CN1040443A - 光纤放大器 - Google Patents

光纤放大器 Download PDF

Info

Publication number
CN1040443A
CN1040443A CN89104084A CN89104084A CN1040443A CN 1040443 A CN1040443 A CN 1040443A CN 89104084 A CN89104084 A CN 89104084A CN 89104084 A CN89104084 A CN 89104084A CN 1040443 A CN1040443 A CN 1040443A
Authority
CN
China
Prior art keywords
fiber
amplifier
fuse
salt
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN89104084A
Other languages
English (en)
Other versions
CN1020030C (zh
Inventor
拉明·理查德·伊恩
普尔·西蒙·布兰切特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prysmian Cables and Systems Ltd
Original Assignee
Prysmian Cables and Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prysmian Cables and Systems Ltd filed Critical Prysmian Cables and Systems Ltd
Publication of CN1040443A publication Critical patent/CN1040443A/zh
Application granted granted Critical
Publication of CN1020030C publication Critical patent/CN1020030C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01838Reactant delivery systems, e.g. reactant deposition burners for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the deposited glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • C03B2201/36Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers doped with rare earth metals and aluminium, e.g. Er-Al co-doped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1691Solid materials characterised by additives / sensitisers / promoters as further dopants
    • H01S3/1693Solid materials characterised by additives / sensitisers / promoters as further dopants aluminium

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)
  • Glass Compositions (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Paper (AREA)

Abstract

一个Ar+离子激光激励光纤放大器,其具有一个带有一芯子的光学纤维,该芯子曾是使用-Al盐和-Er盐的溶液掺杂的溶液。

Description

本发明涉及光纤放大器。
本发明的一个目的是提供一个用于放大近似1532nm波长信号的有效光纤放大器。
掺入铒Er的纤维当用514.5nm的Ar+离子激光激励时,适用于这样的放大器。
作为一个放大器运行,该纤维受工作在514.5nm的Ar+离子激光来激励,以便将Er离子转换到一个亚稳态能级。如果激励能量足以转换大大超过50%的Er离子,在同一纤维中传播的近似1532nm波长的一个信号束将获得增量。理想的是所有的激励能量都应转换成有用的信号增量。但是,由于存在于亚稳态的离子吸收激励光子,这个激励光的激发态吸收消耗了激励能并造成了额外损失过程,此过程并不对信号增量有贡献,因而大大地减小了放大器激励效率。放大器激励效率的测量是激发态吸收横截面与基态吸收横截面的比率,δESA/δGSA。这个比率越小,纤维在具体激发波长的效率越高。
光纤的SiO2芯子一般用氧化锗(GeO2)掺杂来改进芯子材料的折射指数。具有这样芯子的纤维在用Er共掺杂后,当用500nm左右的波长来激励时,表现出不能接受地高的ESA与GSA的比率。我们已发现,在一个掺有Er的SiO2芯子里用氧化铝(Al2O3)作为折射指数改进掺杂剂,对于激励波长在500nm左右的纤维来说可以提供一大大降低的ESA与GSA比率。
作为改进折射指数的掺杂剂,Al2O3的使用有另外的优点,即可以通过用一Al盐和一Er盐的溶液来对芯子掺杂在同一步骤中引入两个掺杂剂的方法来简化此纤维的制造。
本发明提供Ar+离子激光激励的光纤放大器,它具有一个由芯子构成的光纤维,这个芯子曾是用一Al盐和Er盐溶液来掺杂的溶液。
为了使本发明可以被很好地理解,只用举例的方式给出一个实施例,通过参考附图来描述,在这个图中:
图1以图解形式显示了Ar+离子激励光纤放大器;
图2是掺杂Al2O3的纤维的折射指数分布图。
图3图示了掺杂Al2O3和GeO2的纤维在共掺杂Er时的损失光谱。
图4图示了掺杂Al2O3及GeO3的纤维共掺杂Er时的荧光光谱。
首先参看图1,显示的是一个光纤放大器10(它可以用作功率放大器,串联式放大器或前置放大器)来放大近似1532nm的信号。这个放大器10由一个Al2O3-Er共掺杂纤维12构成,此纤维经一个双色纤维耦合器16在514.5nm受到一个Ar+离子激光14的激励。
纤维12是用公知MCVD技术的扩展的溶液掺杂技术制成的。一个或多个一般的包层(典型的是SiO3/P2O5/F玻璃)首先在一个放在东床内的基底管的内表面沉积,接着,SiO2芯层在减低的温度下沉积形成部分烧结的多孔炭黑。然后,通过以东床上移动已形成的管道并把芯层浸在铝盐和Er盐的水溶液或酒精溶液中,Al2O3和Er掺杂剂被引入以便确保多孔炭黑的饱和。这个管子被再次放入东床,芯层被干燥,熔融并且管子塌缩。以这样形成的预制棒拉出的光纤维是常规的。
需要能获取高纯度的并且易溶于水或酒精的铝盐。AlCl3的六水合物是适宜的一个材料,它易获得在99.9995%的纯度且易溶解。ErCl3的六水合物是较佳的Er盐。
图2显示的是用以上技术制成的一个典型的预制棒的折射指数分布图。这个分布图是一个阶跃分布图的很好的近似值,显示了在芯子中掺入氧化铝的相容性。
图3是实线表示了一个Al2O3/SiO2芯,掺杂Er3+的光纤(截面外直径125um=1250nm)的一个典型损失光谱,此纤维含约300ppmEr3+,在图3中沿Y轴给的是以dB/km为单位的损失,沿X轴绘的是以nm为单位的波长。为了比较,在同一图中增添的虚线是一个GeO2/SiO2芯,掺入Er3+的纤维的损失光谱,此纤维含200ppmEr3+,这条虚线显示了由于Al2O3的出现而引起的Er吸收光谱的相对强度的移动。图4中显示了伴生荧光光谱,在图中沿Y轴绘的是用任意单位的能量,沿X轴绘的是以nm为单位的波长,掺入Al2O3芯子的荧光光谱以实线表示,而掺入GeO2的芯子以虚线表示。要注意的是,与所观察到的如在Nd3+里4级4F3/2-4I11/2跃迁中的峰值大移动,此荧光光谱中峰值只有很小的移动。
如前所述,当受到激励时,光纤放大器中纤维的激发态吸收横截面与基态吸收横截面的比率ESA/GSA很小是很重要的。对于这两种纤维类型测量这个比率,发现对于Er3+/GeO2/SiO2及Er3+/Al2O3/SiO2纤维分别近似于1和0.5。因而,当在514.5nm受到激励时,Al2O3共掺杂维提供了一个更为有效的放大器。
用在514.5nm时的300mW的激励光激励时,对一0.15的数值孔径的Er3+/Al2O3/SiO2纤维已获得了在1.536um的23dB的信号增量。在一个Er3+/GeO2/SiO2纤维里,在514.5nm的300mW激励能对于获取任何值得注意的信号增量是不够的。
从上面所述,应注意的是为了形成一有效放大器,芯子只需合几百ppm的Er3+
其它掺杂剂可以被引入这个铒氧化铝共掺杂芯子是可以被理解的。

