN 104056708A
Authority
CN
China
Prior art keywords
surface acoustic
acoustic wave
micro
interdigital transducer
fence structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410241881.6A
Other languages
English (en)
Other versions
CN104056708B (zh
Inventor
王文博
何兴理
周剑
轩伟鹏
陈金凯
骆季奎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201410241881.6A priority Critical patent/CN104056708B/zh
Publication of CN104056708A publication Critical patent/CN104056708A/zh
Application granted granted Critical
Publication of CN104056708B publication Critical patent/CN104056708B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

本发明公开了一种基于声表面波的细胞粉碎器,包括声表面波发生模块,所述声表面发生模块包括压电衬底以及设置于压电衬底上的若干叉指换能器,在压电衬底上还设有与叉指换能器位于同一平面上且与叉指换能器布置方向配合的微流体破碎腔,所述微流体破碎腔包括围墙结构以及设置于围墙结构内用于与液滴进行碰撞的微纳柱体。本发明利用声表面波的声致微流效应,带动待检测的试剂高速旋转,采用微纳加工工艺制作,大幅度降低了器件的体积,克服了传统粉碎器件液体加速部件体积过大难以集成的缺点;同时与现有细胞破碎器件相比,本发明采用全固定结构,避免了运动部件的使用,极大地提高了器件的可靠性。

