CN104052697A - Interference alignment method based on two-layer pre-coding structure in MIMO-IBC system - Google Patents

Interference alignment method based on two-layer pre-coding structure in MIMO-IBC system Download PDF

Info

Publication number
CN104052697A
CN104052697A CN201410266956.6A CN201410266956A CN104052697A CN 104052697 A CN104052697 A CN 104052697A CN 201410266956 A CN201410266956 A CN 201410266956A CN 104052697 A CN104052697 A CN 104052697A
Authority
CN
China
Prior art keywords
msub
matrix
mrow
base station
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410266956.6A
Other languages
Chinese (zh)
Other versions
CN104052697B (en
Inventor
景小荣
赵月芳
张祖凡
陈前斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201410266956.6A priority Critical patent/CN104052697B/en
Publication of CN104052697A publication Critical patent/CN104052697A/en
Application granted granted Critical
Publication of CN104052697B publication Critical patent/CN104052697B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

The invention belongs to the technical field of communication, and discloses an interference alignment method based on a two-layer pre-coding structure and suitable for a multiple input multiple output-interference broadcast channel (MIMO-IBC) system. In the MIMO-IBC system, interference among communities and interference among users are main factors for limiting channel capacity. The method includes the steps of firstly, aligning ICI signals through base station outer layer pre-coding, eliminating the ICI signals through a receiving matrix, and finally eliminating IUI signals through base station inner layer pre-coding. According to the method, when the number of antennas of a base station meets the condition, the ICI signals can be aligned in a low-dimensional interference signal sub-space through closed solution, and otherwise, the ICI signals are aligned in or gets close to the low-dimensional interference signal sub-space through loop iteration. By means of the method, the ICI signals and the IUI signals can be effectively eliminated, the system capacity can be remarkably improved; the zero-forcing technology can be adopted at a receiving end, and therefore receiving is simplified, and meanwhile the requirement for the number of antennas at the receiving end is low.