Claims (5)

1、一种Ar+离子激励光纤放大器,具有一个由一芯子组成的光学纤维,该芯子曾是使用-Al盐和-Er盐的溶液掺杂的溶液。
2、如权利要求1所述的放大器,其特征为该Al盐是AlCl3的六水化合物。
3、如权利要求1所述的放大器,其特征为该Er盐是ErCl3的六水化合物。
4、如权利要求1、2或3所述的放大器,其特征为该芯子含有几百ppm的Er3+
5、如权利要求4所述的放大器,其特征为该芯子含约300ppmEr3+
CN89104084A 1988-06-10 1989-06-10 光纤放大器 Expired - Fee Related CN1020030C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB888813769A GB8813769D0 (en) 1988-06-10 1988-06-10 Optical fibre
GBNO8813769 1988-06-10

Publications (2)

Publication Number Publication Date
CN1040443A true CN1040443A (zh) 1990-03-14
CN1020030C CN1020030C (zh) 1993-03-03

Family

ID=10638420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN89104084A Expired - Fee Related CN1020030C (zh) 1988-06-10 1989-06-10 光纤放大器

Country Status (16)

Country Link
EP (1) EP0345957B1 (zh)
JP (1) JPH02132422A (zh)
KR (1) KR900000723A (zh)
CN (1) CN1020030C (zh)
AR (1) AR244928A1 (zh)
AU (1) AU608714B2 (zh)
BR (1) BR8903019A (zh)
CA (1) CA1306533C (zh)
DE (1) DE68914035D1 (zh)
GB (1) GB8813769D0 (zh)
HK (1) HK113795A (zh)
MX (1) MX171183B (zh)
MY (1) MY104024A (zh)
NO (1) NO179599C (zh)
NZ (1) NZ229482A (zh)
PH (1) PH25998A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1994946B (zh) * 2006-12-28 2010-05-19 北京交通大学 石英基铋镓铒铝共掺光纤及其制作方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3137632B2 (ja) * 1989-08-31 2001-02-26 富士通株式会社 光ファイバ増幅器を備えた光通信方式
IT1237136B (it) * 1989-10-30 1993-05-24 Pirelli Cavi Spa Amplificatore ottico a fibra attiva a larga banda di lunghezza d'onda di segnale.
IT1237766B (it) * 1989-11-10 1993-06-17 Pirelli Cavi Spa Amplificatore ottico a fibra attiva, a larga banda di pompaggio, e relativa fibra ottica.
US5638204A (en) * 1990-01-22 1997-06-10 Pirelli Cavi S.P.A. Optical power amplifier with Al2 O3 and erbium doped active fiber
IT1238333B (it) * 1990-01-22 1993-07-12 Pirelli Cavi Spa Amplificatore ottico di potenza a fibra attiva drogata
JP2948656B2 (ja) * 1990-11-29 1999-09-13 住友電気工業株式会社 活性元素添加光ファイバ部品の製造方法
DE4113354A1 (de) * 1991-04-24 1992-10-29 Siemens Ag Optisch gepumpter wellenleiter
KR20000074483A (ko) * 1999-05-21 2000-12-15 김효근 코어에 어븀이 도핑된 광섬유의 클래드 영역에 사마리움을 첨가하는 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1994946B (zh) * 2006-12-28 2010-05-19 北京交通大学 石英基铋镓铒铝共掺光纤及其制作方法

Also Published As

Publication number Publication date
NO179599C (no) 1996-11-06
AU608714B2 (en) 1991-04-11
EP0345957B1 (en) 1994-03-23
JPH02132422A (ja) 1990-05-21
DE68914035D1 (de) 1994-04-28
AU3613389A (en) 1989-12-14
NO892382L (no) 1989-12-11
EP0345957A3 (en) 1990-03-07
NO179599B (no) 1996-07-29
AR244928A1 (es) 1993-11-30
NZ229482A (en) 1990-12-21
BR8903019A (pt) 1990-02-06
MY104024A (en) 1993-10-30
KR900000723A (ko) 1990-01-31
HK113795A (en) 1995-07-21
CA1306533C (en) 1992-08-18
MX171183B (es) 1993-10-06
PH25998A (en) 1992-01-13
CN1020030C (zh) 1993-03-03
GB8813769D0 (en) 1988-07-13
EP0345957A2 (en) 1989-12-13
NO892382D0 (no) 1989-06-09

Similar Documents

Publication Publication Date Title
CA1327845C (en) Optical fibre with fluorescent additive
Snitzer et al. Double clad, offset core Nd fiber laser
CN102132178B (zh) 双包层光纤和具有双包层光纤的设备
Ainslie et al. The fabrication and optical properties of Nd3+ in silica-based optical fibres
Melkumov et al. Effects of Yb 3+ and Er 3+ concentrations and doping procedure on excitation transfer efficiency in Er-Yb doped phosphosilicate fibers
CN1020030C (zh) 光纤放大器
US5282079A (en) Optical fibre amplifier
Wang et al. Bi-doped optical fibers and fiber amplifiers
Martin et al. Silica-clad neodymium-doped lanthanum phosphate fibers and fiber lasers
Mu et al. True crystalline fibers: double-clad LMA design concept of Tm: YAG-core fiber and its mode simulation
Wu et al. An efficient single-mode Nd3+ fiber laser prepared by the sol-gel method
JP2774963B2 (ja) 機能性光導波媒体
US20050175309A1 (en) Optical fiber for optical amplifier and process for manufacturing thereof
EP0912453A2 (en) Optical glass, optical waveguide amplifier and optical waveguide laser
TW200301377A (en) Silicate waveguide compositions for extended L-band and S-band amplification
CN1251366C (zh) 大模式面积双包层光纤单模激光器及制备方法
Righini et al. Integrated optical amplifiers and microspherical lasers based on erbium-doped oxide glasses
Forastiere et al. Strip-loaded sol-gel waveguides: design and fabrication
Strek et al. Optical properties of Nd3+-doped silica fibers obtained by sol-gel method
Dvoyrin et al. Bi-doped silica fibers-a new active medium for tunable fiber lasers and broadband fiber amplifiers
Umnikov et al. Al-free core composition bismuth-doped optical fibre with luminescence band at 1300 nm
Cognolato et al. Spectroscopic properties of Er3+-doped glasses for the realization of active waveguides by ion-exchange technique
Ding et al. Yb3+-Doped Double-Clad Fibre Laser Pumped by Rectangular Inner Cladding
Wu et al. Fabrication of high concentration rare-earth-doped silica-based waveguide by MCVD method
Seo et al. Optical amplification in a bismuth-doped silica fiber

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee