CN104036507A - Light satellite based urban change area and evolution type rapid extraction method - Google Patents
Light satellite based urban change area and evolution type rapid extraction method Download PDFInfo
- Publication number
- CN104036507A CN104036507A CN201410262168.XA CN201410262168A CN104036507A CN 104036507 A CN104036507 A CN 104036507A CN 201410262168 A CN201410262168 A CN 201410262168A CN 104036507 A CN104036507 A CN 104036507A
- Authority
- CN
- China
- Prior art keywords
- image
- type
- evolution
- urban
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000605 extraction Methods 0.000 title claims abstract description 15
- 230000003595 spectral effect Effects 0.000 claims abstract description 31
- 239000003086 colorant Substances 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 13
- 230000005855 radiation Effects 0.000 claims description 22
- 238000012937 correction Methods 0.000 claims description 14
- 238000001228 spectrum Methods 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 3
- 230000000007 visual effect Effects 0.000 claims description 2
- 230000004069 differentiation Effects 0.000 claims 15
- 150000001875 compounds Chemical class 0.000 claims 1
- 230000001186 cumulative effect Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 230000013011 mating Effects 0.000 claims 1
- 238000007781 pre-processing Methods 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 238000011161 development Methods 0.000 description 7
- 206010027336 Menstruation delayed Diseases 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
Landscapes
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
本发明提供了一种基于灯光卫星的城市变化区域与演变类型快速提取方法,获取不同年份的灯光卫星影像并进行数据预处理,选取其中3个年份的影像,设置城市不同演变类型的颜色,根据颜色判别实现城市不同演变区域的快速提取,在不同演变类型区域构建伪光谱曲线并建立城市演变类型光谱库,实现城市变化区域与演变类型的快速提取,并绘制城市演变类型图。本发明实现了大范围内城市变化区域的快速提取和个体城市演变类型的判别,具有快速高效的优点;能为政府城市化宏观规划、咨询公司、跨国公司进行市场布局等提供科学依据,具有很好的市场前景。
The present invention provides a method for quickly extracting urban changing areas and evolution types based on lighting satellites, which acquires lighting satellite images of different years and performs data preprocessing, selects images of three years, and sets the colors of different urban evolution types, according to Color discrimination realizes rapid extraction of different urban evolution areas, constructs pseudo-spectral curves in different evolution type areas and establishes urban evolution type spectral library, realizes rapid extraction of urban change areas and evolution types, and draws urban evolution type maps. The invention realizes the rapid extraction of urban change areas in a large range and the discrimination of individual urban evolution types, and has the advantages of fast and efficient; it can provide scientific basis for the macro-planning of urbanization by the government, the market layout of consulting companies, and multinational companies, and has great advantages Good market prospect.
Description
技术领域technical field
本发明涉及一种基于灯光卫星的城市变化区域与演变类型快速提取方法,属于遥感图像处理与模式识别领域。The invention relates to a method for quickly extracting urban change areas and evolution types based on lighting satellites, and belongs to the field of remote sensing image processing and pattern recognition.
背景技术Background technique
目前对城市变化区域与演变类型的分析方法基本为应用常规的陆地资源卫星,先提取城市,后变化检测的复杂流程。基于灯光卫星影像的城市研究也局限于城市扩张的简单分析,或者通过一些变化检测的方法来提取城市变化区域,算法复杂,效率低,没有研究城市变化区域的快速提取和个体城市演变类型的判别分析。The current analysis method for urban change areas and evolution types is basically a complex process of applying conventional Landsat, first extracting cities, and then detecting changes. Urban research based on lighting satellite images is also limited to the simple analysis of urban expansion, or the extraction of urban change areas through some change detection methods. The algorithm is complex and inefficient, and there is no research on the rapid extraction of urban change areas and the identification of individual urban evolution types. analyze.
发明内容Contents of the invention
为了解决现有技术的不足,本发明提供了一种基于灯光卫星的城市变化区域与演变类型快速提取方法,通过假彩色合成、提取伪光谱曲线、构建城市演变类型光谱库等手段,实现了大范围内城市变化区域的快速提取和个体城市演变类型的判别,具有快速高效的优点。In order to solve the deficiencies of the prior art, the present invention provides a method for quickly extracting urban change areas and evolution types based on lighting satellites. By means of false color synthesis, extraction of pseudo spectral curves, and construction of urban evolution type spectral libraries, large-scale The rapid extraction of urban change areas within the scope and the identification of individual urban evolution types have the advantages of fast and efficient.