Description

Interference alignment method based on two-layer precoding structure in MIMO-IBC system
Technical Field
The present invention relates to the field of communications technologies, and in particular, to an Interference Alignment (IA) method based on a two-layer precoding structure in an Interference Broadcast Channel (IBC) system.
Background
In a MIMO system, ICI is a major constraint in obtaining high frequency spectrum utilization. Inter-Cell Interference (ICI) and Inter-user Interference (IUI) are major factors that limit channel capacity. In recent years, a new idea for managing ICI signals in MIMO Interference Channels (ICs) is proposed in the Interference Alignment (IA) technology: the receiving end aligns the ICI signal within a specific interference subspace, while the orthogonal subspace of the interference subspace is used for the transmission of the desired signal. Studies have shown that in MIMO-IC, using IA technology, 1/2 Degrees of Freedom are available per cell (Degrees of Freedom, DoF).
In early research, the IA technology was mostly used for interference channels, and the main research focuses on the problems of the IA technology, such as the optimal DoF obtained, the upper and lower limits of the system capacity, and the number of transmit/receive antennas required to implement IA. However, in the multi-cell MIMO-IBC system, one base station corresponds to multiple users, so that the users not only receive ICI signals but also IUI signals, which is much more complicated than simple MIMO-IC, and currently, the research on IA technology in the multi-cell MIMO-IBC system is not much.
In a multi-cell multi-user scenario, IA techniques can effectively cancel ICI signals and IUI signals, thereby significantly increasing channel capacity. Currently, the research on IA algorithm in multi-cell and multi-user environment can be roughly divided into two categories: iterative algorithms and direct algorithms. The iterative algorithm implements IA by continuously loop iterating the precoding matrix and the receive matrix, whereas the direct algorithm uses a closed-form solution. Iterative algorithms tend to achieve higher channel capacity, especially under low signal-to-noise conditions; however, the iterative algorithm has high complexity and slow convergence speed. The direct algorithm mainly aims at the MIMO-IBC system of 2 cells, interference alignment is realized by jointly designing a precoding matrix and a receiving matrix, and the number of receiving and transmitting antennas is required to meet specific conditions.
Disclosure of Invention
In view of the above, the technical problem to be solved by the present invention is that, for a multi-cell MIMO-IBC system, an iterative algorithm is adopted with high complexity and low convergence rate; interference alignment is realized by jointly designing a precoding matrix and a receiving matrix by adopting a direct algorithm, and the number of receiving and transmitting antennas is required to meet specific conditions. According to the characteristics of a multi-cell MIMO-IBC system, an interference alignment method based on a two-layer precoding structure is provided.
The technical scheme for solving the technical problems is to design an interference alignment method based on a two-layer precoding structure. The system scenario is set as follows: the number of cells is G, the number of users in the cell is K, each user corresponds to d data streams, and the number of antennas of base stations in all the cells is NtThe number of the user antennas is NrAnd use of (G, N)t)×(K,Nr) To identify, the user k uses the symbol g in cell gkThat is, the base station transmits signals only to users in the own cell. Constructing any Kd order nonsingular matrix (Q)glAnd (G ≠ l; G, l ═ 1.. G), designing an outer-layer precoding matrix of the base stationAligning all ICI signals in a low-dimensional interference subspace; receiving end design receiving matrixTo cancel the ICI signal; designing inner pre-coding matrix of base stationTo eliminate the IUI signal. Wherein,with a representation dimension of NtA complex matrix of x Kd,with a representation dimension of dXNrThe complex matrix of (a) is then formed,a complex matrix with dimensions Kd × d is represented. ()HIndicating the conjugate transpose of the matrix being solved for. The method specifically comprises the following steps:
designing outer precoding matrix of base stationAligning all ICI signals in a low-dimensional interference subspace; receiving matrix designed for ICI signal eliminationTherefore, the temperature of the molten metal is controlled,is the null space of the ICI signal.
Designing inner layer precoding matrix of base stationFor cancelling the IUI signal, BgkIs the null space of the IUI signal, i.e.: <math> <mrow> <msub> <mi>B</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> </msub> <mo>&Subset;</mo> <mi>null</mi> <mrow> <mo>(</mo> <msup> <mrow> <mo>[</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <msub> <mi>g</mi> <mn>1</mn> </msub> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mn>1</mn> </msub> <mo>,</mo> <mi>g</mi> </mrow> </msub> <msub> <mi>P</mi> <mi>g</mi> </msub> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <msub> <mi>g</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>g</mi> </mrow> </msub> <msub> <mi>P</mi> <mi>g</mi> </msub> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>,</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <msub> <mi>g</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>g</mi> </mrow> </msub> <msub> <mi>P</mi> <mi>g</mi> </msub> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>g</mi> </mrow> </msub> <msub> <mi>P</mi> <mi>g</mi> </msub> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>]</mo> </mrow> <mi>H</mi> </msup> <mo>)</mo> </mrow> </mrow> </math> whereinA reception matrix is represented by a matrix of symbols,represents a flat rayleigh fading channel from the base station to the user in the cell, and null () represents a null space for obtaining a matrix.
Base station outer layer pre-weavingCode matrixIt is desirable to align or approximate the interference signals from different base stations to a low-dimensional subspace, e.g., for users in cell g, the ICI signal is aligned or approximated to the interference signal subspace from the g +1 th cell. In the whole system, the outer layer precoding matrix of the base stationSatisfies the following formula:
H ~ p = 0
p = vec ( P 1 ) vec ( P 2 ) . . . vec ( P G )
wherein I is and { QglA unit matrix of the same order as (G ≠ l; G, l ═ 1.. G),representing a flat rayleigh fading channel from base station l to cell g,denotes the outer precoding matrix of the base station g, O denotes KdkNr×KdNtZero matrix, matrix of dimensions()TRepresenting the transpose of the solved matrix, vec () representing the column vectorization function of the solved matrix.
The receiving matrix divides the signal space into an interference signal subspace and an expected signal subspace at a receiving end, interference signals among users and interference signals among cells are aligned to the interference signal subspace, the expected signals are aligned to the expected signal subspace, and the dimensionality of the expected signal subspace is larger than or equal to the number d of data streams to be transmitted. When N is presentt>(G-2)KNrWhen, { Q }glG is any Kd order nonsingular matrix or any nonzero constant, and p has a nonzero solution; when N is presentt≤(G-2)KNrWhile, iterating the matrix { Q over the loopglG ≠ l; G, l ═ 1.. G) and vector p, such thatOrIs close to 0. In addition, when N ist=(G-2)KNrIn time, from the properties of the block matrix, { Q ] is known by matrix operationglG ≠ l; G, l ═ 1.. G) is a series of nonzero constants such thatIf true, p has a non-zero solution. Wherein rank () represents the rank of the matrix, and | | represents the 2-norm of the vector.
When aligning the interference signal from g +1 cell in the subspace formed by the interference signals from the rest cells, the outer layer precoding matrix of the base stationThen the formula needs to be satisfied:
to this end, for user k in cell g, the IUI signal is aligned atIs also aligned or approximated toSo that the interference signal in the multi-cell MIMO-IBC system can be eliminated using this method. Where span () represents the subspace spanned by the column vectors of the matrix. As can be seen from the design process of the invention, the receiving matrixIs a matrixThe orthogonal matrix of column vectors, therefore, the invention can effectively reduce the number of antennas at the receiving end and the processing complexity, thereby reducing the mobile deviceAnd (4) preparing design cost.
Drawings
FIG. 1 is a schematic diagram of a MIMO-IBC system;
FIG. 2 is a schematic diagram of a method for implementing interference alignment according to the present invention;
FIG. 3 is a flow chart of an implementation of the present invention;
FIG. 4 is a schematic diagram illustrating the interference alignment effect of the present invention;
fig. 5 is a system capacity comparison graph.
Detailed Description
The general multi-cell MIMO-IBC system scenario is: the number of cells is G, each cell only comprises one base station, the base station serves a plurality of users simultaneously, and the G cells have K in totalgEach user, base station and user k is equipped with MgAndroot antenna, base station transmitting to user kA data stream ofMarking the MIMO-IBC system under the general scene.
The multi-cell MIMO-IBC system scene is set as follows: the number of cells is G, the number of users in the cell is K, each user corresponds to d degrees of freedom, and the number of antennas of base stations in all the cells is NtThe number of the user antennas is NrAnd use of (G, N)t)×(K,Nr) To identify, the user k uses the symbol g in cell gkThat is, the base station transmits signals only to users in the own cell.
FIG. 1 showsA MIMO-IBC system of G cells, in each cell, one base station serves a plurality of users. There is a total of K in g cellsgEach user, base station and user k is equipped with MgAndroot antenna, base station transmitting to user kThe number of data streams to be transmitted is,symbol g for user k in cell gkTo indicate. Channel State Information (CSI) is shared between base stations, and data Information is not shared. By usingRepresenting a MIMO-IBC system in a general scenario. When receiving the expected signal, the user also receives the interference signal between users in the local cell and the interference signal of the adjacent cell, at this time, the user gkThe received signal may be expressed as:
<math> <mrow> <msub> <mi>y</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> </msub> <mo>=</mo> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>g</mi> </mrow> </msub> <msub> <mi>V</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> </msub> <msub> <mi>s</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>&NotEqual;</mo> <mi>k</mi> </mrow> <msub> <mi>K</mi> <mi>g</mi> </msub> </munderover> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>g</mi> </mrow> </msub> <msub> <mi>V</mi> <msub> <mi>g</mi> <mi>i</mi> </msub> </msub> <msub> <mi>s</mi> <msub> <mi>g</mi> <mi>i</mi> </msub> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>l</mi> <mo>&NotEqual;</mo> <mi>g</mi> </mrow> <mi>G</mi> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>K</mi> <mi>l</mi> </msub> </munderover> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>l</mi> </mrow> </msub> <msub> <mi>V</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>s</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <mo>+</mo> <msub> <mi>n</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> </msub> <mo>,</mo> </mrow> </math>
wherein,representing base station l to user gkA flat rayleigh fading channel;indicating transmission by base station g to user gkThe signal of (a);representation for signalsThe precoding matrix of (2) satisfies the power constraint condition:represents a user gkThe received noise is an independent and identically distributed complex Gaussian vector satisfyingEach user decodes the desired signal by means of a reception matrix, assuming user gkBy means of a receiving matrixThe processed signal is represented as:corresponding user gkThe data rate of (d) can then be expressed as:
<math> <mrow> <msub> <mi>R</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> </msub> <mo>=</mo> <msub> <mi>log</mi> <mn>2</mn> </msub> <mo>{</mo> <mi>det</mi> <mo>[</mo> <mi>I</mi> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>U</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>g</mi> </mrow> </msub> <msub> <mi>V</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> </msub> <msubsup> <mi>V</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> <mi>H</mi> </msubsup> <msubsup> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>g</mi> </mrow> <mi>H</mi> </msubsup> <msub> <mi>U</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> </msub> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>g</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&NotEqual;</mo> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>i</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mi>U</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>l</mi> </mrow> </msub> <msub> <mi>V</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msubsup> <mi>V</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> <mi>H</mi> </msubsup> <msubsup> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>l</mi> </mrow> <mi>H</mi> </msubsup> <msub> <mi>U</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> </msub> <mo>+</mo> <msubsup> <mi>&sigma;</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> <mn>2</mn> </msubsup> <msubsup> <mi>U</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> <mi>H</mi> </msubsup> <msub> <mi>U</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> </msub> </mrow> </mfrac> <mo>]</mo> <mo>}</mo> </mrow> </math>
wherein, | | | | represents solving the 2-norm of the vector, E { } represents solving the expected operation, det { } represents solving the determinant value of the matrix.
In order to decode the desired signal efficiently, the receiving matrix divides the signal space into an interference signal subspace and a desired signal subspace at the receiving end, the inter-user interference signal and the inter-cell interference signal are aligned to the interference signal subspace, and the desired signal is aligned to the desired signal subspace, so that the dimension of the desired signal subspace cannot be smaller than the number of data streams to be transmittedFor this reason, the condition for linear IA can be expressed as:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msubsup> <mi>U</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>l</mi> </mrow> </msub> <msub> <mi>V</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo>&ForAll;</mo> <mi>l</mi> <mo>&NotEqual;</mo> <mi>g</mi> <mo>,</mo> <mi>i</mi> <mo>&Element;</mo> <mo>{</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>K</mi> <mi>l</mi> </msub> <mo>}</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>g</mi> </mrow> </msub> <msub> <mi>V</mi> <msub> <mi>g</mi> <mi>i</mi> </msub> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo>&ForAll;</mo> <mi>i</mi> <mo>&NotEqual;</mo> <mi>k</mi> </mtd> </mtr> <mtr> <mtd> <mi>rank</mi> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>g</mi> </mrow> </msub> <msub> <mi>V</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>d</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> </msub> <mo>,</mo> <mo>&ForAll;</mo> <mi>g</mi> <mo>,</mo> <mi>k</mi> </mtd> </mtr> </mtable> </mfenced> </math>
here, rank () represents the rank of the matrix.
Fig. 2 is a schematic diagram of an IA implementation based on a two-layer precoding structure proposed by the present invention, assuming that a system has symmetric antenna numbers, each cell has one base station and K users, each user corresponds to d data streams, and all base station antenna numbers are Nt=MgG, the number of user antennas is 1For this system (G, N)t)×(K,Nr) Marked, user k in cell g uses symbol gkThat is, the base station transmits signals only to users in the own cell. The base station is provided with two layers of precoding, and the inner layer precoding is recorded asFor cancelling the IUI signal; the outer layer precoding is recorded asFor aligning ICI signals. User gkBy means of a receiving matrixThe processed signal is represented as:
<math> <mrow> <mover> <msub> <mi>s</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> </msub> <mo>^</mo> </mover> <mo>=</mo> <msubsup> <mi>U</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>g</mi> </mrow> </msub> <msub> <mi>P</mi> <mi>g</mi> </msub> <msub> <mi>B</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> </msub> <msub> <mi>s</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> </msub> <mo>+</mo> <msubsup> <mi>U</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> <mi>H</mi> </msubsup> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>&NotEqual;</mo> <mi>k</mi> </mrow> <mi>K</mi> </munderover> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>g</mi> </mrow> </msub> <msub> <mi>P</mi> <mi>g</mi> </msub> <msub> <mi>B</mi> <msub> <mi>g</mi> <mi>i</mi> </msub> </msub> <msub> <mi>s</mi> <msub> <mi>g</mi> <mi>i</mi> </msub> </msub> <mo>+</mo> <msubsup> <mi>U</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> <mi>H</mi> </msubsup> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>l</mi> <mo>&NotEqual;</mo> <mi>g</mi> </mrow> <mi>G</mi> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </munderover> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>l</mi> </mrow> </msub> <msub> <mi>P</mi> <mi>l</mi> </msub> <msub> <mi>B</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <msub> <mi>s</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </msub> <mo>+</mo> <msubsup> <mi>U</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> <mi>H</mi> </msubsup> <msub> <mi>n</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> </msub> </mrow> </math>
wherein,representing base station l to user gkThe flat rayleigh fading channel of (1),indicating transmission by base station g to user gkThe signal of (a) is received,represents a user gkThe received noise is an independent and identically distributed complex Gaussian vector satisfyingA complex matrix with dimensions Kd x d is represented,with a representation dimension of NtA complex matrix of x Kd,with a representation dimension of dXNrA complex matrix of (a);
fig. 3 is a flow chart showing an implementation of the present invention, which specifically includes the following steps:
step 301, designing inner layer precoding of base stationMatrix arrayThe ICI signal is aligned in a low dimensional subspace. Thus, the interfering signals from other cells can be expressed as:
the receiving end uses zero forcing technique to eliminate ICI signal, therefore, in order to receive d non-interference data streams, the number of receiving end antennas N is neededrNot less than (G-1) Kd + d. The scheme passes through a precoding matrixAligning interference signals from different base stations in the same low-dimensional subspace, and for a user k in a cell g, aligning the interference from other cells to the interference signal subspace from a g +1 cell one by oneNamely: span ( G g k , g + 1 ) = span ( H g k , 1 P 1 ) = . . . = span ( H g k , g - 1 P g - 1 ) = span ( H g k , g + 2 P g + 2 ) = . . . = span ( H g k , G P G ) where span () represents the subspace spanned by the column vectors of the matrix.
Since the elementary column transformations do not change the column space of a matrix, by enhancing the constraint, the above equation can be written as:
G g k , g + 1 = H g k , 1 P 1 Q g 1 = . . . = H g k , g - 1 P g - 1 Q g ( g - 1 ) = H g k , g + 2 P g + 2 Q g ( g + 2 ) = . . . = H g k , G P G Q gG ,
wherein, { QglThe Kd order nonsingular square matrix can be used, and the Kd order nonsingular square matrix can also be used as a nonzero constant.
According to the Cronck product propertyThe above formula can be further written as: <math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <mi>I</mi> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>g</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>vec</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>g</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mrow> <mi>g</mi> <mn>1</mn> </mrow> </msub> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>vec</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mi>I</mi> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>g</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>vec</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>g</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>g</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>g</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>vec</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>g</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mi>I</mi> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>g</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>vec</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>g</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>g</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>g</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>vec</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>g</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mi>I</mi> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>g</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>vec</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>g</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mi>gG</mi> </msub> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>G</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>vec</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>G</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> wherein I is and { QglThe unit arrays of the same order; ()TRepresenting the transpose of the solved matrix, vec () representing the column vectorization function of the solved matrix. At this time, an inter-cell interference signalTherefore, it is understood that the number of user antennas can be effectively reduced by the above processing.
For the whole system, the interference signals between cells are aligned in the interference subspace from the next cell, and the outer layer precoding matrix of the base stationThe following equation is satisfied:
H ~ p = 0
p = vec ( P 1 ) vec ( P 2 ) . . . vec ( P G )
wherein I is and { QglA unit matrix of the same order of (G ≠ l; G, l ═ 1,. G);
representing a flat rayleigh fading channel from base station l to cell g, representing the outer precoding matrix, P, of the base station g1Representing the outer precoding matrix of the base station 1, i.e. P2Denotes the outer precoding matrix of the base station 2, O denotes KdkNr×KdNtA zero matrix of dimensions; matrix array
Matrix arrayEach matrix block (e.g., O,) All are matrixes with the same dimension, and if each matrix block is viewedInto an element, then a matrixThere are (G-2) G rows, G columns, each row having only 2 elements other than O, the first (G-2) row being for aligning ICI signals received by users in cell 1, the second (G-2) row being for aligning ICI signals received by users in cell 2, and so on.
To illustrate the outer precoding matrix specifically and simplyTaking the example of G-3 as an analysis, the alignment of inter-cell interference signals needs to satisfy
The following formula:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>O</mi> </mtd> <mtd> <mi>I</mi> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mn>12</mn> </msub> </mtd> <mtd> <mo>-</mo> <msubsup> <mi>Q</mi> <mn>13</mn> <mi>T</mi> </msubsup> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mn>13</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msubsup> <mi>Q</mi> <mn>21</mn> <mi>T</mi> </msubsup> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mn>21</mn> </msub> </mtd> <mtd> <mi>O</mi> </mtd> <mtd> <mi>I</mi> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mn>23</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mi>I</mi> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mn>31</mn> </msub> </mtd> <mtd> <mo>-</mo> <msubsup> <mi>Q</mi> <mn>32</mn> <mi>T</mi> </msubsup> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mn>32</mn> </msub> </mtd> <mtd> <mi>O</mi> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>vec</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>vec</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>vec</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mover> <mi>H</mi> <mo>~</mo> </mover> <mi>p</mi> <mo>=</mo> <mn>0</mn> </mrow> </math>
wherein, p = vec ( P 1 ) vec ( P 2 ) vec ( P 3 ) = p 1 p 2 p 3 .
3011: in Nt>KNrWhen, { Q }glG is any Kd order nonsingular matrix or any nonzero constant, and p has a nonzero solution.
3012: in Nt≤KNrWhen the above equation has a non-zero solution, the matrix { Q }glG (G ≠ l; G, l ═ 1.. G) needs to be satisfied, so thatOr makeClose to 0, eventually solving for p. At this time, the rank limitation problem can be changed to the following optimization problem:in the known { QglIn the case of (G ≠ l; G, l ═ 1.. G), the optimal solution p of the equation is a matrixThe minimum eigenvalue of (2) corresponds to the eigenvector. In addition to this, the present invention is, <math> <mrow> <munder> <mi>min</mi> <mrow> <mi>p</mi> <mo>,</mo> <mo>{</mo> <msub> <mi>Q</mi> <mi>gl</mi> </msub> <mo>}</mo> </mrow> </munder> <msup> <mrow> <mo>|</mo> <mo>|</mo> <mover> <mi>H</mi> <mo>~</mo> </mover> <mi>p</mi> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>=</mo> <munder> <mi>min</mi> <mrow> <mi>p</mi> <mo>,</mo> <mo>{</mo> <msub> <mi>Q</mi> <mi>gl</mi> </msub> <mo>}</mo> </mrow> </munder> <mrow> <mo>(</mo> <msup> <mrow> <mo>|</mo> <mo>|</mo> <mi>I</mi> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mn>12</mn> </msub> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>-</mo> <msubsup> <mi>Q</mi> <mn>13</mn> <mi>T</mi> </msubsup> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mn>13</mn> </msub> <msub> <mi>p</mi> <mn>3</mn> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>|</mo> <mo>|</mo> <mi>I</mi> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mn>23</mn> </msub> <msub> <mi>p</mi> <mn>3</mn> </msub> <mo>-</mo> <msubsup> <mi>Q</mi> <mn>21</mn> <mi>T</mi> </msubsup> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mn>21</mn> </msub> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>|</mo> <mo>|</mo> <mi>I</mi> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mn>31</mn> </msub> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>-</mo> <msubsup> <mi>Q</mi> <mn>32</mn> <mi>T</mi> </msubsup> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mn>32</mn> </msub> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </math> from the least squares solution, Q is known13=((H13p3)HH13p3)-1(H13p3)H(H12p2),Q21,Q32Is also similar to Q13. Next, the vector p and the matrix { Q ] are iterated through a loopglG ≠ l; G, l ═ 1.. G), resulting in an optimal solution. Wherein rank () represents the rank of the matrix, and | | represents the 2-norm of the vector.
The steps of this round robin algorithm are summarized as follows: 1) initializing arbitrary Kd order nonsingular square matrix QglG ≠ l; G, l ═ 1.. G); 2) solving the matrixThe feature vector p corresponding to the minimum feature value of (a); 3) solving for { Q) from a least squares solutionglG ≠ l; G, l ═ 1.. G); 4) repeating the steps 2) and 3) untilε is a non-negative number.
3013: when N is presentt=KNrWhen, { Q }glG (G ≠ l; G, l ═ 1.. G) need only be a non-zero constant, which is divided by the non-zero constant { Q for ease of distinctionglG is marked as { a ≠ l; G, l ═ 1glAnd (G ≠ l; G, l ═ 1,. G), obtaining a precoding matrix through closed-type solvingAt this time, the matrixIs equivalent to det { H ~ } = 0 . By matrix operation, we can get:wherein, b = ( - 1 ) N t det ( H 23 H 32 H 13 H 23 - 1 H 21 ) and <math> <mrow> <mi>&Omega;</mi> <mo>=</mo> <mo>-</mo> <msubsup> <mi>H</mi> <mn>21</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>H</mi> <mn>23</mn> </msub> <msubsup> <mi>H</mi> <mn>13</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>H</mi> <mn>12</mn> </msub> <msubsup> <mi>H</mi> <mn>32</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>H</mi> <mn>31</mn> </msub> <mo>.</mo> </mrow> </math> when-a32a13a21When the characteristic value is equal to the characteristic value of omega,this is true. Where det { } denotes a determinant value of the matrix.
Step 302, design the receiving matrixTo cancel the ICI signal and, therefore,is the null space of ICI signal, where G is the number of cells, K is the number of users in a cell, NrThe number of antennas configured for the users, d data streams per user,with a representation dimension of dXNrTo (2)Matrix, ()HIndicating the conjugate transpose of the matrix being solved for.
Step 303, designing inner layer precoding matrix of base stationTo cancel the IUI signal and, therefore,is the null space of the IUI signal. Namely:
<math> <mrow> <msub> <mi>B</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> </msub> <mo>&Subset;</mo> <mi>null</mi> <mrow> <mo>(</mo> <msup> <mrow> <mo>[</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <msub> <mi>g</mi> <mn>1</mn> </msub> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mn>1</mn> </msub> <mo>,</mo> <mi>g</mi> </mrow> </msub> <msub> <mi>P</mi> <mi>g</mi> </msub> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <msub> <mi>g</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>g</mi> </mrow> </msub> <msub> <mi>P</mi> <mi>g</mi> </msub> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>,</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <msub> <mi>g</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>g</mi> </mrow> </msub> <msub> <mi>P</mi> <mi>g</mi> </msub> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <msub> <mi>g</mi> <mi>k</mi> </msub> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>g</mi> </mrow> </msub> <msub> <mi>P</mi> <mi>g</mi> </msub> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>]</mo> </mrow> <mi>H</mi> </msup> <mo>)</mo> </mrow> </mrow> </math> . Wherein,a reception matrix is represented by a matrix of symbols,representing the flat Rayleigh fading channel, P, from the base station to the users of the cellgRepresenting the outer precoding matrix of base station g. G is the number of cells, K is the number of users in the cell, each user corresponds to d degrees of freedom,a complex matrix with dimensions Kd x d is represented,with a representation dimension of dXNrComplex matrix of (c) ()HDenotes the conjugate transpose of the matrix being evaluated, null () denotes the null space of the matrix being evaluated.
To this end, the IUI signal is aligned atIs also aligned or approximated toThe interference signal of the multi-cell MIMO-IFBC system is cancelled in the orthogonal subspace, as shown in fig. 4. Where span () represents the subspace spanned by the column vectors of the matrix. Symbol in FIG. 4The numbers refer to the above.
In addition, we can also align the interference signal from g +1 th cell in the subspace formed by the interference signals from the remaining cells, i.e. the interference signal from g +1 th cell is represented as a linear combination of the interference signals from the remaining cells, when the precoding matrix { P }gSatisfy the following equation:
at this time, the ICI signal from the neighboring cell is expressed as:
the number of required receiving-end antennas is increased compared to the above scheme, but the number of required base station antennas is decreased. Thus, under different scenarios, different ICI signal alignment schemes may be selected.
Fig. 5 is a simulation diagram of system capacity when the number d of data streams transmitted by the base station to each user is 1 and the total degree of freedom DoF is 8 in the (4,13) × (2,3), (4,12) × (2,3), and (4,11) × (2,3) system configurations. Number of antennas N of base stationtNot less than 13, namely N is satisfiedt> (G-2) KNr, the ICI signal can be aligned completely within the same low-dimensional subspace, i.e.The orthogonal subspace of (a); number of antennas N of base stationt≤(G-2)KNrIn time, by designing the nonsingular array Q, the inter-cell interference signals can be aligned or approximated toWithin the orthogonal subspace. From the results of fig. 5, it can be seen that the number of antennas N at the base stationt12,11, a littleBelow the threshold 13, ICI signals are almost completely cancelled and the system capacity is slightly reduced, mainly due to the reduced number of base station antennas. The invention effectively reduces the number of user antennas and the processing complexity by arranging double-layer precoding in the base station, saves the design cost of the mobile equipment, and can effectively eliminate ICI signals and IUI signals in a multi-cell MIMO-IBC system.

Claims (7)

1. The interference alignment method based on the two-layer precoding structure in the multi-input multi-output interference broadcast channel system is characterized by comprising the following steps: constructing any Kd order nonsingular matrix (Q)glDesigning an outer precoding matrix of the base stationAligning all ICI signals in a low-dimensional interference subspace; receiving end design receiving matrixTo cancel the ICI signal; designing inner pre-coding matrix of base stationTo cancel IUI signals, wherein l 1.. G, G1.. G; k1, K, G being the number of cells in the system, K being the number of users in each cell, NtAnd NrThe number of antennas configured for the base station and the user, d is the data stream corresponding to each user,with a representation dimension of NtA complex matrix of x Kd,with a representation dimension of dXNrThe complex matrix of (a) is then formed,complex matrix of dimension Kd × d, ()HIndicating the conjugate transpose of the matrix being solved for.
2. The method according to claim 1, wherein aligning all ICI signals in a low-dimensional interference subspace comprises: for users in a cell g, aligning or approximating ICI signals to an interference signal subspace from a g +1 cell, and a base station outer layer precoding matrix PgSatisfies the formula:
H ~ p = 0
p = vec ( P 1 ) vec ( P 2 ) . . . vec ( P G )
wherein Q isglIs Kd order nonsingular matrix, I is AND QglUnit array of the same order, HglRepresenting a flat Rayleigh fading channel, P, from base station l to cell ggAn outer layer precoding matrix of a base station g is represented, and g is not equal to l; g, l ═ 1.. G, O denotes KdkNr×KdNtZero matrix, matrix of dimensionsThe expression dimension is (G-2) GKKDKNr×GKdNtComplex matrix of (c) ()TRepresenting the transpose of the solved matrix, vec () representing the column vectorization function of the solved matrix.
3. The method of claim 1Method, characterized in that the interfering signals from g +1 cells are aligned into the subspace formed by the interfering signals from the remaining cells, the outer precoding matrix P of the base stationgSatisfies the formula:
wherein Q isglIs Kd order nonsingular matrix, I is AND QglUnit array of the same order, HglRepresenting a flat Rayleigh fading channel, P, from base station l to cell ggDenotes the outer precoding matrix of the base station g, O denotes KdkNr×KdNtZero matrix, matrix of dimensionsThe expression dimension is GKdKNr×GKdNtComplex matrix of (c) ()TRepresenting the transpose of the solved matrix, vec () representing the column vectorization function of the solved matrix.
4. A method according to one of claims 1-3, characterized in that the receiving matrix is a matrixIs the null space of the ICI signal, where,with a representation dimension of dXNrThe complex matrix of (a).
5. Method according to one of claims 1 to 3, characterized in that the inner precoding matrix B of the base station is designedgkIs the null space of the IUI signal, where, a complex matrix with dimensions Kd × d is represented.
6. A method according to one of claims 1 to 3, characterized in that the receiving matrix at the receiving end divides the signal space into an interference signal subspace to which inter-user interference signals and inter-cell interference signals are aligned and a desired signal subspace to which desired signals are aligned, the dimensions of the desired signal subspace being greater than or equal to the number of data streams to be transmitted.
7. The method of claim 2, wherein when N ist>(G-2)KNrTime, matrix QglIs any Kd order nonsingular matrix or any nonzero constant; when N is presentt<(G-2)KNrWhile iterating the matrix Q through the loopglAnd a vector p, such thatOr makeIs close to 0; when N is presentt=(G-2)KNrTime, matrix QglIs a non-zero constant. Wherein,is a dimension of (G-2) GKdkKr×GKdNtThe elements of the complex matrix are composed of a channel matrix and a non-singular matrix QglFormed by the elements of the vector P being the outer precoding matrix P of the base stationgThe rank () represents the rank of the solution matrix, and | | represents the 2-norm of the solution vector.
CN201410266956.6A 2014-05-09 2014-06-16 Interference alignment method based on two-layer pre-coding structure in MIMO-IBC system Active CN104052697B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410266956.6A CN104052697B (en) 2014-05-09 2014-06-16 Interference alignment method based on two-layer pre-coding structure in MIMO-IBC system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2014101959576 2014-05-09
CN201410195957 2014-05-09
CN201410195957.6 2014-05-09
CN201410266956.6A CN104052697B (en) 2014-05-09 2014-06-16 Interference alignment method based on two-layer pre-coding structure in MIMO-IBC system

Publications (2)

Publication Number Publication Date
CN104052697A true CN104052697A (en) 2014-09-17
CN104052697B CN104052697B (en) 2017-01-25

Family

ID=51505075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410266956.6A Active CN104052697B (en) 2014-05-09 2014-06-16 Interference alignment method based on two-layer pre-coding structure in MIMO-IBC system

Country Status (1)

Country Link
CN (1) CN104052697B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105763233A (en) * 2016-02-24 2016-07-13 华中科技大学 User group selection method based on angle information under Massive-MIMO
CN106060950A (en) * 2016-05-25 2016-10-26 重庆邮电大学 Opportunity interference alignment-based method for data transmission in cellular downlink channel
CN106656289A (en) * 2016-12-30 2017-05-10 西安电子科技大学 Topological interference alignment method of MIMO interference broadcast channel
CN112821927A (en) * 2019-11-15 2021-05-18 江苏雷奥生物科技有限公司 Interference management method and device based on backward internal and external cascade precoding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080181342A1 (en) * 2007-01-29 2008-07-31 Samsung Electronics Co., Ltd. Apparatus and method for signal detection in multiple input multiple output wireless communication system
CN102546488A (en) * 2011-12-16 2012-07-04 华中科技大学 Interference elimination method based on effective channel parameter semi-orthogonal
US20130267266A1 (en) * 2012-04-04 2013-10-10 Electronics And Telecommunications Research Institute Method of communicating between base station and terminal based on interference alignment in multi-cell multi-user multiple-input multiple-output (mimo) interference channel and method and apparatus of communication using interference alignment and block successive interference pre-cancellation in multi-user multiple-input multiple-output interference channel
CN103780356A (en) * 2014-02-21 2014-05-07 上海师范大学 Design method for two-level precodes of cognitive MIMO communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080181342A1 (en) * 2007-01-29 2008-07-31 Samsung Electronics Co., Ltd. Apparatus and method for signal detection in multiple input multiple output wireless communication system
CN102546488A (en) * 2011-12-16 2012-07-04 华中科技大学 Interference elimination method based on effective channel parameter semi-orthogonal
US20130267266A1 (en) * 2012-04-04 2013-10-10 Electronics And Telecommunications Research Institute Method of communicating between base station and terminal based on interference alignment in multi-cell multi-user multiple-input multiple-output (mimo) interference channel and method and apparatus of communication using interference alignment and block successive interference pre-cancellation in multi-user multiple-input multiple-output interference channel
CN103780356A (en) * 2014-02-21 2014-05-07 上海师范大学 Design method for two-level precodes of cognitive MIMO communication system

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHANGHO SUH: "Downlink interference alignment", 《IEEE TRANSACTIONS ON COMMUNICATIONS》 *
JAN SCHRECK: "Distributed interference alignment in cellular systems: analysis AND algorithms", 《WIRELESS CONFERENCE 2011-SUSTAINABLE WIRELESS TECHNOLOGIES》 *
TINGTING LIU: "Interference alignment transceiver design for MlMO interference broadcast channels", 《WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE》 *
李秀娜: "下行CoMP系统中关键技术的研究", 《中国优秀硕士学位论文全文数据库 信息科技辑(2014)》 *
马延军: "干扰对齐及其在现代无线通信系统中的应用", 《中国博士学位论文全文数据库 信息科技辑(2013)》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105763233A (en) * 2016-02-24 2016-07-13 华中科技大学 User group selection method based on angle information under Massive-MIMO
CN105763233B (en) * 2016-02-24 2018-10-30 华中科技大学 User's group selection method based on angle information under a kind of Massive-MIMO
CN106060950A (en) * 2016-05-25 2016-10-26 重庆邮电大学 Opportunity interference alignment-based method for data transmission in cellular downlink channel
CN106060950B (en) * 2016-05-25 2019-09-10 重庆邮电大学 It is a kind of that data transmission method in the cellular downlink channel of alignment is interfered based on chance
CN106656289A (en) * 2016-12-30 2017-05-10 西安电子科技大学 Topological interference alignment method of MIMO interference broadcast channel
CN106656289B (en) * 2016-12-30 2019-10-11 西安电子科技大学 The topological interference alignment schemes of MIMO interference broadcast channel
CN112821927A (en) * 2019-11-15 2021-05-18 江苏雷奥生物科技有限公司 Interference management method and device based on backward internal and external cascade precoding
CN112821927B (en) * 2019-11-15 2022-06-07 江苏雷奥生物科技有限公司 Interference management method and device based on backward internal and external cascade precoding

Also Published As

Publication number Publication date
CN104052697B (en) 2017-01-25

Similar Documents

Publication Publication Date Title
CN101394254B (en) Linear pre-coding method in multi-user MIMO system
EP2229740B1 (en) Zero-forcing linear beamforming for coordinated cellular networks with distributed antennas
CN104506224B (en) A kind of low complex degree 3D beamforming algorithms based on angle domain conversion
CN103780356B (en) A kind of method for designing of the two-stage precoding of cognitive MIMO communication system
CN107332596B (en) Zero forcing-based millimeter wave communication system hybrid precoding method
CN102484489B (en) System and method for actively eliminating interference signals
CN105721033A (en) Beam forming method and system for multi-user millimetre-wave communication system
CN104052535A (en) Millimeter wave large-scale MIMO system multi-user transmission method based on space division multiple access and interference suppression
CN107086886B (en) Double-layer precoding design for large-scale MIMO system fusion zero forcing and Taylor series expansion
Zhan et al. Interference cancellation aided hybrid beamforming for mmWave multi-user massive MIMO systems
CN102882570B (en) Optimum transceiving combined processing method for communication among equipment in mobile communication network
CN104052697B (en) Interference alignment method based on two-layer pre-coding structure in MIMO-IBC system
CN104601209A (en) Cooperated multi-point transmission method suitable for 3D-MIMO (Multiple Input Multiple Output) system
CN105049100A (en) Multi-cell MIMO system double-layer pre-coding method
CN102158312A (en) Signal-space-alignment-based common-channel multi-user interference suppression method
CN107070520A (en) A kind of D2D Communication Jamming alignment schemes based on cascade precoding and ESINR criterions
CN109787665B (en) Method and system for grouping and precoding massive MIMO (multiple input multiple output) users in stratosphere
CN109361434B (en) Millimeter wave MIMO mixed precoding method for base station cooperative transmission
CN104113399B (en) User choosing method based on Matrix condition number in multi-user MIMO system
KR20130112743A (en) Method of communicating between base station and terminal based on interference alignment in multicell multiuser mimo interference channel and method and apparatus of communication using interference alignment and block successive interference pre-cancellation for multi-user multiple-input multiple-output interference channel
CN105429687B (en) A kind of interference alignment schemes minimizing jamming power and dimension
Choi et al. Joint transmit and receive multi-user MIMO decomposition approach for the downlink of multi-user MIMO systems
Wu et al. Sum-rate-optimal precoding for multi-cell large-scale MIMO uplink based on statistical CSI
CN103580745A (en) Iteration interference alignment method
Song et al. Flexible coordinated beamforming (FlexCoBF) algorithm for the downlink of multi-user MIMO systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant