CN104034942A - 电压幅值检测电路及方法 - Google Patents

电压幅值检测电路及方法 Download PDF

Info

Publication number
CN104034942A
CN104034942A CN201410273960.5A CN201410273960A CN104034942A CN 104034942 A CN104034942 A CN 104034942A CN 201410273960 A CN201410273960 A CN 201410273960A CN 104034942 A CN104034942 A CN 104034942A
Authority
CN
China
Prior art keywords
circuit
voltage
voltage magnitude
signal
tested
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410273960.5A
Other languages
English (en)
Inventor
孙柏峰
费翔
季丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AO Smith China Water Heater Co Ltd
Original Assignee
AO Smith China Water Heater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AO Smith China Water Heater Co Ltd filed Critical AO Smith China Water Heater Co Ltd
Priority to CN201410273960.5A priority Critical patent/CN104034942A/zh
Publication of CN104034942A publication Critical patent/CN104034942A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

本发明公开了一种电压幅值检测电路及方法,其中电路包括:钳位电路,用于对被测交流信号进行电压钳位;分流电路,与钳位电路并联,用于对被测交流信号进行分流;触发电路,与钳位电路连接,用于在电压钳位后的被测交流信号达到预定的触发电压时,触发强弱电隔离电路运行;强弱电隔离电路,与触发电路连接,用于在被触发电路触发后,输出用于电压幅值检测的信号。本发明与现有技术相比,电路造价较低,且电路所占用的PCB空间较小,占用I/O口资源较少。

Description

电压幅值检测电路及方法
技术领域
本发明涉及电路技术领域,尤其涉及电压幅值检测电路及方法。
背景技术
现有技术采用线型变压器将AC(Alternating Current,交流电)强电信号转为弱电信号,引出一路作为频率检测,另一路通过整流滤波电压值输入运放或者单片机进行计算,从而查表得到相对应供电电压。ECO检测(确定提供被测交流信号的回路的通断)采用单独光耦采集检测电路。
然而,现有技术因采用变压器组合,使得电路造价较高,电路所占用PCB(Printed CircuitBoard,印刷电路板)空间较大,且对于频率、电压和ECO通断分别通过不同I/O(Input/Output,输入/输出)口检测,占用I/O口资源较多。
发明内容
本发明实施例提供一种电压幅值检测电路,用以降低电路造价,减少电路所占用的PCB空间和I/O口资源,该电路包括:
钳位电路,用于对被测交流信号进行电压钳位;
分流电路,与钳位电路并联,用于对被测交流信号进行分流;
触发电路,与钳位电路连接,用于在电压钳位后的被测交流信号达到预定的触发电压时,触发强弱电隔离电路运行;
强弱电隔离电路,与触发电路连接,用于在被触发电路触发后,输出用于电压幅值检测的信号。
一个实施例中,所述钳位电路包括串联连接的稳压二极管和电阻。
一个实施例中,所述分流电路包括电阻。
一个实施例中,所述触发电路包括MOS(Metal-Oxide-Semiconductor,金属氧化物半导体)管、场效应管、三极管、或施密特触发器。
一个实施例中,所述强弱电隔离电路包括光耦。
本发明实施例还提供一种利用上述电压幅值检测电路进行电压幅值检测的方法,用以降低电路造价,减少电路所占用的PCB空间和I/O口资源,该方法包括:
采集所述用于电压幅值检测的信号;
确定被测交流信号输入所述电压幅值检测电路后触发输出所述用于电压幅值检测的信号的触发时长,根据所述触发时长确定被测交流信号的电压幅值。
一个实施例中,按如下公式,根据所述触发时长确定被测交流信号的电压幅值:
T=2*arcSin[V0/(V*1.414)]/ω+1/120;
其中,T为所述触发时长,V0为所述触发电压,V为被测交流信号的电压幅值,ω=2πf,f为频率。
一个实施例中,所述的电压幅值检测方法还包括:
根据所述用于电压幅值检测的信号确定提供被测交流信号的回路的通断。
一个实施例中,根据所述用于电压幅值检测的信号确定提供被测交流信号的回路的通断,包括:
控制所述触发电压小于正常工作最低电压,当所述用于电压幅值检测的信号为高电平的时长大于阈值时确定提供被测交流信号的回路断开;当所述用于电压幅值检测的信号为方波时确定提供被测电压交流信号的回路接通。
本发明实施例中,电压幅值检测电路采用钳位电路对被测交流信号进行电压钳位,分流电路对被测交流信号进行分流,触发电路在电压钳位后的被测交流信号达到预定的触发电压时,触发强弱电隔离电路运行,强弱电隔离电路在被触发电路触发后,输出用于电压幅值检测的信号,与现有技术相比,电路中无需采用线性变压器,可以节省很大开支,降低电路造价,且电路所占用的PCB空间较小,并且该电路可以实现电压幅值检测,占用I/O口资源较少。进一步的,在实施例中,该电压幅值检测电路不但可以实现电压幅值检测,还可以确定提供被测交流信号的回路的通断。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1为本发明实施例中电压幅值检测电路的结构框图;
图2为本发明实施例中电压幅值检测电路的具体实例图;
图3为本发明实施例中电压幅值检测电路的工作原理示例图;
图4为本发明实施例中电压幅值检测方法的示意图;
图5为本发明实施例中电压幅值检测的原理示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。
为了降低电路造价,减少电路所占用的PCB空间和I/O口资源,本发明实施例中提供一种电压幅值检测电路,图1为本发明实施例中电压幅值检测电路的结构框图,如图1所示,在该电压幅值检测电路中包括:
钳位电路101,用于对被测交流信号进行电压钳位;
分流电路102,与钳位电路101并联,用于对被测交流信号进行分流;
触发电路103,与钳位电路101连接,用于在电压钳位后的被测交流信号达到预定的触发电压时,触发强弱电隔离电路104运行;
强弱电隔离电路104,与触发电路103连接,用于在被触发电路103触发后,输出用于电压幅值检测的信号。
具体实现上述电压幅值检测电路时,可以采用多种形式。例如,钳位电路可以由串联连接的稳压二极管和电阻来实现,或者也可以利用稳压模块、运放等来实现,在后面的实施例中以钳位电路包括串联连接的稳压二极管和电阻为例进行说明,实施时稳压模块和运放的造价要比稳压二极管和电阻的组合要高。进一步的,分流电路例如可以由电阻等来实现。触发电路例如可以由MOS管、场效应管、三极管、或施密特触发器等来实现。强弱电隔离电路可以由光耦等来实现。
实施例中可以通过调整分流电路的电阻阻值,使得大部分电流流经分流电路;通过钳位电路和分流电路,可以让触发电路随温度不同产生的压降变化反应在钳位电路上,使触发电压的温漂降低。
下面举一具体实例说明本发明实施例中的电压幅值检测电路。
图2为本例中电压幅值检测电路的结构图。如图2所示,本例中,钳位电路包括串联连接的稳压二极管D28和电阻R22;分流电路包括电阻R110;触发电路包括MOS管Q17;强弱电隔离电路包括光耦U5。
图3为本例中电压幅值检测电路的工作原理示例图,如图3所示,本例中被测交流信号AC输入至稳压二极管D28和电阻R22进行钳位,并由电阻R110分流,在被测交流信号达到触发电压后MOS管Q17触发,之后光耦U5触发,光耦U5输出用于电压幅值检测的信号,例如输出一弱电信号供电压幅值检测,例如该弱电信号可以被MCU(Micro ControlUnit,单片机)采集,MCU采集到弱电信号后可进行电压幅值检测。
如图2所示,实施例中,电压幅值检测电路还可以包括降压电阻,对被测交流信号进行降压。降压电阻、钳位电路、分流电路、触发电路和强弱电隔离电路的具体形式可以根据实际需要确定,这些电路元件之间的具体连接方式也可以根据实际需要确定,能够实现相应的功能即可。
例如,降压电阻可以是多个串联或并联的电阻的组合。在图2中,降压电阻包括依次串联的电阻R112、电阻R111、电阻R20和电阻R21;其中电阻R112的输入端接被测交流信号AC_POWER_INPUT,电阻R21的输出端接稳压二极管D28的阴极。
图2所示的实例中,钳位电路包括串联连接的稳压二极管D28和电阻R22;分流电路包括电阻R110;触发电路包括MOS管Q17;强弱电隔离电路包括光耦U5;其中,稳压二极管D28的阴极接电阻R21的输出端,稳压二极管D28的阳极接MOS管Q17的栅极G;MOS管Q17的源极S接地,漏极D接光耦U5的输入端1、2。稳压二极管D28的阳极还连接电阻R22的第一端;稳压二极管D28的阴极还连接电阻R110的第一端;电阻R110的第二端和电阻R22的第二端均接地。实施例中,电路中还可以根据实际需要增加电阻、开关二极管等元件。例如,在图2所示的实例中,稳压二极管D28的阴极还连接开关二极管D29的阴极;开关二极管D29的阳极接地。
实施例中,在MOS管与光耦连接的电路中,也可以根据实际需要增加电阻和开关二极管等元件。例如,在图2所示的实例中,MOS管Q17的漏极D连接开关二极管D17的阳极,开关二极管D17的阴极连接电阻R23的第一端,电阻R23的第二端接强电侧稳定电平VCC;开关二极管D17的阴极还连接光耦U5的第一输入端1;MOS管Q17的漏极还连接光耦U5的第二输入端2。
实施例中,光耦输出端的电路也可以根据实际需要增加电阻和电容等元件。例如,在图2所示的实例中,光耦U5的第一输出端3接地;光耦U5的第二输出端4连接电阻R24的第一端和电阻R25的第一端;电阻R24的第二端接正5伏电平;电阻R25的第二端提供弱电信号VOLTAGE_DETECTION_DIG_IN;电阻R25的第二端还经电容C31接地。光耦U5起强弱电隔离作用,VOLTAGE_DETECTION_DIG_IN输出端口例如可以接到MCU的弱电采集输入端。
本发明实施例中,利用上述电压幅值检测电路进行电压幅值检测。图4为本发明实施例中电压幅值检测方法的示意图,如图4所示,该方法可以包括:
步骤401、采集所述用于电压幅值检测的信号;
步骤402、确定被测交流信号输入所述电压幅值检测电路后触发输出所述用于电压幅值检测的信号的触发时长,根据所述触发时长确定被测交流信号的电压幅值。
图4所示方法可以由能够实现其功能的装置实施,例如该装置可以是MCU等信号处理装置,实施例中以该装置是MCU为例进行详细说明。例如图2所示的实例中,当被测电压AC_POWER_INPUT达到触发值V0以后,稳压二极管D28导通,从而Q17导通,光耦被触发,MCU可以采集到VOLTAGE_DETECTION_DIG_IN端口返回的信号。
具体的,在本发明实施例的电压幅值检测电路中,直接将L线(如图2所示)通过电阻降压连接到交流地,当L入线电压超过一定值时MOS管导通,进而光耦导通,不同的输入电压对应MOS管开关时长不同,单片机可以根据导通时长或者关断时长来判断AC电压值大小,其中稳压二极管及电阻的组合可以最大限度降低温漂对测试带来的影响。图5为本发明实施例中电压幅值检测的原理示意图。如图5所示,对于不同的外部输入电压V1和V2时,测得的触发时间T1和T2也不同,基于一定的算法可以计算出输入电压V1和V2的大小。
以图2所示电路为例,图2中稳压二极管D28可以是一个齐纳二极管,当输入电压达到18V时被雪崩击穿,并且将电压稳定在18V,随着输入电压上升至20V或更高,稳压二极管D28和MOS管Q17将导通,单片机获得一零信号,此时的触发电压假定可以为:
V0=(20/R110+2/R22)*(R111+R20+R21)+20=132.4(假设Vgs=2V);
该触发电压的值是固定的,如图5所示,可以得出不同输入电压对应的不同触发时间。
当输入电压为240V/60Hz时,触发时间计算如下:
V0=240*1.414*Sin[ω(T2-1/(2*60))/2];其中ω=2πf,f为频率;
Sin[ω(T2-1/(2*60))/2]=V0/(240*1.414);
ω(T2-1/(2*60))/2=arcSin[V0/(240*1.414)];
T2=2*arcSin[V0/(240*1.414)]/ω+1/120
=0.0104608632721551s;
=10.4608632721551ms
当输入电压为180V/60Hz时,触发时间如下:
T1=2*arcSin[V0/(180*1.414)]/ω+1/120
=0.011237427382717s;
=11.237427382717ms
以此类推可以得到每个电压对应的时间,也就是相应AD值。
由此得知,可以按如下公式,根据所述触发时长确定被测交流信号的电压幅值:
T=2*arcSin[V0/(V*1.414)]/ω+1/120;
其中,T为所述触发时长,V0为所述触发电压,V为被测交流信号的电压幅值,ω=2πf,f为频率。
本发明实施例的电压幅值检测电路在检测电压的同时还可以作为频率检测使用。在进行频率检测时,可以根据采集到的用于电压幅值检测的信号(前述弱电信号)的电平转换,确定被测交流信号的频率。具体的,可以将弱电信号从首次(MCU输入时)跳转为高电平至下一次跳转为高电平的时长确定为被测交流信号的一个周期。
本发明实施例的电压幅值检测电路还可以作为ECO检测使用。实施时可以实现185V低压报警,经过单片机处理可以将报警点电压精度控制在±1V。实施时可以根据采集的用于电压幅值检测的信号确定提供被测交流信号的回路的通断。具体实现过程例如可以包括:控制触发电压小于正常工作最低电压,当所述用于电压幅值检测的信号为高电平的时长大于阈值时确定提供被测交流信号的回路断开;当所述用于电压幅值检测的信号为方波时确定提供被测电压交流信号的回路接通。例如图2所示的实例中,通过调整参数使得触发电压V0小于正常工作最低电压,当VOLTAGE_DETECTION_DIG_IN端口一直输出为高电平则说明被测AC信号回路被断开,如果接收到的是方波则表示被测AC信号为接通。
综上所述,电压幅值检测电路采用钳位电路对被测交流信号进行电压钳位,分流电路对被测交流信号进行分流,触发电路在电压钳位后的被测交流信号达到预定的触发电压时,触发强弱电隔离电路运行,强弱电隔离电路在被触发电路触发后,输出用于电压幅值检测的信号,与现有技术相比,电路中无需采用线性变压器,可以节省很大开支,降低电路造价,且电路所占用的PCB空间较小,并且该电路可以实现电压幅值检测,占用I/O口资源较少。进一步的,在实施例中,该电压幅值检测电路不但可以实现电压幅值检测,还可以确定提供被测交流信号的回路的通断。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种电压幅值检测电路,其特征在于,包括:
钳位电路,用于对被测交流信号进行电压钳位;
分流电路,与钳位电路并联,用于对被测交流信号进行分流;
触发电路,与钳位电路连接,用于在电压钳位后的被测交流信号达到预定的触发电压时,触发强弱电隔离电路运行;
强弱电隔离电路,与触发电路连接,用于在被触发电路触发后,输出用于电压幅值检测的信号。
2.如权利要求1所述的电压幅值检测电路,其特征在于,所述钳位电路包括串联连接的稳压二极管和电阻。
3.如权利要求1所述的电压幅值检测电路,其特征在于,所述分流电路包括电阻。
4.如权利要求1所述的电压幅值检测电路,其特征在于,所述触发电路包括金属氧化物半导体MOS管、场效应管、三极管、或施密特触发器。
5.如权利要求1所述的电压幅值检测电路,其特征在于,所述强弱电隔离电路包括光耦。
6.一种利用权利要求1至5任一所述电压幅值检测电路进行电压幅值检测的方法,其特征在于,包括:
采集所述用于电压幅值检测的信号;
确定被测交流信号输入所述电压幅值检测电路后触发输出所述用于电压幅值检测的信号的触发时长,根据所述触发时长确定被测交流信号的电压幅值。
7.如权利要求6所述的电压幅值检测方法,其特征在于,按如下公式,根据所述触发时长确定被测交流信号的电压幅值:
T=2*arcSin[V0/(V*1.414)]/ω+1/120;
其中,T为所述触发时长,V0为所述触发电压,V为被测交流信号的电压幅值,ω=2πf,f为频率。
8.如权利要求6所述的电压幅值检测方法,其特征在于,还包括:
根据所述用于电压幅值检测的信号确定提供被测交流信号的回路的通断。
9.如权利要求8所述的电压幅值检测方法,其特征在于,根据所述用于电压幅值检测的信号确定提供被测交流信号的回路的通断,包括:
控制所述触发电压小于正常工作最低电压,当所述用于电压幅值检测的信号为高电平的时长大于阈值时确定提供被测交流信号的回路断开;当所述用于电压幅值检测的信号为方波时确定提供被测电压交流信号的回路接通。
CN201410273960.5A 2014-06-18 2014-06-18 电压幅值检测电路及方法 Pending CN104034942A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410273960.5A CN104034942A (zh) 2014-06-18 2014-06-18 电压幅值检测电路及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410273960.5A CN104034942A (zh) 2014-06-18 2014-06-18 电压幅值检测电路及方法

