CN104035444A - Robot map establishing and storing method - Google Patents

Robot map establishing and storing method Download PDF

Info

Publication number
CN104035444A
CN104035444A CN201410305239.XA CN201410305239A CN104035444A CN 104035444 A CN104035444 A CN 104035444A CN 201410305239 A CN201410305239 A CN 201410305239A CN 104035444 A CN104035444 A CN 104035444A
Authority
CN
China
Prior art keywords
max
map
robot
coordinates
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410305239.XA
Other languages
Chinese (zh)
Other versions
CN104035444B (en
Inventor
王兴松
郑鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201410305239.XA priority Critical patent/CN104035444B/en
Publication of CN104035444A publication Critical patent/CN104035444A/en
Application granted granted Critical
Publication of CN104035444B publication Critical patent/CN104035444B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种机器人地图构建存储方法,运用电子罗盘、里程计结合GPS来实现机器人定位和坐标计算,在创建地图数据前机器人首先沿着边界线围绕工作区域运行一圈,建立地图边界数据,并推算出地图数据与存储单元地址的映射关系,然后机器人在区域内运行并建立内部地图数据。地图数据的格式为:{X坐标,Y坐标,地图栅格属性},为了便于数据存取,数据按照一定规律映射在存储空间内。

The invention discloses a method for constructing and storing a robot map, using an electronic compass and an odometer combined with GPS to realize robot positioning and coordinate calculation. Before creating map data, the robot first runs around the working area along the boundary line to establish map boundary data , and deduce the mapping relationship between the map data and the address of the storage unit, and then the robot runs in the area and establishes the internal map data. The format of the map data is: {X coordinate, Y coordinate, map grid attribute}. In order to facilitate data access, the data is mapped in the storage space according to certain rules.

Description

机器人地图构建存储方法Robot map construction and storage method

技术领域technical field

本发明属于机器人技术领域,涉及一种构建地图信息的方法。The invention belongs to the technical field of robots and relates to a method for constructing map information.

背景技术Background technique

目前市场上的大多数割草机器人的割草路径都是随机的,因此导致割草机除完草后的草坪略显凌乱,同时割草实现对工作区域的完全遍历需要花费更多时间,导致效率较低,而非智能式割草机虽然能在人工的操作下割出平整的草坪,但是比较费时费力,因此将自动定位技术与割草机相结合来实现割草机的定向定位,并运用地图构建技术实现机器人的自主路径规划,最终割出平整规则的草坪。The mowing paths of most lawn mowing robots currently on the market are random, which leads to a slightly messy lawn after the mower has mowed the grass. At the same time, it takes more time to mow the grass to completely traverse the working area, resulting in The efficiency is low. Although the non-intelligent lawn mower can cut a flat lawn under manual operation, it is time-consuming and laborious. Therefore, the automatic positioning technology is combined with the lawn mower to realize the directional positioning of the lawn mower, and Using map construction technology to realize the robot's autonomous path planning, and finally cut out a smooth and regular lawn.

发明内容Contents of the invention

技术问题:本发明提供一种实现割草机器人的自动路径规划,能够快速完成地图数据存储和读取,提高地图构建和使用的效率的机器人地图构建存储方法。Technical problem: The present invention provides a robot map construction and storage method that realizes the automatic path planning of the mowing robot, can quickly complete the storage and reading of map data, and improves the efficiency of map construction and use.

技术方案:本发明的机器人地图构建与存储方法,包括以下步骤:Technical solution: The robot map construction and storage method of the present invention includes the following steps:

1)将基站坐标设为机器人起始坐标(x0,y0),并设定机器人从基站出发时,工作区域内x坐标的最大值xmax的初始值、最小值xmin的初始值,y坐标的最大值ymax的初始值、最小值ymin的初始值分别为xmax=x0,xmin=x0,ymax=y0,ymax=y01) Set the base station coordinates as the starting coordinates of the robot (x 0 , y 0 ), and set the initial value of the maximum value x max and the minimum value x min of the x coordinate in the working area when the robot starts from the base station, The initial value of the maximum value y max of the y coordinate and the initial value of the minimum value y min are respectively x max =x 0 , x min =x 0 , y max =y 0 , y max =y 0 ;

2)然后机器人从基站出发,沿着工作区域的边界线运行一周后返回基站,运行过程中,按照如下方式不断更新x坐标的最大值xmax、最小值xmin,y坐标的最大值ymax、最小值ymin:在任意i时刻分别对比坐标(xi,yi)与上一次更新的xmax、xmin、ymax、ymin的大小关系,若xi<xmin则xmin=xi,否则xmin的值保持不变,若xi>xmax则xmax=xi,否则xmax的值保持不变,若yi<ymin则ymin=yi,否则ymin的值保持不变,若yi>ymax则ymax=yi,否则ymax的值保持不变,其中,(xi,yi)为i时刻时机器人的坐标;2) Then the robot starts from the base station and returns to the base station after running along the boundary line of the working area for a week. During the operation, the maximum value x max and the minimum value x min of the x coordinate and the maximum value y max of the y coordinate are continuously updated as follows , the minimum value y min : at any time i, compare the size relationship between the coordinates (xi , y i ) and the last updated x max , x min , y max , y min , if x i < x min then x min = x i , otherwise the value of x min remains unchanged, if x i > x max then x max = x i , otherwise the value of x max remains unchanged, if y i < y min then y min = y i , otherwise y min The value of remains unchanged, if y i >y max then y max =y i , otherwise the value of y max remains unchanged, where (xi , y i ) is the coordinates of the robot at time i;

3)根据机器人沿边界线运行一周后最终更新得到的xmax、xmin、ymax、ymin,确定表征边界线最大范围的四个坐标点分别为(xa,ymax)、(xb,ymin)、(xmax,ya)、(xmin,yb),其中xa为ymax对应的横坐标、xb为ymin对应的横坐标,ya为xmax对应的横坐标,yb为xmin对应的横坐标;3) According to the x max , x min , y max , and y min that are finally updated after the robot runs along the boundary line for a week, determine the four coordinate points representing the maximum range of the boundary line as (x a , y max ), (x b , y min ), (x max ,y a ), (x min ,y b ), where x a is the abscissa corresponding to y max , x b is the abscissa corresponding to y min , and y a is the abscissa corresponding to x max , y b is the abscissa corresponding to x min ;

然后根据这四个表征边界线最大范围的坐标计算出工作区域内x坐标最大差值Xmax=xmax-xmin和y坐标最大差值Ymax=ymax-yminThen calculate the maximum difference of x coordinates X max = x max -x min and the maximum difference of y coordinates Y max = y max - y min in the working area according to the coordinates of the four characterizing the maximum range of the boundary line;

同时计算出工作区域的中心坐标(xc,yc),其中,xc=[(xmax+xmin)2],yc=[(ymax+ymin)/2];At the same time, calculate the center coordinates (x c , y c ) of the working area, where x c =[(x max +x min )2], y c =[(y max +y min )/2];

4)根据下式计算出表征地图大小的参数n:n=[X/2Δ]+1;4) Calculate the parameter n representing the size of the map according to the following formula: n=[X/2Δ]+1;

其中Δ为正方形地图栅格的边长,X为工作区域最大范围内x坐标最大差值Xmax和y坐标最大差值Ymax的较大值,即当Xmax≥Ymax时,X=Xmax,而Xmax<Ymax时,X=YmaxAmong them, Δ is the side length of the square map grid, and X is the larger value of the maximum difference X max of x coordinates and the maximum difference Y max of y coordinates within the maximum range of the working area, that is, when X max ≥ Y max , X=X max , and X max < Y max , X = Y max ;

5)根据表征地图大小的参数n实现地图数据与存储单元地址的映射,具体方法为:将所有地图栅格的数据按照{xi,yi,地图栅格属性}的格式存储在存储单元中,其中每个地图栅格数据占用存储单元空间大小为m字节,地图中心坐标(xc,yc)存储在存储单元的起始地址,该起始地址在存储单元中与最小地址的偏移量为k,k≥0,其他坐标(xi,yi)的存储位置根据下式求得的该坐标与最小地址的偏移量来确定:5) Realize the mapping between the map data and the address of the storage unit according to the parameter n representing the size of the map. The specific method is: store the data of all map grids in the storage unit in the format of {xi , y i , map grid attribute} , where each map raster data occupies a storage unit with a size of m bytes, the coordinates of the map center (x c , y c ) are stored in the starting address of the storage unit, and the offset between the starting address and the minimum address in the storage unit The displacement is k, k≥0, and the storage location of other coordinates ( xi , y i ) is determined according to the offset between the coordinate and the minimum address obtained from the following formula:

M(2n+1)m+Nm+k;M(2n+1)m+Nm+k;

其中,M、N由以下方法确定:Among them, M and N are determined by the following methods:

L1=(xi-xc)/Δ,L2=(yi-yc)/Δ;L 1 =(x i -x c )/Δ, L 2 =(y i -y c )/Δ;

当L1>0时,M=2|L1|,当L1<0时,M=2|L1|-1;When L 1 >0, M=2|L 1 |, when L 1 <0, M=2|L 1 |-1;

当L2>0时,N=2|L2|,当L2<0时,N=2|L2|-1。When L 2 >0, N=2|L 2 |, and when L 2 <0, N=2|L 2 |−1.

本发明方法的优选方案中,步骤5)中的地图栅格属性由多种与机器人地图相关的元素组成,包括用于表征地图栅格内的环境的属性和表征机器人是否经过此地图栅格的属性。In the preferred solution of the method of the present invention, the map grid attribute in step 5) is composed of various elements related to the robot map, including attributes used to characterize the environment in the map grid and whether the robot passes through the map grid Attributes.

本系统的方法能够完成机器人地图的创建与存储,从而实现机器人的自主定位导航,在创建地图数据时机器人首先围绕工作区域运行一圈,根据传感器计算出的坐标值计算出地图边界的数据,并生成地图数据与存储单元地址的映射关系,然后机器人在边界区域内建立内部地图数据,并更新数据存储器中的地图属性;在地图坐标建立后,机器人按照地图运行,机器人通过定位后读取当前坐标以及相邻四个坐标的数据,根据前进方向以及相邻坐标的栅格特性来判断机器人的下一步动作和运行方向,在机器人工作电压不足时,机器人自动存储当前坐标与航向并返回基站充电,完成充电后读取上次记录的坐标和航向,并自动规划最优路径到达坐标位置,然后继续工作。本发明方法中,机器人通过定位导航传感器构建出地图数据,并将地图数据与存储单元地址一一映射,方便大量地图数据的存储与读取。The method of this system can complete the creation and storage of the robot map, so as to realize the autonomous positioning and navigation of the robot. When creating the map data, the robot first runs around the working area, calculates the data of the map boundary according to the coordinate values calculated by the sensor, and Generate the mapping relationship between the map data and the address of the storage unit, and then the robot establishes the internal map data in the boundary area, and updates the map attributes in the data storage; after the map coordinates are established, the robot runs according to the map, and the robot reads the current coordinates after positioning And the data of the adjacent four coordinates, according to the forward direction and the grid characteristics of the adjacent coordinates to judge the next action and running direction of the robot. When the working voltage of the robot is insufficient, the robot automatically stores the current coordinates and heading and returns to the base station for charging. After charging, read the coordinates and heading recorded last time, and automatically plan the optimal path to reach the coordinate position, and then continue to work. In the method of the present invention, the robot constructs the map data through the positioning and navigation sensor, and maps the map data with the address of the storage unit one by one, so as to facilitate the storage and reading of a large amount of map data.

有益效果:本发明与现有技术相比,具有以下优点:Beneficial effect: compared with the prior art, the present invention has the following advantages:

本发明能够很好地实现地图数据的构建与存储,该方法中机器人地图数据为栅格形式,使用栅格地图的属性能够很好地描述地图环境,鉴于栅格地图的数据量较大的原因,在建立地图时,机器人从基站出发,沿着绕边界线运行,运行过程中不断推算当前的坐标,在运行一周后获取表征地图大小的四个重要特征坐标点,分别为地图横坐标最大和最小的两个点,以及纵坐标最大和最小的两个点,然后根据这四个特征坐标点自主生成地图数据与存储单元地址映射关系,通过地址映射的建立将地图数据与存储单元紧密结合起来,不仅能够实现地图数据的快速读取与存储,同时采用参数调节的方式可以使该方法在不同的地图大小下均能适用,使机器人能够在任何工作环境下运行。The present invention can well realize the construction and storage of map data. In this method, the map data of the robot is in the form of a grid, and the attributes of the grid map can be used to describe the map environment well. In view of the large amount of data of the grid map , when building a map, the robot starts from the base station and runs around the boundary line. During the operation, the current coordinates are continuously calculated. After running for a week, four important characteristic coordinate points representing the size of the map are obtained, which are the maximum and maximum abscissa coordinates of the map and The two smallest points, as well as the two points with the largest and smallest vertical coordinates, and then independently generate the map data and storage unit address mapping relationship according to these four characteristic coordinate points, and closely combine the map data with the storage unit through the establishment of address mapping , not only can realize the fast reading and storage of map data, but also adopt the method of parameter adjustment to make the method applicable under different map sizes, so that the robot can run in any working environment.

通过该方法建立地图数据后,地图数据具有唯一性,即存储单元的内容与整个环境地图坐标一一对应,当机器人运行过程中需要调用地图时,只需要计算出当前坐标对应于映射图中的参数即可快速读取地图数据,能够保证机器人对环境地图有一个很清晰的认知。After the map data is established by this method, the map data is unique, that is, the content of the storage unit corresponds to the coordinates of the entire environment map. When the robot needs to call the map during operation, it only needs to calculate the current coordinates corresponding to the coordinates in the map. The map data can be quickly read through parameters, which can ensure that the robot has a clear understanding of the environmental map.

附图说明Description of drawings

图1为栅格地图示意图;将地图用栅格的形式表示,每个格点中的数字代表该栅格内的属性;Figure 1 is a schematic diagram of a grid map; the map is represented in the form of a grid, and the numbers in each grid point represent the attributes in the grid;

图2为沿边界运行图;通过该方式确定地图的大小与参数;Figure 2 is a diagram of running along the boundary; the size and parameters of the map are determined in this way;

图3为存储单元地址映射图;表示地图数据与存储单元地址的映射关系。FIG. 3 is a storage unit address mapping diagram; showing the mapping relationship between map data and storage unit addresses.

具体实施方式Detailed ways

下面对本发明技术方案进行进一步详细说明。The technical solution of the present invention will be further described in detail below.

本发明方法中,所述的机器人主要是割草机器人,它是一种四轮式机器人,后两轮为差动轮,能够实现机器人任意方向的运动,机器人由锂电池供电,在一定的区域范围内自主工作,该区域由边界线人为圈定,可以为任意形状和大小,边界线为通电导线,导线内通有特定的边界信号,该边界信号由充电基站发出,同时基站能够给机器人提供充电的来源,当机器人电量不足时会自动沿着边界线返回基站充电,充满电后自动出基站工作,机器人通过安装在机器人内部的感应线圈接收边界线发出的电磁信号来识别机器人处于边界线的内部或外部。同时,该机器人还能够通过霍尔传感器识别外部障碍物,当机器人被抬起或者遇到障碍物时霍尔传感器会发出信号,从而实现机器人的环境识别。In the method of the present invention, the robot is mainly a mowing robot, which is a four-wheeled robot, and the rear two wheels are differential wheels, which can realize the movement of the robot in any direction. The robot is powered by a lithium battery. Work autonomously within the range. The area is artificially delineated by the boundary line, which can be of any shape and size. The boundary line is an electrified wire, and there is a specific boundary signal in the wire. The boundary signal is sent by the charging base station, and the base station can provide charging for the robot. When the power of the robot is low, it will automatically return to the base station along the boundary line to charge, and it will automatically go out of the base station to work after it is fully charged. The robot will recognize that the robot is inside the boundary line by receiving the electromagnetic signal sent by the boundary line through the induction coil installed inside the robot. or external. At the same time, the robot can also identify external obstacles through the Hall sensor. When the robot is lifted or encounters an obstacle, the Hall sensor will send a signal, thereby realizing the environment recognition of the robot.

在建立地图时,机器人能够运用电子罗盘、里程计、GPS实现自主定位导航,通过电子罗盘测量航向角,然后结合里程计航位推算出机器人的相对坐标,再根据GPS的坐标进行绝对定位和误差消除,最终得到机器人任意时刻的坐标(xk,yk)。具体推算方法如下:When building a map, the robot can use the electronic compass, odometer, and GPS to realize autonomous positioning and navigation, measure the heading angle through the electronic compass, and then calculate the relative coordinates of the robot based on the odometer dead position, and then perform absolute positioning and error based on the GPS coordinates Eliminate, and finally get the coordinates (x k , y k ) of the robot at any time. The specific calculation method is as follows:

割草机器人在运行时可以认为是在一定的二维平面的运行,构建一个局部的平面直角坐标系,设x为局部平面直角坐标系的正东方向,y为局部平面直角坐标系的正北方向。设割草机器人初始时刻t0的位置R0坐标为(x0,y0),航向角为θ0,根据t1-t0时间段内的运行距离以及航向角可以推算出t1时刻的坐标位置。The mowing robot can be regarded as running on a certain two-dimensional plane during operation, and constructs a local plane Cartesian coordinate system. Let x be the due east direction of the local plane Cartesian coordinate system, and y be the true north of the local plane Cartesian coordinate system. direction. Let the coordinates of the position R 0 of the lawn mowing robot at the initial time t 0 be (x 0 , y 0 ), and the heading angle be θ 0 . According to the running distance and heading angle during the time period t 1 -t 0 , the position at the time t 1 can be calculated. coordinate location.

设R0和R1之间的距离为S0,该量由机器人上的里程计测量得出,当t1-t0足够小时认为机器人做直线运动,因此可以可以得到R1的坐标为:Let the distance between R 0 and R 1 be S 0 , which is measured by the odometer on the robot. When t 1 -t 0 is small enough, the robot is considered to be moving in a straight line, so the coordinates of R 1 can be obtained as:

x1=x0+S0 cos θ0 x 1 =x 0 +S 0 cos θ 0

y1=y0+S0 sin θ0 y 1 =y 0 +S 0 sin θ 0

根据上式递推可以得到R2的坐标为:According to the above formula recursion, the coordinates of R2 can be obtained as:

x2=x1+S1 cos θ1=x0+S0 cos θ0+S1 cos θ1 x 2 =x 1 +S 1 cos θ 1 =x 0 +S 0 cos θ 0 +S 1 cos θ 1

y2=y1+S1 sin θ1=y0+S0 sin θ0+S1 sin θ1 y 2 =y 1 +S 1 sin θ 1 =y 0 +S 0 sin θ 0 +S 1 sin θ 1

按照此规律递推可以推算出任意时刻tk位置Rk的坐标为:According to this rule, the coordinates of the position R k at any time t k can be deduced as:

xx kk == xx 00 ++ &Sigma;&Sigma; ii == 00 kk -- 11 SS ii coscos &theta;&theta; ii

ythe y kk == ythe y 00 ++ &Sigma;&Sigma; ii == 00 kk -- 11 SS ii sinsin &theta;&theta; ii

将基站坐标设为机器人起始坐标(x0,y0),并设定机器人从基站出发时,工作区域内x坐标的最大值xmax的初始值、最小值xmin的初始值,y坐标的最大值ymax的初始值、最小值ymin的初始值分别为xmax=x0,xmin=x0,ymax=y0,ymax=y0;然后机器人从基站出发,沿着工作区域的边界线运行一周后返回基站,运行过程中,按照如下方式不断更新x坐标的最大值xmax、最小值xmin,y坐标的最大值ymax、最小值yminSet the coordinates of the base station as the initial coordinates of the robot (x 0 , y 0 ), and set the initial value of the maximum value x max of the x coordinate, the initial value of the minimum value x min , and the y coordinate of the robot when it starts from the base station. The initial value of the maximum value y max and the initial value of the minimum value y min are respectively x max = x 0 , x min = x 0 , y max = y 0 , y max = y 0 ; then the robot starts from the base station, along The boundary line of the working area returns to the base station after a week of operation. During the operation, the maximum value x max and minimum value x min of the x coordinate, and the maximum value y max and minimum value y min of the y coordinate are continuously updated as follows:

在任意i时刻分别对比坐标(xi,yi)与上一次更新的xmax、xmin、ymax、ymin的大小关系,若xi<xmin则xmin=xi,否则xmin的值保持不变,若xi>xmax则xmax=xi,否则xmax的值保持不变,若yi<ymin则ymin=yi,否则ymin的值保持不变,若yi>ymax则ymax=yi,否则ymax的值保持不变,其中,(xi,yi)为i时刻时机器人的坐标;根据机器人沿边界线运行一周后最终更新得到的xmax、xmin、ymax、ymin,确定表征边界线最大范围的四个坐标点分别为(xa,ymax)、(xb,ymin)、(xmax,ya)、(xmin,yb),其中xa为ymax对应的横坐标、xb为ymin对应的横坐标,ya为xmax对应的横坐标,yb为xmin对应的横坐标;然后根据这四个表征边界线最大范围的坐标计算出工作区域内x坐标最大差值Xmax=xmax-xmin和y坐标最大差值Ymax=ymax-ymin;同时计算出工作区域的中心坐标(xc,yc),其中,xc=[(xmax+xmin)2],yc=[(ymax+ymin)2];然后根据下式计算出表征地图大小的参数n:n=[X/2Δ]+1;本方法中的地图栅格为正方形栅格,即每个地图栅格的长与宽均相同,将整个环境地图分割为多个相邻的正方形栅格方块,正方形地图栅格的边长为Δ,X为工作区域最大范围内x坐标最大差值Xmax和y坐标最大差值Ymax的较大值,即当Xmax≥Ymax时,X=Xmax,而Xmax<Ymax时,X=Ymax;根据表征地图大小的参数n实现地图数据与存储单元地址的映射,具体方法为:将所有地图栅格的数据按照{xi,yi,地图栅格属性}的格式存储在存储单元中,每个地图栅格数据占用存储单元空间大小为m字节,其中地图栅格属性可以由多种与机器人地图相关的元素组成,包括用于表征地图栅格内的环境的属性,例如运用数字0,1,2……的形式分别表示此地图栅格内部有树木、边界线、充电基站等外物;还包括表征机器人是否经过此地图栅格的属性,用于实现机器人的地图遍历,地图中心坐标(xc,yc)存储在存储单元的起始地址,该起始地址在存储单元中与最小地址的偏移量为k,k≥0,其他坐标(xi,yi)的存储位置根据下式求得的该坐标与最小地址的偏移量来确定:At any time i, compare the relationship between the coordinates ( xi , y i ) and the last updated x max , x min , y max , and y min . If x i < x min , then x min = x i , otherwise x min The value remains unchanged, if x i > x max then x max = x i , otherwise the value of x max remains unchanged, if y i < y min then y min = y i , otherwise the value of y min remains unchanged, If y i > y max , then y max = y i , otherwise the value of y max remains unchanged, where ( xi , y i ) is the coordinates of the robot at time i; according to the final update obtained after the robot runs along the boundary line for one week x max , x min , y max , y min , the four coordinate points to determine the maximum range of the boundary line are (x a ,y max ), (x b ,y min ), (x max ,y a ), ( x min ,y b ), where x a is the abscissa corresponding to y max , x b is the abscissa corresponding to y min , y a is the abscissa corresponding to x max , y b is the abscissa corresponding to x min ; then according to These four coordinates representing the maximum range of the boundary line calculate the maximum difference of x coordinates X max = x max -x min and the maximum difference of y coordinates Y max = y max -y min in the working area; at the same time, calculate the center of the working area Coordinates (x c , y c ), where, x c =[(x max +x min )2], y c =[(y max +y min )2]; then calculate the parameters representing the size of the map according to the following formula n: n=[X/2Δ]+1; the map grid in this method is a square grid, that is, the length and width of each map grid are the same, and the entire environmental map is divided into multiple adjacent square grids Grid square, the side length of the square map grid is Δ, X is the larger value of the maximum difference X max of x coordinates and the maximum difference Y max of y coordinates within the maximum range of the working area, that is, when X max ≥ Y max , X =X max , and when X max <Y max , X=Y max ; realize the mapping between map data and storage unit addresses according to the parameter n representing the size of the map. y i , the format of the map raster attribute} is stored in the storage unit, and each map raster data occupies a storage unit space of m bytes, where the map raster attribute can be composed of various elements related to the robot map, including It is used to characterize the attributes of the environment in the map grid, such as using numbers 0, 1, 2... to indicate that there are trees, boundary lines, charging base stations and other foreign objects inside the map grid; it also includes whether the robot passes through this The attribute of the map grid, which is used to realize the map traversal of the robot, The coordinates of the center of the map (x c , y c ) are stored in the starting address of the storage unit, and the offset between the starting address and the minimum address in the storage unit is k, k≥0, other coordinates (xi , y i ) The storage location of is determined according to the offset between the coordinate and the minimum address obtained by the following formula:

M(2n+1)m+Nm+k;M(2n+1)m+Nm+k;

其中,M、N由以下方法确定:Among them, M and N are determined by the following methods:

L1=(xi-xc)/Δ,L2=(yi-yc)/Δ;L 1 =(x i -x c )/Δ, L 2 =(y i -y c )/Δ;

当L1>0时,M=2|L1|,当L1<0时,M=2|L1|-1;When L 1 >0, M=2|L 1 |, when L 1 <0, M=2|L 1 |-1;

当L2>0时,N=2|L2|,当L2<0时,N=2|L2|-1。When L 2 >0, N=2|L 2 |, and when L 2 <0, N=2|L 2 |−1.

然后割草机器人不断更新地图数据相应坐标内的地图栅格属性,将任意坐标下与属性相关的数据快速存到相对应的存储单元中去,实现整个地图的建立。Then the mowing robot continuously updates the map grid attributes in the corresponding coordinates of the map data, and quickly stores the data related to the attributes at any coordinates into the corresponding storage unit to realize the establishment of the entire map.

在地图建立后,割草机器人运行时同样根据电子罗盘、里程计和GPS数据推算出当前所在坐标位置,当机器人运行到坐标(xk,yk)处时,只需计算出此时映射图中相对应的参数i和j即可得到与之相对应的存储单元地址,然后读出该地址后m字节的代表地图属性的内容,同时从相对应的地图存储单元中再直接读出与该坐标相邻的4个坐标,然后根据坐标的栅格属性结合程序算法实现自身运动状态控制,在运行过程中通过霍尔传感器和边界传感器测出的信息来判断构建的地图是否正确,如果发现当前地图与存储的地图不同时更新存储的地图数据。After the map is established, the mowing robot also calculates the current coordinate position according to the electronic compass, odometer and GPS data when it is running. When the robot runs to the coordinates (x k , y k ), it only needs to calculate the map at this time Corresponding parameter i and j in can get the storage unit address corresponding thereto, then read out the content representing the map attribute of m bytes behind the address, and read directly from the corresponding map storage unit at the same time The 4 coordinates adjacent to the coordinates, and then according to the grid properties of the coordinates combined with the program algorithm to realize the control of its own motion state, during the operation, the information measured by the Hall sensor and the boundary sensor is used to judge whether the constructed map is correct. If found Update the stored map data when the current map is different from the stored map.

以上仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干可以预期的改进和等同替换,这些对本发明权利要求进行改进和等同替换后的技术方案,均落入本发明的保护范围。The above are only preferred embodiments of the present invention, and it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some conceivable improvements and equivalent replacements can also be made, which are essential to the present invention. The technical solutions after the claims are improved and replaced by equivalents all fall into the protection scope of the present invention.

Claims (2)

1.一种机器人地图构建存储方法,其特征在于,该方法包括以下步骤:1. A robot map builds storage method, is characterized in that, the method comprises the following steps: 1)将基站坐标设为机器人起始坐标(x0,y0),并设定机器人从基站出发时,工作区域内x坐标的最大值xmax的初始值、最小值xmin的初始值,y坐标的最大值ymax的初始值、最小值ymin的初始值分别为xmax=x0,xmin=x0,ymax=y0,ymax=y01) Set the base station coordinates as the starting coordinates of the robot (x 0 , y 0 ), and set the initial value of the maximum value x max and the minimum value x min of the x coordinate in the working area when the robot starts from the base station, The initial value of the maximum value y max of the y coordinate and the initial value of the minimum value y min are respectively x max =x 0 , x min =x 0 , y max =y 0 , y max =y 0 ; 2)然后机器人从基站出发,沿着工作区域的边界线运行一周后返回基站,运行过程中,按照如下方式不断更新x坐标的最大值xmax、最小值xmin,y坐标的最大值ymax、最小值ymin2) Then the robot starts from the base station and returns to the base station after running along the boundary line of the working area for a week. During the operation, the maximum value x max and the minimum value x min of the x coordinate and the maximum value y max of the y coordinate are continuously updated as follows , minimum value y min : 在任意i时刻分别对比坐标(xi,yi)与上一次更新的xmax、xmin、ymax、ymin的大小关系,若xi<xmin则xmin=xi,否则xmin的值保持不变,若xi>xmax则xmax=xi,否则xmax的值保持不变,若yi<ymin则ymin=yi,否则ymin的值保持不变,若yi>ymax则ymax=yi,否则ymax的值保持不变,其中,(xi,yi)为i时刻时机器人的坐标;At any time i, compare the relationship between the coordinates ( xi , y i ) and the last updated x max , x min , y max , and y min . If x i < x min , then x min = x i , otherwise x min The value remains unchanged, if x i > x max then x max = x i , otherwise the value of x max remains unchanged, if y i < y min then y min = y i , otherwise the value of y min remains unchanged, If y i > y max , then y max = y i , otherwise the value of y max remains unchanged, where ( xi , y i ) is the coordinates of the robot at time i; 3)根据机器人沿边界线运行一周后最终更新得到的xmax、xmin、ymax、ymin,确定表征边界线最大范围的四个坐标点分别为(xa,ymax)、(xb,ymin)、(xmax,ya)、(xmin,yb),其中xa为ymax对应的横坐标、xb为ymin对应的横坐标,ya为xmax对应的横坐标,yb为xmin对应的横坐标;3) According to the x max , x min , y max , and y min that are finally updated after the robot runs along the boundary line for a week, determine the four coordinate points representing the maximum range of the boundary line as (x a , y max ), (x b , y min ), (x max ,y a ), (x min ,y b ), where x a is the abscissa corresponding to y max , x b is the abscissa corresponding to y min , and y a is the abscissa corresponding to x max , y b is the abscissa corresponding to x min ; 然后根据这四个表征边界线最大范围的坐标计算出工作区域内x坐标最大差值Xmax=xmax-xmin和y坐标最大差值Ymax=ymax-yminThen calculate the maximum difference of x coordinates X max = x max -x min and the maximum difference of y coordinates Y max = y max - y min in the working area according to the coordinates of the four characterizing the maximum range of the boundary line; 同时计算出工作区域的中心坐标(xc,yc),其中,xc=[(xmax+xmin)2],yc=[(ymax+ymin)2];At the same time, calculate the center coordinates (x c , y c ) of the working area, where x c =[(x max +x min )2], y c =[(y max +y min )2]; 4)根据下式计算出表征地图大小的参数n:4) Calculate the parameter n representing the size of the map according to the following formula: n=[X/2Δ]+1;n=[X/2Δ]+1; 其中Δ为正方形地图栅格的边长,X为工作区域最大范围内x坐标最大差值Xmax和y坐标最大差值Ymax的较大值,即当Xmax≥Ymax时,X=Xmax,而Xmax<Ymax时,X=YmaxAmong them, Δ is the side length of the square map grid, and X is the larger value of the maximum difference X max of x coordinates and the maximum difference Y max of y coordinates within the maximum range of the working area, that is, when X max ≥ Y max , X=X max , and X max < Y max , X = Y max ; 5)根据表征地图大小的参数n实现地图数据与存储单元地址的映射,具体方法为:5) Realize the mapping between the map data and the address of the storage unit according to the parameter n representing the size of the map, the specific method is: 将所有地图栅格的数据按照{xi,yi,地图栅格属性}的格式存储在存储单元中,其中每个地图栅格数据占用存储单元空间大小为m字节,地图中心坐标(xc,yc)存储在存储单元的起始地址,该起始地址在存储单元中与最小地址的偏移量为k,k≥0,其他坐标(xi,yi)的存储位置根据下式求得的该坐标与最小地址的偏移量来确定:Store all the map grid data in the storage unit in the format of { xi , y i , map grid attribute}, where each map grid data occupies a storage unit size of m bytes, and the map center coordinates (x c , y c ) are stored in the starting address of the storage unit, the offset between the starting address and the minimum address in the storage unit is k, k≥0, and the storage positions of other coordinates (xi , y i ) are according to the following Determine the offset between the coordinate and the minimum address obtained by the formula: M(2n+1)m+Nm+k;M(2n+1)m+Nm+k; 其中,M、N由以下方法确定:Among them, M and N are determined by the following methods: L1=(xi-xc)/Δ,L2=(yi-yc)/Δ;L 1 =(x i -x c )/Δ, L 2 =(y i -y c )/Δ; 当L1>0时,M=2|L1|,当L1<0时,M=2|L1|-1;When L 1 >0, M=2|L 1 |, when L 1 <0, M=2|L 1 |-1; 当L2>0时,N=2|L2|,当L2<0时,N=2|L2|-1。When L 2 >0, N=2|L 2 |, and when L 2 <0, N=2|L 2 |−1. 2.根据权利要求1所述的机器人地图构建存储方法,其特征在于,所述步骤5)中的地图栅格属性由多种与机器人地图相关的元素组成,包括用于表征地图栅格内的环境的属性和表征机器人是否经过此地图栅格的属性。2. The robot map construction storage method according to claim 1, characterized in that, the map grid attribute in the step 5) is composed of a variety of elements related to the robot map, including elements used to characterize the map grid An attribute of the environment and an attribute that characterizes whether the robot has passed through this map grid.
CN201410305239.XA 2014-06-27 2014-06-27 Robot map structuring storage method Active CN104035444B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410305239.XA CN104035444B (en) 2014-06-27 2014-06-27 Robot map structuring storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410305239.XA CN104035444B (en) 2014-06-27 2014-06-27 Robot map structuring storage method

Publications (2)

Publication Number Publication Date
CN104035444A true CN104035444A (en) 2014-09-10
CN104035444B CN104035444B (en) 2016-08-24

Family

ID=51466249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410305239.XA Active CN104035444B (en) 2014-06-27 2014-06-27 Robot map structuring storage method

Country Status (1)

Country Link
CN (1) CN104035444B (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104699101A (en) * 2015-01-30 2015-06-10 深圳拓邦股份有限公司 Robot mowing system capable of customizing mowing zone and control method thereof
CN105096733A (en) * 2015-08-07 2015-11-25 王红军 Raster map based environment characteristic representation and recognition method
CN105160122A (en) * 2015-09-08 2015-12-16 王红军 Grid map based environment characteristic similarity measurement method
CN105373127A (en) * 2015-12-09 2016-03-02 百色学院 Wall lizard type remote control investigation robot
CN105511485A (en) * 2014-09-25 2016-04-20 科沃斯机器人有限公司 Grid map creating method for self-moving robot
CN106200633A (en) * 2015-03-18 2016-12-07 美国iRobot公司 Use physical features location and drawing
CN106292654A (en) * 2015-06-03 2017-01-04 北京京东尚科信息技术有限公司 A kind of method and apparatus of drawing area map
CN106444736A (en) * 2015-08-11 2017-02-22 苏州宝时得电动工具有限公司 Automatic return system and control method
CN106485876A (en) * 2015-08-26 2017-03-08 苏州宝时得电动工具有限公司 The method and system of the real-time automatic identification of virtual boundary
CN106851095A (en) * 2017-01-13 2017-06-13 深圳拓邦股份有限公司 A kind of localization method, apparatus and system
CN107305381A (en) * 2016-04-21 2017-10-31 上海慧流云计算科技有限公司 A kind of self-navigation robot and automatic navigation method
CN107390700A (en) * 2017-09-05 2017-11-24 珠海市微半导体有限公司 The dynamic of robot builds drawing method and chip
CN108292138A (en) * 2015-12-02 2018-07-17 高通股份有限公司 Random map knows formula stereo vision sensor model
CN108444484A (en) * 2018-03-12 2018-08-24 珠海市微半导体有限公司 A kind of control method and chip and robot of structure grating map
WO2018214978A1 (en) * 2017-05-26 2018-11-29 苏州宝时得电动工具有限公司 Positioning device and method and automatically moving apparatus
CN109032147A (en) * 2018-09-10 2018-12-18 扬州方棱机械有限公司 The method for generating grass-removing robot virtual boundary based on satellite positioning signal
CN109298386A (en) * 2018-10-17 2019-02-01 中国航天系统科学与工程研究院 A kind of three-dimensional zone of ignorance quick detecting method based on multiple agent collaboration
WO2019228438A1 (en) * 2018-06-01 2019-12-05 浙江亚特电器有限公司 Obstacle self-learning method and new obstacle self-learning method
CN110567467A (en) * 2019-09-11 2019-12-13 北京云迹科技有限公司 map construction method and device based on multiple sensors and storage medium
CN111168678A (en) * 2020-01-09 2020-05-19 上海丛远机械有限公司 Walking robot, method of controlling walking robot, and walking robot system
CN111329398A (en) * 2020-03-27 2020-06-26 上海高仙自动化科技发展有限公司 Robot control method, robot, electronic device, and readable storage medium
CN111609848A (en) * 2020-05-21 2020-09-01 北京洛必德科技有限公司 Intelligent optimization method and system for multi-robot cooperation mapping
CN111771510A (en) * 2014-12-22 2020-10-16 美国iRobot公司 Method, system, robot and computer readable medium for mowing multiple blocks
CN111836185A (en) * 2019-04-22 2020-10-27 苏州科瓴精密机械科技有限公司 Method, device and equipment for determining position coordinates of base station and storage medium
CN111857127A (en) * 2020-06-12 2020-10-30 珠海市一微半导体有限公司 Clean partition planning method for robot walking along edge, chip and robot
CN112147886A (en) * 2019-06-27 2020-12-29 深圳拓邦股份有限公司 Self-adaptive method for boundary signal of mower system and mower system
CN112212863A (en) * 2019-07-09 2021-01-12 苏州科瓴精密机械科技有限公司 Method and system for creating grid map
CN112214560A (en) * 2019-07-09 2021-01-12 苏州科瓴精密机械科技有限公司 Updating method and updating system of grid map
CN112214010A (en) * 2019-07-09 2021-01-12 苏州科瓴精密机械科技有限公司 Updating method and updating system for grid map parameters
WO2021003958A1 (en) * 2019-07-09 2021-01-14 苏州科瓴精密机械科技有限公司 Method for creating and system for creating raster map
WO2021031442A1 (en) * 2019-08-16 2021-02-25 苏州科瓴精密机械科技有限公司 Obstacle map creation method and system, robot, and readable storage medium
CN112525208A (en) * 2020-11-27 2021-03-19 青岛泛钛客科技有限公司 Method, device and equipment for quickly constructing urban road map
CN115700417A (en) * 2021-07-14 2023-02-07 尚科宁家(中国)科技有限公司 Cleaning robot and image construction error elimination method
CN116058124A (en) * 2017-06-26 2023-05-05 株式会社久保田 Work vehicle and travel path setting system therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010018640A1 (en) * 2000-02-28 2001-08-30 Honda Giken Kogyo Kabushiki Kaisha Obstacle detecting apparatus and method, and storage medium which stores program for implementing the method
US20040039498A1 (en) * 2002-08-23 2004-02-26 Mark Ollis System and method for the creation of a terrain density model
CN101388043A (en) * 2008-09-26 2009-03-18 北京航空航天大学 A OGC high-performance remote sensing image map service method based on small block pictures
CN102138769A (en) * 2010-01-28 2011-08-03 深圳先进技术研究院 Cleaning robot and cleaning method thereby
CN102999927A (en) * 2012-11-23 2013-03-27 中国科学院亚热带农业生态研究所 Fine partition method of soil pollutant content spatial distribution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010018640A1 (en) * 2000-02-28 2001-08-30 Honda Giken Kogyo Kabushiki Kaisha Obstacle detecting apparatus and method, and storage medium which stores program for implementing the method
US20040039498A1 (en) * 2002-08-23 2004-02-26 Mark Ollis System and method for the creation of a terrain density model
CN101388043A (en) * 2008-09-26 2009-03-18 北京航空航天大学 A OGC high-performance remote sensing image map service method based on small block pictures
CN102138769A (en) * 2010-01-28 2011-08-03 深圳先进技术研究院 Cleaning robot and cleaning method thereby
CN102999927A (en) * 2012-11-23 2013-03-27 中国科学院亚热带农业生态研究所 Fine partition method of soil pollutant content spatial distribution