本发明为解决其技术问题所采用的技术方案是:提供了一种基于灯光卫星的城市变化区域与演变类型快速提取方法,具体包括以下步骤:The technical solution adopted by the present invention to solve the technical problem is: a method for quickly extracting urban change areas and evolution types based on lighting satellites is provided, which specifically includes the following steps:
(1)获取相同检测区域内不同年份的灯光卫星影像;所述年份至少包括Y1年份、Y2年份和Y3年份;(1) Obtain satellite images of lights in different years in the same detection area; the years mentioned include at least Y 1 , Y 2 and Y 3 ;
(2)对灯光卫星影像进行数据预处理:(2) Perform data preprocessing on lighting satellite images:
(201)辐射定标:对城市灯光卫星影像进行相对辐射校正;(201) Radiation calibration: performing relative radiation correction on urban lighting satellite images;
(202)去负值:经步骤(201)辐射定标后的影像进行去负值处理,将小于0的值舍弃;(202) negative value removal: the image after step (201) radiation calibration is carried out to negative value processing, and the value less than 0 is discarded;
(203)影像配准:将经步骤(202)去负值处理后的灯光卫星影像根据地理坐标,对年份数据进行配准;(203) Image registration: registering the year data according to the geographic coordinates of the lighting satellite images after the negative value processing in step (202);
(204)波段合成:对于每一张不同年份的影像视为一个波段,按照时间先后顺序对影像进行波段合成,得到一景多波段影像;(204) Band synthesis: for each image of different years, it is regarded as a band, and the images are synthesized according to the time sequence to obtain a scene of multi-band images;
(3)设置演变类型的颜色,用不同颜色表示不同演变类型;(3) Set the color of the evolution type, and use different colors to represent different evolution types;
(4)假彩色合成:从经步骤(204)处理后的城市灯光卫星影像中选取Y1年份、Y2年份和Y3年份的影像,其中,Y1<Y2<Y3;对3个年份的影像进行假彩色合成显示,其中,Y1年份影像设置为红色通道,Y2年份影像设置为绿色通道,Y2年份影像设置为蓝色通道;(4) False color synthesis: select images of Y 1 year, Y 2 year and Y 3 year from the city lights satellite images processed in step (204), wherein, Y 1 <Y 2 <Y 3 ; for 3 The images of the year are displayed in false color synthesis, where the image of the year Y 1 is set as the red channel, the image of the year Y 2 is set as the green channel, and the image of the year Y 2 is set as the blue channel;
(5)根据步骤(3)建立的判别标准,对步骤(4)的假彩色合成图像通过目视解译初步判定演变类型,以将检测区域划分为未发展区、稳定区、发展区和衰退区;(5) According to the discrimination standard established in step (3), the evolution type of the false-color composite image in step (4) is preliminarily judged by visual interpretation, so as to divide the detection area into undeveloped area, stable area, developing area and recession district;
(6)构建伪光谱曲线:分别选取检测区域中各演变类型区域的一个像元,提取该像元历年的DN值,以时间为横轴、DN值为纵轴构造DN值变化曲线,得到各演变类型的伪光谱曲线;(6) Construct a pseudo-spectral curve: select a pixel in each evolution type area in the detection area, extract the DN value of the pixel over the years, construct a DN value change curve with time as the horizontal axis and DN value as the vertical axis, and obtain each Pseudo-spectral curves of evolving types;
(7)建立演变类型光谱库:根据步骤(3)设置的不同演变类型的颜色,分别选取各演变类型区域的单一像元和/或2个以上像元,分别针对各演变类型区域求平均值,并构造各演变类型的伪光谱曲线,建立由伪光谱曲线构成的演变类型光谱库;(7) Establish evolution type spectral library: according to the colors of different evolution types set in step (3), select a single pixel and/or more than 2 pixels in each evolution type area, and calculate the average value for each evolution type area , and construct pseudo-spectral curves of each evolution type, and establish an evolution-type spectral library composed of pseudo-spectral curves;
(8)城市变化区域的快速提取:根据步骤(7)建立的演变类型光谱库,采用光谱匹配算法,对演变类型进行快速识别,为不同演变类型赋予相应的色彩,生成演变类型图,从而使城市变化区域与演变类型在图中得到显示。(8) Rapid extraction of urban change areas: According to the evolution type spectral library established in step (7), the spectral matching algorithm is used to quickly identify the evolution type, assign corresponding colors to different evolution types, and generate an evolution type map, so that Areas of urban change and types of evolution are shown in the figure.