Publications (1)

Publication Number Publication Date
CN104034942A true CN104034942A (zh) 2014-09-10

Family

ID=51465785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410273960.5A Pending CN104034942A (zh) 2014-06-18 2014-06-18 电压幅值检测电路及方法

Country Status (1)

Country Link
CN (1) CN104034942A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106980040A (zh) * 2017-03-10 2017-07-25 厦门致杰智能科技有限公司 隔离电力线电压测量装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329796A (ja) * 1999-05-19 2000-11-30 Hitachi Lighting Ltd 電圧検出装置
CN1819387A (zh) * 2006-01-13 2006-08-16 彩虹集团电子股份有限公司 开关电源输出电压的一种检测电路及检测方法
CN101738527A (zh) * 2008-11-21 2010-06-16 上海电机学院 用于功率因数校正控制电路的交流输入电压幅值检测电路
FR2985031A1 (fr) * 2011-12-23 2013-06-28 Fagorbrandt Sas Dispositif de mesure de la tension d'alimentation d'un systeme electronique, notamment pour un appareil electromenager domestique
CN203929854U (zh) * 2014-06-18 2014-11-05 艾欧史密斯(中国)热水器有限公司 电压幅值检测电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329796A (ja) * 1999-05-19 2000-11-30 Hitachi Lighting Ltd 電圧検出装置
CN1819387A (zh) * 2006-01-13 2006-08-16 彩虹集团电子股份有限公司 开关电源输出电压的一种检测电路及检测方法
CN101738527A (zh) * 2008-11-21 2010-06-16 上海电机学院 用于功率因数校正控制电路的交流输入电压幅值检测电路
FR2985031A1 (fr) * 2011-12-23 2013-06-28 Fagorbrandt Sas Dispositif de mesure de la tension d'alimentation d'un systeme electronique, notamment pour un appareil electromenager domestique
CN203929854U (zh) * 2014-06-18 2014-11-05 艾欧史密斯(中国)热水器有限公司 电压幅值检测电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106980040A (zh) * 2017-03-10 2017-07-25 厦门致杰智能科技有限公司 隔离电力线电压测量装置

Similar Documents

Publication Publication Date Title
CN102832792B (zh) 一种源极驱动控制电路及其控制方法
CN103477233B (zh) 一种电流检测电路及其控制电路和电源转换电路
CN102005795B (zh) 可充电电池电量检测装置
CN103389771A (zh) 低功耗电压调节电路
CN104360143A (zh) 负载过零点检测电路及方法,负载电压检测电路及方法
CN202583311U (zh) 交流电过零检测电路
CN103427618A (zh) 一种软启动控制电路
CN103217572A (zh) 交流电电压及其过零点检测装置及方法
CN203178354U (zh) 一种适合于单片机的三相交流电量检测电路
CN103913626B (zh) 一种防止直流输入误告警的交流掉电告警电路
CN109600062A (zh) 一种全桥整流的控制方法及全桥整流电路
CN103780105A (zh) 双电压自动切换控制方法及系统
CN104267273A (zh) 一种市电波动快速检测电路及其检测方法
CN103454581A (zh) 一种接触器性能测试设备
CN105450054A (zh) 功率因数校正电路自带辅助电源电路及其控制方法和装置
CN203858310U (zh) 一种大功率储能变流器测试系统
CN204290464U (zh) 供电电路及电子设备
CN103257272A (zh) 一种交流供电电源掉电检测电路及检测方法
CN207586362U (zh) 一种测试平台
CN203929854U (zh) 电压幅值检测电路
CN105048830A (zh) 一种三相交流调压数字化控制装置及控制方法
CN204166058U (zh) 一种市电波动快速检测电路
CN204287447U (zh) 一种交直流输入检测电路
CN104034942A (zh) 电压幅值检测电路及方法
CN203377584U (zh) 一种三相无中线缺相欠压过压保护电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140910

RJ01 Rejection of invention patent application after publication