Description

基于声表面波的细胞粉碎器
技术领域
本发明涉及生物医疗传感器领域,尤其涉及一种基于声表面波的细胞粉碎器。
背景技术
伴随着老龄化社会的逐渐到来,人们对健康和疾病预防的要求越来越高,能够尽快尽早地精确地检查与预测疾病,把疾病控制在可防治的阶段,成为人们越来越强烈的需求。现阶段,诸如血压计和血糖试纸等已经被广泛使用,走入了普通家庭。
生物传感器是一种新型的微纳器件,使用微纳加工的方法将传统传感器缩小到微纳尺度,通过检测液体或气体中的微量分子,可用来做生化分析,以检测或鉴定疾病。早期检测和诊断使得尽早地采取医学手段来控制流行病和治疗疾病,使其影响和伤害控制在尽可能小的范围内成为可能。同时,生物传感器在环境领域也有广阔的应用前景,可用于检测诸如重金属离子或有毒有机分子等对环境有害的物质,评估环境质量等。
绝大部分生物传感器都是通过检测蛋白质或DNA、RNA来工作的,然而在测试的样品中,蛋白质、DNA、RNA等特征物质一般都在细胞内部,外部包覆细胞膜或核膜。只有将细胞结构破坏,将特征物质释放到溶液中,才能够进行检验。在生物学或医学领域,这种破坏细胞结构的过程被称为细胞裂解。现阶段细胞裂解等生物传感器的样品制备技术尚处于初级阶段,效率较低。
传统的细胞裂解一般采用化学裂解或物理裂解。化学裂解通常采用化学试剂破碎细胞膜结构,会导致特征物质失活变性,影响后续的特异性检测。对于物理裂解,传统方法采用高速离心带有微颗粒的细胞溶液进行裂解,消耗样品多,检测精度低,不适用于现代的医学,生命科学等微量和快速的分析。为了与生物传感器集成起来使用,使用微纳加工工艺制作的微型的细胞粉碎器成为一种需要。
发明内容
本发明提供了一种基于声表面波的微型细胞粉碎器方案,解决了现有细胞粉碎器效率较低的问题,同时采用微纳加工工艺,极大的缩小了器件的体积,使其能够与生物传感器集成到一起,极大地降低了整体检测成本。
一种基于声表面波的细胞粉碎器,包括声表面波发生模块,所述声表面发生模块包括压电衬底以及设置于压电衬底上的若干叉指换能器,在压电衬底上还设有与叉指换能器位于同一平面上且与叉指换能器布置方向配合的微流体破碎腔,所述微流体破碎腔包括围墙结构以及设置于围墙结构内用于与液滴进行碰撞的微纳柱体。
利用声表面波的声致微流效应,带动待检测的试剂高速旋转,具有高速高效粉碎细胞的效果。其中,所述的微纳柱体是指柱体由微纳加工得到,柱体尺寸为微米级。
所述叉指换能器为瑞利叉指换能器。
由瑞利叉指换能器产生的瑞利波为基波,与液体能量耦合更多更充分。
叉指换能器为一个,且所述微流体破碎腔位于所述叉指换能器的声表面波传出端,且与叉指换能器之间的距离范围在50-200微米。
微流体破碎腔位于叉指换能器的声表面波传出端,在声表面波传出时,产生声致微流效应。微流体破碎腔不宜离叉指换能器太近或太远,太远使得声表面波传送到微流体破碎腔时减弱,太近则不易于制作与配置,因此较距离范围在50至200微米,较佳为100微米。
叉指换能器为多个,且各个叉指换能器的声表面波传出端朝向所述微流体破碎腔,且所述围墙结构的形状与叉指换能器布置方式相配合。
微流体破碎腔也可以与多个叉指换能器组合,增加细胞旋转的速度。例如叉指换能器可以为4个,同时围墙结构也可以为圆形。相应地,中心的微纳柱体在长度上相应尽量减小,与叉指换能器配合,形状上也进行改进,例如设为星形或者菱形,以充分进行碰撞。
所述围墙结构的形状为正方形。
围墙结构也可为其他结构,例如圆形。正方形结构由于形状规则,易于与叉指换能器配置,因此正方形结构为优选。
所述围墙结构的高度范围为50微米至500微米。
围墙结构用于放置液滴,并且在利用声表面波进行细胞破碎的过程中防止液滴移动出限定区域,其高度根据需要放置的液滴量进行设置,较佳为100-150微米。
所述正方形的边长范围为1毫米至2毫米。
正方形边长与叉指换能器的宽度,即两侧的引脚间距离相近,便于与叉指换能器配合。
在所述微流体破碎腔中,设有三组微纳柱体,其中:
第一组设于围墙结构内中心位置,沿声表面波传播方向配置;
第二组和第三组沿声表面波传播方向配置于中心位置的两侧且各组与围墙结构之间的距离为围墙边长的六分之一。
微纳柱结构布置过多会造成液滴流速减慢,速度下降,碰撞减少。过少则液滴碰撞不充分。
每组微纳柱体包括3至5个平行布置的微纳柱体,每个微纳柱体的宽度为50微米,长度为200到500微米,各微纳柱体之间的间距为50至100微米,各个微纳柱体的高度与围墙高度相同。
每组的微纳柱体过多,则受围墙结构面积限制,容易在液滴旋转时造成阻碍,而分布过少碰撞不充分。因此作为优选,可采用3至5个平行布置的微纳柱体。
所述围墙结构所采用的材料为厚光刻胶、SU8或PDMS。
SU8是基于环氧SU8树脂的光刻胶,PDMS为聚二甲基硅氧烷。微纳柱体所采用的材料与围墙结构所用的材料可以相同,也可以另外由金属、氧化物或者聚合物等微纳结构构成。
本发明的有益效果为利用声表面波的声致微流效应,带动待检测的试剂高速旋转,采用微纳加工工艺制作,大幅度降低了器件的体积,克服了传统粉碎器件液体加速部件体积过大难以集成的缺点;同时与现有细胞破碎器件相比,本发明采用全固定结构,避免了运动部件的使用,极大地提高了器件的可靠性。
附图说明
图1是本发明一个实施例的叉指换能器示意图;
图2是本发明当前实施例的细胞破碎模块示意图;
图3是本发明当前实施例的细胞粉碎器示意图;
图4是本发明当前实施例的细胞粉碎器工作原理示意图;
图5是本发明当前实施例的细胞粉碎器侧视图。
具体实施方式
现结合附图和实施例对本发明进行解释。
本发明一个实施例的细胞粉碎器整体示意图如图3所示,细胞破碎器包括压电衬底8以及设置于压电衬底上的若干叉指换能器,可包括LiNbO3等体声波材料和ZnO、AlN等薄膜材料。叉指电极由金属制成,其背面设有用于反射叉指换能器激发的声表面波的反射栅。声表面波发生模块的叉指换能器可以通过改变设计其中的叉指电极2的几何尺寸来调节其谐振频率。
如图3所示,在压电衬底上还设有与叉指换能器位于同一平面上且与叉指换能器布置方向配合的微流体破碎腔,所述微流体破碎腔包括正方形的围墙结构以及设置于围墙结构内用于与液滴进行碰撞的微纳柱体。
其中围墙高度为150微米,边长为1.5毫米。在微流体破碎腔中,设有三组微纳柱体,其中:第一组设于围墙结构内中心位置,沿声表面波传播方向配置;第二组和第三组沿声表面波传播方向配置于中心位置的两侧且各组与围墙结构之间的距离为围墙边长的六分之一。
在本发明实施例中,微流体破碎腔与一个叉指换能器组合,微流体破碎腔位于该叉指换能器的声表面波传出端,且与叉指换能器之间的距离为100微米。每组微纳柱体包括3个平行布置的微纳柱体,每个微纳柱体的宽度为50微米,长度为500微米,同组中各微纳柱体之间的间距为50微米,各个微纳柱体的高度与围墙高度相同。
在其他实施方式中,微流体破碎腔也可以与多个叉指换能器组合,增加细胞旋转的速度。例如叉指换能器可以为4个,同时围墙结构也可以为圆形。相应地,中心的微纳柱体在长度上相应尽量减小,与叉指换能器配合,形状上也进行改进,例如设为星形或者菱形,以充分进行碰撞。
本发明当前实施例的细胞粉碎器还包括射频信号发生装置(未绘示),该射频信号发生装置主要由用于产生射频信号的信号发生器和用于放大信号的射频信号功率放大器组成。叉指电极2的引脚1通过金连接线与PCB板相连接,所述PCB板上有引脚引出,和功率放大器的输出端相连。
细胞粉碎器工作情况如图4和图5所示,叉指电极2的引脚1上与射频信号接收装置连接,通过叉指换能器中的叉指电极2的引脚1,外界的射频信号被施加到叉指电极2上,其射频信号频率通常取声表面波的谐振频率,此时,细胞粉碎器能够获得最大的压电振荡,进而获得最大的效率。射频信号在叉指电极2上形成周期性的交变电场,在压电效应作用下,压电衬底8会发生振荡,发出声表面波。声表面波会沿着衬底表面传播,与微流体破碎腔4内部的细胞溶液7耦合,发生声致微流效应,在液滴内部形成高速运动的液流5。液流5会带动内部的细胞6与微纳柱体3高速碰撞,使得细胞膜结构破碎,特征检测物质进入溶液,产生细胞粉碎的效果。
本发明利用声表面波的声致微流效应,带动待检测的试剂高速旋转,采用微纳加工工艺制作,大幅度降低了器件的体积,克服了传统粉碎器件液体加速部件体积过大难以集成的缺点;同时与现有细胞破碎器件相比,本发明采用全固定结构,避免了运动部件的使用,极大地提高了器件的可靠性。
本发明提供了一种基于声表面波的微型细胞粉碎器方案,解决了现有细胞粉碎器效率较低的问题,同时采用微纳加工工艺,极大的缩小了器件的体积,使其能够与生物传感器集成到一起,极大地降低了整体检测成本。

Claims (10)

1.一种基于声表面波的细胞粉碎器,包括声表面波发生模块,所述声表面发生模块包括压电衬底以及设置于压电衬底上的若干叉指换能器,其特征在于,在压电衬底上还设有与叉指换能器位于同一平面上且与叉指换能器布置方向配合的微流体破碎腔,所述微流体破碎腔包括围墙结构以及设置于围墙结构内用于与液滴进行碰撞的微纳柱体。
2.如权利要求1所述基于声表面波的细胞粉碎器,其特征在于,所述叉指换能器为瑞利叉指换能器。
3.如权利要求1或2所述基于声表面波的细胞粉碎器,其特征在于,叉指换能器为一个,且所述微流体破碎腔位于所述叉指换能器的声表面波传出端,且与叉指换能器之间的距离范围在50-200微米。
4.如权利要求1或2所述基于声表面波的细胞粉碎器,其特征在于,叉指换能器为多个,且各个叉指换能器的声表面波传出端朝向所述微流体破碎腔,且所述围墙结构的形状与叉指换能器布置方式相配合。
5.如权利要求3所述基于声表面波的细胞粉碎器,其特征在于,所述围墙结构的形状为正方形。
6.如权利要求5所述基于声表面波的细胞粉碎器,其特征在于,所述围墙结构的高度范围为50微米至500微米。
7.如权利要求5所述基于声表面波的细胞粉碎器,其特征在于,所述正方形的边长范围为1毫米至2毫米。
8.如权利要求1或2所述基于声表面波的细胞粉碎器,其特征在于,在所述微流体破碎腔中,设有三组微纳柱体,其中:
第一组设于围墙结构内中心位置,沿声表面波传播方向配置;
第二组和第三组沿声表面波传播方向配置于中心位置的两侧且各组与围墙结构之间的距离为围墙边长的六分之一。
9.如权利要求1或2所述基于声表面波的细胞粉碎器,其特征在于,每组微纳柱体包括3至5个平行布置的微纳柱体,每个微纳柱体的宽度为50微米,长度为200到500微米,各微纳柱体之间的间距为50至100微米,各个微纳柱体的高度与围墙高度相同。
10.如权利要求1或2所述基于声表面波的细胞粉碎器,其特征在于,所述围墙结构所采用的材料为厚光刻胶、SU8或PDMS。
CN201410241881.6A 2014-05-30 2014-05-30 基于声表面波的细胞粉碎器 Expired - Fee Related CN104056708B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410241881.6A CN104056708B (zh) 2014-05-30 2014-05-30 基于声表面波的细胞粉碎器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410241881.6A CN104056708B (zh) 2014-05-30 2014-05-30 基于声表面波的细胞粉碎器

Publications (2)

Publication Number Publication Date
CN104056708A true CN104056708A (zh) 2014-09-24
CN104056708B CN104056708B (zh) 2016-08-17

Family

ID=51544811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410241881.6A Expired - Fee Related CN104056708B (zh) 2014-05-30 2014-05-30 基于声表面波的细胞粉碎器

Country Status (1)

Country Link
CN (1) CN104056708B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108414303A (zh) * 2018-01-23 2018-08-17 中央民族大学 一种基于声表面波的颗粒碰撞细胞裂解器
CN108593765A (zh) * 2018-04-04 2018-09-28 深圳大学 一种基于声表面波模式的生物传感器及其检测方法
CN110244050A (zh) * 2019-06-11 2019-09-17 中央民族大学 一种细胞裂解原位光学传感检测芯片及其制备和使用方法
CN114630717A (zh) * 2019-09-25 2022-06-14 里尔大学 电声装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1524948A (zh) * 2003-02-25 2004-09-01 清华大学 一种超声裂解细胞或剪切大分子装置及其使用方法
CN101431940A (zh) * 2006-02-24 2009-05-13 纳微振动技术公司 用于对皮肤进行声表面波处置的系统和方法
CN101586076A (zh) * 2009-06-25 2009-11-25 上海交通大学 利用声表面波实现细胞粉碎的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1524948A (zh) * 2003-02-25 2004-09-01 清华大学 一种超声裂解细胞或剪切大分子装置及其使用方法
CN101431940A (zh) * 2006-02-24 2009-05-13 纳微振动技术公司 用于对皮肤进行声表面波处置的系统和方法
CN101586076A (zh) * 2009-06-25 2009-11-25 上海交通大学 利用声表面波实现细胞粉碎的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108414303A (zh) * 2018-01-23 2018-08-17 中央民族大学 一种基于声表面波的颗粒碰撞细胞裂解器
CN108593765A (zh) * 2018-04-04 2018-09-28 深圳大学 一种基于声表面波模式的生物传感器及其检测方法
WO2019192125A1 (zh) * 2018-04-04 2019-10-10 深圳大学 一种基于声表面波模式的生物传感器及其检测方法
CN110244050A (zh) * 2019-06-11 2019-09-17 中央民族大学 一种细胞裂解原位光学传感检测芯片及其制备和使用方法
CN114630717A (zh) * 2019-09-25 2022-06-14 里尔大学 电声装置

Also Published As

Publication number Publication date
CN104056708B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
Capineri et al. Ultrasonic guided-waves sensors and integrated structural health monitoring systems for impact detection and localization: A review
CN104056708A (zh) 基于声表面波的细胞粉碎器
US20170328866A1 (en) Sensing device with a temperature sensor
Sampaleanu et al. Top-orthogonal-to-bottom-electrode (TOBE) CMUT arrays for 3-D ultrasound imaging
CN102069686B (zh) 基于有机压电材料的汽车轮胎监测装置
EP2939281B1 (en) Piezoelectric devices
CN108432132A (zh) 微流体颗粒操纵
CN104121984B (zh) 一种高灵敏度谐振式mems矢量水听器结构
CN104949909A (zh) 用于以声学方式集中的硬件与实现的系统和方法
CN103411864A (zh) 基于结构共振测量气体悬浮颗粒浓度的mems传感器
WO2008144356A4 (en) Method and system for detecting an anomaly and determing its size
Garimella et al. Piezo-Gen-An approach to generate electricity from vibrations
Hutchins et al. Structural health monitoring using polymer-based capacitive micromachined ultrasonic transducers (CMUTs)
Bellan et al. A new design and manufacturing process for embedded Lamb waves interdigital transducers based on piezopolymer film
CN102539522A (zh) 异物检测装置及方法、液滴喷出装置及方法
CN203490153U (zh) 基于结构共振测量气体悬浮颗粒浓度的mems传感器
CN108459176A (zh) 基于风致振的压电能量收集结构及自供电风速测量装置、方法
Feng et al. Piezoelectric micromachined ultrasonic transducers with a cost-effective bottom-up fabrication scheme for millimeter-scale range finding
CN102279255B (zh) 单细胞全环境力学动态调控芯片
CN103278562A (zh) 一种用于测量声场的二维扫描系统
CN102861693A (zh) 基于纵振夹心换能器的压电微喷装置
CN101893645B (zh) 超声波风速风向测量装置
US20180156706A1 (en) Apparatus for analysing the particulate matter content of an aerosol
CN108414303B (zh) 一种基于声表面波的颗粒碰撞细胞裂解器
CN208156032U (zh) 基于风致振的压电能量收集结构及自供电风速测量装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

Termination date: 20190530