进一步地,步骤(201)中,利用以下公式进行相对辐射校正:Further, in step (201), the relative radiation correction is performed using the following formula:
y=c0+c1x+c2x2……(1)y=c 0 +c 1 x+c 2 x 2 ... (1)
其中,c0、c1和c2是相对辐射校正参数,由遥感器生产单位或用户单位提供,x表示DN值,y表示相对辐射校正后的DN值。Among them, c 0 , c 1 and c 2 are relative radiation correction parameters, which are provided by the remote sensor manufacturer or user unit, x represents the DN value, and y represents the DN value after relative radiation correction.
步骤(202)中,利用以下公式去负值:In step (202), utilize following formula to remove negative value:
yDN>0=(xradiation>0)×xradiation……(2)y DN>0 =(x radiation >0)×x radiation ......(2)
其中,yDN>0表示去处负值后的影像,xradiation表示相对辐射校正后的影像。Among them, y DN>0 means the image after removing negative values, and x radiation means the image after relative radiation correction.
进一步地,步骤(3)所述城市演变类型判定标准为:用黑色表示演变类型1;用白色表示演变类型2;用蓝色、青色和绿色表示演变类型3;用黄色、红色和粉色表示演变类型4。Further, the criteria for judging urban evolution types described in step (3) are: use black to represent evolution type 1; use white to represent evolution type 2; use blue, cyan and green to represent evolution type 3; use yellow, red and pink to represent evolution Type 4.
进一步地,步骤(8)中利用以下步骤对演变类型进行快速识别:Further, in step (8), the following steps are used to quickly identify the evolution type:
(801)获取将要进行演变类型判别的灯光卫星合成影像;(801) Obtaining the synthetic image of the lighting satellite for the evolution type discrimination;
(802)获取影像的大小,设其像元的列数和行数分别为nSample和nLine,波段数为nBand,定义行列变化的自变量i=0,j=0;(802) Obtain the size of the image, set the number of columns and the number of rows of its pixel to be nSample and nLine respectively, the number of bands is nBand, define the independent variable i=0, j=0 that the row and column change;
(803)行数判断,行数在小于nLine时,进入步骤804,否则进入步骤810;(803) row number judgment, when row number is less than nLine, enter step 804, otherwise enter step 810;
(804)列数判断,列数在小于nSample时,进入步骤805,否则进入步骤806;(804) row number judgment, when row number is less than nSample, enter step 805, otherwise enter step 806;
(805)列数清零j=0,行数i增加1,返回步骤803;(805) column number is cleared j=0, row number i increases by 1, returns to step 803;
(806)获取影像(i,j)处的伪光谱曲线;(806) Obtain the pseudo-spectral curve at the image (i, j);
(807)对步骤806获取的伪光谱曲线,利用光谱匹配算法实现与演变类型光谱库中的伪光谱的匹配;(807) For the pseudo-spectral curve obtained in step 806, use a spectral matching algorithm to realize matching with the pseudo-spectrum in the evolution type spectral library;
(808)对步骤807光谱匹配结果进行判别,获得步骤806(i,j)位置处的演变类型,并将该类型赋予对应的色彩;(808) Discriminate the spectral matching result of step 807, obtain the evolution type at the position of step 806 (i, j), and assign the type to the corresponding color;
(809)列数累加1;(809) Column number is accumulated by 1;
(810)遍历完所有行和列,结束快速识别以生成基于演变类型光谱库的光谱匹配判别演变类型图。(810) After traversing all the rows and columns, end the rapid identification to generate a spectral matching discriminant evolution type map based on the evolution type spectral library.
本发明基于其技术方案所具有的有益效果在于:The beneficial effect that the present invention has based on its technical scheme is:
(1)本发明避免了“先提取,后变化检测”的复杂流程,可以节省大量时间,符合数据处理高效的要求;(1) The present invention avoids the complex process of "extraction first, then change detection", which can save a lot of time and meet the requirements of efficient data processing;
(2)本发明通过假彩色合成、提取伪光谱曲线、构建城市演变类型光谱库的手段,实现了大范围内城市变化区域的快速提取和个体城市演变类型的判别,具有快速高效的优点;(2) The present invention realizes the rapid extraction of urban change areas in a large range and the discrimination of individual urban evolution types through the means of false color synthesis, extraction of pseudo spectral curves, and construction of urban evolution type spectral libraries, and has the advantages of fast and efficient;
(3)本发明能为政府城市化宏观规划、咨询公司、跨国公司进行市场布局等提供科学依据,具有很好的市场前景。(3) The present invention can provide a scientific basis for the macro-planning of urbanization by the government, the market layout of consulting companies and multinational companies, etc., and has a good market prospect.
附图说明Description of drawings
图1是基于灯光卫星的城市变化区域与演变类型快速提取方法流程图。Figure 1 is a flow chart of the rapid extraction method of urban change areas and evolution types based on lighting satellites.
图2是数据预处理流程图。Figure 2 is a flow chart of data preprocessing.
图3是利用三原色定义的城市演变类型示意图,其中,A、B、C、D、E、F和G分别表示白色稳定区、蓝色发展区、青色发展区、绿色发展区、黄色衰退区、红色衰退区和粉色衰退区。Figure 3 is a schematic diagram of urban evolution types defined by the three primary colors, where A, B, C, D, E, F, and G represent the white stable area, blue development area, cyan development area, green development area, yellow recession area, respectively. Red recession zone and pink recession zone.
图4是城市演变类型光谱库中的伪光谱曲线图。Figure 4 is a pseudo-spectral curve in the urban evolution type spectral library.
图5是城市演变类型进行快速识别流程图。Figure 5 is a flow chart for rapid identification of urban evolution types.
图6是城市演变类型图。Figure 6 is a map of urban evolution types.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步说明。The present invention will be further described below in conjunction with drawings and embodiments.
本发明提供了一种基于灯光卫星的城市变化区域与演变类型快速提取方法,参照图1,具体包括以下步骤:The present invention provides a method for quickly extracting urban change areas and evolution types based on lighting satellites, referring to Figure 1, which specifically includes the following steps:
(1)获取相同检测区域内不同年份的灯光卫星影像;所述年份至少包括Y1年份、Y2年份和Y3年份;(1) Obtain satellite images of lights in different years in the same detection area; the years mentioned include at least Y 1 , Y 2 and Y 3 ;
(2)参照图2,通过以下步骤对灯光卫星影像进行数据预处理:(2) Referring to Figure 2, data preprocessing is performed on the lighting satellite image through the following steps:
(201)利用以下公式对城市灯光卫星影像进行相对辐射校正:(201) Use the following formula to perform relative radiation correction on urban lighting satellite images:
y=c0+c1x+c2x2……(1)y=c 0 +c 1 x+c 2 x 2 ... (1)
其中,c0、c1和c2是相对辐射校正参数,由遥感器生产单位或用户单位提供,x表示DN值,y表示相对辐射校正后的DN值;Among them, c 0 , c 1 and c 2 are relative radiation correction parameters, which are provided by the remote sensor manufacturer or user unit, x represents the DN value, and y represents the DN value after relative radiation correction;
(202)利用以下公式对经步骤(201)辐射定标后的影像进行去负值处理:(202) Utilize the following formula to carry out de-negative value processing to the image after step (201) radiation calibration:
yDN>0=(xradiation>0)×xradiation……(2)y DN>0 =(x radiation >0)×x radiation ......(2)
其中,yDN>0表示去处负值后的影像,xradiation表示相对辐射校正后的影像;Among them, y DN>0 means the image after removing the negative value, and x radiation means the image after relative radiation correction;
(203)影像配准:将经步骤(202)去负值处理后的灯光卫星影像根据地理坐标,对年份数据进行配准;(203) Image registration: registering the year data according to the geographic coordinates of the lighting satellite images after the negative value processing in step (202);
(204)波段合成:对于每一张不同年份的影像视为一个波段,按照时间先后顺序对影像进行波段合成,得到一景多波段影像;(204) Band synthesis: for each image of different years, it is regarded as a band, and the images are synthesized according to the time sequence to obtain a scene of multi-band images;
(3)参照图3,设置演变类型的颜色,利用三原色表示不同演变类型,其中:(3) With reference to Figure 3, the color of the evolution type is set, and the three primary colors are used to represent different evolution types, wherein:
演变类型1为未发展区,设置为黑色,表示灯光卫星DN值接近0,多年没有发生任何变化的城市区域;Evolution type 1 is an undeveloped area, which is set to black, indicating that the DN value of the light satellite is close to 0, and the urban area has not undergone any changes for many years;
演变类型2为稳定区,设置为白色,表示前期、中期、后期灯光卫星DN值都接近60,没有发生较大变化的区域,在这里代表Y1、Y2和Y3年都存在的城市区域;Evolution type 2 is a stable area, set to white, indicating that the DN values of the light satellites in the early, middle, and late stages are all close to 60, and there are no major changes. Here, it represents the urban area that existed in Y 1 , Y 2 , and Y 3 years ;
演变类型3为发展区,用以下三种颜色设置:Evolution type 3 is the development zone, set with the following three colors:
蓝色表示前期到中期这个时间段内没有发生变化,中期到后期城市区域的DN值在不断增加,在这里表示为Y1到Y2年基本没有变化,在Y2到Y3年扩张为城市的区域;Blue means that there is no change in the period from the early to the middle period, and the DN value of the urban area is increasing continuously from the middle to the late period, which means that there is basically no change from Y 1 to Y 2 , and it expands into a city from Y 2 to Y 3 Area;
青色表示前期到中期处于发展状态,中期到后期处于稳定状态,在这里表示为Y1到Y2年扩张的城市区域,但是在Y2到Y3年保持稳定的城市区域;Cyan indicates that it is in a state of development in the early to mid-term, and in a stable state in the mid-to-late period. Here, it represents an urban area that expanded from Y 1 to Y 2 , but remained stable in Y 2 to Y 3 ;
绿色表示从前期到中期扩张、且在中期到后期衰退的城市区域,在这里表示为Y1到Y2年扩张的城市区域,Y3年以后逐渐衰退的城区。Green indicates urban areas that expand from the early to mid-term and decline in the mid-to-late period. Here, it is the urban area that expands from Y 1 to Y 2 , and the urban area that gradually declines after Y 3 years.
演变类型4表示衰退区,用以下三种颜色设置:Evolution type 4 represents the recession zone, set with the following three colors:
黄色表示从前期到中期处于稳定状态,中期以后逐渐消亡的区域,在这里表示为Y1到Y2年城市区域处于稳定状态,Y2到Y3年该城区开始消亡;Yellow indicates that the area is in a stable state from the early to mid-term, and gradually disappears after the mid-term. Here, it means that the urban area is in a stable state from Y 1 to Y 2 , and the urban area begins to die from Y 2 to Y 3 ;
红色表示从前期到后期一直处于衰退的城市区域,在这里表示为Y1年存在的城市区域,在Y1到Y2年以后逐渐消亡;Red indicates the urban area that has been in decline from the early stage to the late stage, here it is the urban area that existed in Y 1 year, and gradually died out after Y 1 to Y 2 years;
粉色表示从前期到中期处于衰退状态,中期到后期处于发展状态,在这里表示为从Y1到Y2年城区开始消亡,Y2到Y3年城区又处于发展状态;Pink means that it is in a state of decline from the early to mid-term, and it is in a state of development from the mid-term to the late stage. Here it means that the urban area begins to die from Y 1 to Y 2 , and the urban area is in a developing state from Y 2 to Y 3 ;
(4)假彩色合成:从经步骤(204)处理后的城市灯光卫星影像中选取Y1年份、Y2年份和Y3年份的影像,其中,Y1<Y2<Y3;对3个年份的影像进行假彩色合成显示,其中,Y1年份影像设置为红色通道,Y2年份影像设置为绿色通道,Y2年份影像设置为蓝色通道;(4) False color synthesis: select images of Y 1 year, Y 2 year and Y 3 year from the city lights satellite images processed in step (204), wherein, Y 1 <Y 2 <Y 3 ; for 3 The images of the year are displayed in false color synthesis, among which, the image of the year Y 1 is set as the red channel, the image of the year Y 2 is set as the green channel, and the image of the year Y 2 is set as the blue channel;
(5)根据步骤(3)设置的不同演变类型的颜色,对步骤(4)的假彩色合成图像通过目视解译初步判定演变类型,以将检测区域划分为演变类型1、演变类型2、演变类型3和演变类型4,即未发展区、稳定区、发展区和衰退区;(5) According to the colors of different evolution types set in step (3), the false color composite image in step (4) is visually interpreted to preliminarily determine the evolution type, so as to divide the detection area into evolution type 1, evolution type 2, Evolution type 3 and evolution type 4, that is, undeveloped area, stable area, development area and recession area;
(6)构建伪光谱曲线:分别选取检测区域中各演变类型区域的一个像元,提取该像元历年的DN值,以时间为横轴、DN值为纵轴构造DN值变化曲线,得到各演变类型的伪光谱曲线;(6) Construct a pseudo-spectral curve: select a pixel in each evolution type area in the detection area, extract the DN value of the pixel over the years, construct a DN value change curve with time as the horizontal axis and DN value as the vertical axis, and obtain each Pseudo-spectral curves of evolving types;
(7)建立演变类型光谱库:根据步骤(3)设置的不同演变类型的颜色,分别选取各演变类型区域的单一像元和/或2个以上像元,分别针对各演变类型区域求平均值,并构造各演变类型的伪光谱曲线,建立由伪光谱曲线构成的演变类型光谱库;城市演变类型光谱库中的伪光谱曲线如图4所示;(7) Establish evolution type spectral library: according to the colors of different evolution types set in step (3), select a single pixel and/or more than 2 pixels in each evolution type area, and calculate the average value for each evolution type area , and construct the pseudo-spectral curves of each evolution type, and establish the evolution-type spectral library composed of pseudo-spectral curves; the pseudo-spectral curves in the urban evolution type spectral library are shown in Figure 4;
(8)城市变化区域的快速提取:根据步骤(7)建立的演变类型光谱库,采用光谱匹配算法,对演变类型进行快速识别,为不同演变类型赋予相应的色彩,生成演变类型图,从而使城市变化区域与演变类型在图中得到显示;参照图5,具体采用以下步骤:(8) Rapid extraction of urban change areas: According to the evolution type spectral library established in step (7), the spectral matching algorithm is used to quickly identify the evolution type, assign corresponding colors to different evolution types, and generate an evolution type map, so that The area of urban change and the type of evolution are shown in the figure; referring to Figure 5, the specific steps are as follows:
(801)获取将要进行演变类型判别的灯光卫星合成影像;(801) Obtaining the synthetic image of the lighting satellite for the evolution type discrimination;
(802)获取影像的大小,设其像元的列数和行数分别为nSample和nLine,波段数为nBand,定义行列变化的自变量i=0,j=0;(802) Obtain the size of the image, set the number of columns and the number of rows of its pixel to be nSample and nLine respectively, the number of bands is nBand, define the independent variable i=0, j=0 that the row and column change;
(803)行数判断,行数在小于nLine时,进入步骤804,否则进入步骤810;(803) row number judgment, when row number is less than nLine, enter step 804, otherwise enter step 810;
(804)列数判断,列数在小于nSample时,进入步骤805,否则进入步骤806;(804) row number judgment, when row number is less than nSample, enter step 805, otherwise enter step 806;
(805)列数清零j=0,行数i增加1,返回步骤803;(805) column number is cleared j=0, row number i increases by 1, returns to step 803;
(806)根据演变类型光谱库,利用光谱匹配算法,获取影像(i,j)处的伪光谱曲线;(806) Obtain the pseudo-spectral curve at the image (i, j) by using a spectral matching algorithm according to the evolution type spectral library;
(807)对步骤806获取的伪光谱曲线,利用光谱匹配算法实现与演变类型光谱库中的伪光谱的匹配;(807) For the pseudo-spectral curve obtained in step 806, use a spectral matching algorithm to realize matching with the pseudo-spectrum in the evolution type spectral library;
(808)对步骤807光谱匹配结果进行判别,获得步骤806(i,j)位置处的演变类型,并将该类型赋予对应的色彩;(808) Discriminate the spectral matching result of step 807, obtain the evolution type at the position of step 806 (i, j), and assign the type to the corresponding color;
(809)列数累加1;(809) Column number is accumulated by 1;
(810)遍历完所有行和列,结束快速识别以生成基于演变类型光谱库的光谱匹配判别演变类型图,效果如图6所示。(810) After traversing all the rows and columns, end the rapid identification to generate a spectral matching discriminant evolution type map based on the evolution type spectral library, the effect is shown in FIG. 6 .
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410262168.XA CN104036507B (en) | 2014-06-13 | 2014-06-13 | Light satellite based urban change area and evolution type rapid extraction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410262168.XA CN104036507B (en) | 2014-06-13 | 2014-06-13 | Light satellite based urban change area and evolution type rapid extraction method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104036507A true CN104036507A (en) | 2014-09-10 |
CN104036507B CN104036507B (en) | 2017-02-15 |
Family
ID=51467266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410262168.XA Expired - Fee Related CN104036507B (en) | 2014-06-13 | 2014-06-13 | Light satellite based urban change area and evolution type rapid extraction method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104036507B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108052876B (en) * | 2017-11-28 | 2022-02-11 | 广东数相智能科技有限公司 | Regional development assessment method and device based on image recognition |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120082364A1 (en) * | 2010-09-30 | 2012-04-05 | Olympus Corporation | Image processing system |
CN102609711A (en) * | 2012-02-21 | 2012-07-25 | 核工业北京地质研究院 | Information extraction method applicable to hyperspectral image |
-
2014
- 2014-06-13 CN CN201410262168.XA patent/CN104036507B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120082364A1 (en) * | 2010-09-30 | 2012-04-05 | Olympus Corporation | Image processing system |
CN102609711A (en) * | 2012-02-21 | 2012-07-25 | 核工业北京地质研究院 | Information extraction method applicable to hyperspectral image |
Non-Patent Citations (3)
Title |
---|
YUELIANG MA ET AL.: "Remote sensing monitoring and driving force analysis of urban expansion in Guangzhou City, China", 《HABITAT INTERNATIONAL》 * |
宋妍 等: "基于极大似然估计采样一致性准则的遥感影像配准参数解算方法研究", 《测绘科学》 * |
王勇: "基于遥感影像的城市土地利用变化检测研究", 《城市勘测》 * |
Also Published As
Publication number | Publication date |
---|---|
CN104036507B (en) | 2017-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105956557B (en) | A kind of sequential remote sensing image cloud covered areas domain automatic testing method of object-oriented | |
WO2020258899A1 (en) | Mountain landscape architecture extraction method and equipment based on high-resolution remote sensing image | |
CN103971115B (en) | Automatic extraction method for newly-increased construction land image spots based on NDVI and PanTex index | |
CN103077515B (en) | A Method for Building Change Detection in Multispectral Images | |
CN103927741B (en) | SAR image synthesis method for enhancing target characteristics | |
CN105096286B (en) | Fusion method and device for remote sensing images | |
CN106875407B (en) | Unmanned aerial vehicle image canopy segmentation method combining morphology and mark control | |
CN106295562A (en) | A kind of high-resolution remote sensing image road information extracting method | |
CN104636726A (en) | Method and device for identifying image colors and terminal | |
TW201022708A (en) | Method of change detection for building models | |
CN102881160B (en) | Outdoor traffic sign identification method under low-illumination scene | |
CN110378295B (en) | A Coal Gangue Recognition Method Based on Heterogeneous Fusion of Multispectral Image Information and Spectral Information | |
CN103914692B (en) | A Remote Sensing Identification Method for Surface Water System Around Coal Mine | |
CN101403795A (en) | Remote sensing survey method and system for estimating tree coverage percentage of city | |
Wang et al. | Automated road extraction from multi-resolution images using spectral information and texture | |
CN104966099B (en) | A kind of foot type sorting technique based on people's pin image | |
CN107818303A (en) | Unmanned plane oil-gas pipeline image automatic comparative analysis method, system and software memory | |
CN105096285A (en) | Image fusion and target tracking system based on multi-core DSP | |
CN104574307A (en) | Method for extracting primary colors of painting work image | |
CN105868683A (en) | Channel logo identification method and apparatus | |
CN106228157A (en) | Coloured image word paragraph segmentation based on image recognition technology and recognition methods | |
CN113780307A (en) | Method for extracting blue-green space information with maximum regional year | |
CN108898096A (en) | A kind of quick accurate extracting method of the information towards high score image | |
CN102855607A (en) | Remote sensing image color correcting method based on machine learning | |
CN114943902A (en) | Urban vegetation unmanned aerial vehicle remote sensing classification method based on multi-scale feature perception network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170215 Termination date: 20170613 |