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511485A (en) * 2014-09-25 2016-04-20 科沃斯机器人有限公司 Grid map creating method for self-moving robot
CN105511485B (en) * 2014-09-25 2018-07-06 科沃斯机器人股份有限公司 For the creation method of self-movement robot grating map
CN111771510A (en) * 2014-12-22 2020-10-16 美国iRobot公司 Method, system, robot and computer readable medium for mowing multiple blocks
CN104699101A (en) * 2015-01-30 2015-06-10 深圳拓邦股份有限公司 Robot mowing system capable of customizing mowing zone and control method thereof
US11960304B2 (en) 2015-03-18 2024-04-16 Irobot Corporation Localization and mapping using physical features
CN106200633A (en) * 2015-03-18 2016-12-07 美国iRobot公司 Use physical features location and drawing
CN106292654A (en) * 2015-06-03 2017-01-04 北京京东尚科信息技术有限公司 A kind of method and apparatus of drawing area map
CN105096733B (en) * 2015-08-07 2018-01-19 王红军 A kind of environmental characteristic based on grating map is represented with knowing method for distinguishing
CN105096733A (en) * 2015-08-07 2015-11-25 王红军 Raster map based environment characteristic representation and recognition method
CN106444736B (en) * 2015-08-11 2020-07-14 苏州宝时得电动工具有限公司 Automatic return system and control method
CN106444736A (en) * 2015-08-11 2017-02-22 苏州宝时得电动工具有限公司 Automatic return system and control method
CN106485876A (en) * 2015-08-26 2017-03-08 苏州宝时得电动工具有限公司 The method and system of the real-time automatic identification of virtual boundary
CN105160122A (en) * 2015-09-08 2015-12-16 王红军 Grid map based environment characteristic similarity measurement method
CN105160122B (en) * 2015-09-08 2018-02-23 王红军 A kind of method for measuring similarity of the environmental characteristic based on grating map
CN108292138B (en) * 2015-12-02 2021-06-01 高通股份有限公司 Random map aware stereo vision sensor model
CN108292138A (en) * 2015-12-02 2018-07-17 高通股份有限公司 Random map knows formula stereo vision sensor model
CN105373127A (en) * 2015-12-09 2016-03-02 百色学院 Wall lizard type remote control investigation robot
CN107305381A (en) * 2016-04-21 2017-10-31 上海慧流云计算科技有限公司 A kind of self-navigation robot and automatic navigation method
CN106851095A (en) * 2017-01-13 2017-06-13 深圳拓邦股份有限公司 A kind of localization method, apparatus and system
CN106851095B (en) * 2017-01-13 2019-12-24 深圳拓邦股份有限公司 Positioning method, device and system
WO2018214978A1 (en) * 2017-05-26 2018-11-29 苏州宝时得电动工具有限公司 Positioning device and method and automatically moving apparatus
US11448775B2 (en) 2017-05-26 2022-09-20 Positec Power Tools (Suzhou) Co., Ltd Positioning apparatus and method and self-moving device
CN116058124A (en) * 2017-06-26 2023-05-05 株式会社久保田 Work vehicle and travel path setting system therefor
CN107390700B (en) * 2017-09-05 2021-06-01 珠海市一微半导体有限公司 Dynamic mapping method and chip for robot
CN107390700A (en) * 2017-09-05 2017-11-24 珠海市微半导体有限公司 The dynamic of robot builds drawing method and chip
CN108444484A (en) * 2018-03-12 2018-08-24 珠海市微半导体有限公司 A kind of control method and chip and robot of structure grating map
US11947358B2 (en) 2018-06-01 2024-04-02 Zhejiang Yat Electrical Appliance Co., Ltd Obstacle self-learning method and new obstacle self-learning method
WO2019228438A1 (en) * 2018-06-01 2019-12-05 浙江亚特电器有限公司 Obstacle self-learning method and new obstacle self-learning method
CN109032147A (en) * 2018-09-10 2018-12-18 扬州方棱机械有限公司 The method for generating grass-removing robot virtual boundary based on satellite positioning signal
CN109298386B (en) * 2018-10-17 2020-10-23 中国航天系统科学与工程研究院 Three-dimensional unknown area rapid detection method based on multi-agent cooperation
CN109298386A (en) * 2018-10-17 2019-02-01 中国航天系统科学与工程研究院 A kind of three-dimensional zone of ignorance quick detecting method based on multiple agent collaboration
CN111836185B (en) * 2019-04-22 2023-10-10 苏州科瓴精密机械科技有限公司 Method, device, equipment and storage medium for determining base station position coordinates
CN111836185A (en) * 2019-04-22 2020-10-27 苏州科瓴精密机械科技有限公司 Method, device and equipment for determining position coordinates of base station and storage medium
CN112147886A (en) * 2019-06-27 2020-12-29 深圳拓邦股份有限公司 Self-adaptive method for boundary signal of mower system and mower system
CN112214010B (en) * 2019-07-09 2022-01-11 苏州科瓴精密机械科技有限公司 Updating method and updating system for grid map parameters
WO2021003958A1 (en) * 2019-07-09 2021-01-14 苏州科瓴精密机械科技有限公司 Method for creating and system for creating raster map
CN112214560B (en) * 2019-07-09 2024-08-09 苏州科瓴精密机械科技有限公司 Grid map updating method and system
CN112214010A (en) * 2019-07-09 2021-01-12 苏州科瓴精密机械科技有限公司 Updating method and updating system for grid map parameters
CN112214560A (en) * 2019-07-09 2021-01-12 苏州科瓴精密机械科技有限公司 Updating method and updating system of grid map
CN112212863A (en) * 2019-07-09 2021-01-12 苏州科瓴精密机械科技有限公司 Method and system for creating grid map
CN112212863B (en) * 2019-07-09 2024-08-09 苏州科瓴精密机械科技有限公司 Grid map creation method and system
WO2021031442A1 (en) * 2019-08-16 2021-02-25 苏州科瓴精密机械科技有限公司 Obstacle map creation method and system, robot, and readable storage medium
CN110567467A (en) * 2019-09-11 2019-12-13 北京云迹科技有限公司 map construction method and device based on multiple sensors and storage medium
CN111168678A (en) * 2020-01-09 2020-05-19 上海丛远机械有限公司 Walking robot, method of controlling walking robot, and walking robot system
CN111168678B (en) * 2020-01-09 2023-07-07 上海山科机器人有限公司 Walking robot, method of controlling walking robot, and walking robot system
CN111329398A (en) * 2020-03-27 2020-06-26 上海高仙自动化科技发展有限公司 Robot control method, robot, electronic device, and readable storage medium
CN111609848A (en) * 2020-05-21 2020-09-01 北京洛必德科技有限公司 Intelligent optimization method and system for multi-robot cooperation mapping
US11914391B2 (en) 2020-06-12 2024-02-27 Amicro Semiconductor Co., Ltd. Cleaning partition planning method for robot walking along boundry, chip and robot
CN111857127A (en) * 2020-06-12 2020-10-30 珠海市一微半导体有限公司 Clean partition planning method for robot walking along edge, chip and robot
CN112525208B (en) * 2020-11-27 2022-06-28 青岛泛钛客科技有限公司 Method, device and equipment for quickly constructing urban road map
CN112525208A (en) * 2020-11-27 2021-03-19 青岛泛钛客科技有限公司 Method, device and equipment for quickly constructing urban road map
CN115700417A (en) * 2021-07-14 2023-02-07 尚科宁家(中国)科技有限公司 Cleaning robot and image construction error elimination method

Also Published As

Publication number Publication date
CN104035444B (en) 2016-08-24

Similar Documents

Publication Publication Date Title
CN104035444B (en) Robot map structuring storage method
CN106643719B (en) Path planning algorithm of intelligent mowing vehicle
CN102138769B (en) Cleaning robot and cleaning method thereby
EP3764186A1 (en) Method for controlling autonomous mobile robot to travel along edge
CN109782756A (en) With independently around the Intelligent Mobile Robot of barrier walking function
CN110793524B (en) A Method of Path Planning for Lawn Mower
CN108575095B (en) Self-moving equipment and positioning system, positioning method and control method thereof
WO2019228438A1 (en) Obstacle self-learning method and new obstacle self-learning method
CN103674015A (en) Trackless positioning navigation method and device
CN108490932A (en) A kind of control method of grass-removing robot and automatically control mowing system
CN112102429B (en) Graph building method of mower, storage medium and mower
CN110806585B (en) Robot positioning method and system based on trunk clustering tracking
CN113934225A (en) Plant protection unmanned aerial vehicle route planning method based on full coverage path
CN114610038A (en) A kind of weeding robot control system and control method
Wang et al. Coverage path planning design of mapping UAVs based on particle swarm optimization algorithm
US20230345864A1 (en) Smart mowing system
CN108196538A (en) Three-dimensional point cloud model-based field agricultural robot autonomous navigation system and method
CN114754777A (en) A full path coverage planning method for unmanned lawn mower based on geographic coordinate system
CN117308965B (en) Harvester robot autonomous grain unloading path planning method based on sliding window algorithm
CN114397894A (en) A target search method for mobile robots imitating human memory
CN211207169U (en) A Greenhouse Picking Robot Chassis Control System
CN107402011A (en) A kind of compound grid map constructing method for Greenhouse Robot
CN104898551A (en) Dual-vision self-positioning system for full-automatic robot mower
CN113947665B (en) Method for constructing map of spherical hedge trimmer based on multi-line laser radar and monocular vision
CN108801275A (en) Indoor mobile robot fingerprint map method for building up based on wireless network and Geomagnetic signal

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20140910

Assignee: Rui Rui Intelligent Technology (Kunshan) Co., Ltd.

Assignor: Southeast University

Contract record no.: 2018320000011

Denomination of invention: Robot map establishing and storing method

Granted publication date: 20160824

License type: Exclusive License

Record date: 20180109