CN104032374A - Preparation method of lead titanate/zinc oxide composite nanostructure on flexible substrate - Google Patents
Preparation method of lead titanate/zinc oxide composite nanostructure on flexible substrate Download PDFInfo
- Publication number
- CN104032374A CN104032374A CN201410207459.9A CN201410207459A CN104032374A CN 104032374 A CN104032374 A CN 104032374A CN 201410207459 A CN201410207459 A CN 201410207459A CN 104032374 A CN104032374 A CN 104032374A
- Authority
- CN
- China
- Prior art keywords
- aqueous solution
- lead titanate
- flexible substrate
- zinc oxide
- single crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 title claims abstract description 75
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims abstract description 70
- 239000011787 zinc oxide Substances 0.000 title claims abstract description 35
- 239000000758 substrate Substances 0.000 title claims abstract description 29
- 239000002131 composite material Substances 0.000 title claims abstract description 28
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000007864 aqueous solution Substances 0.000 claims abstract description 82
- 239000013078 crystal Substances 0.000 claims abstract description 47
- 239000002121 nanofiber Substances 0.000 claims abstract description 46
- 239000000243 solution Substances 0.000 claims abstract description 32
- 239000000725 suspension Substances 0.000 claims abstract description 31
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 28
- 239000010703 silicon Substances 0.000 claims abstract description 28
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 claims abstract description 22
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 claims abstract description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 16
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 claims abstract description 15
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000004246 zinc acetate Substances 0.000 claims abstract description 15
- 235000010299 hexamethylene tetramine Nutrition 0.000 claims abstract description 11
- 239000004312 hexamethylene tetramine Substances 0.000 claims abstract description 11
- 239000001509 sodium citrate Substances 0.000 claims abstract description 11
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims abstract description 11
- 239000012528 membrane Substances 0.000 claims abstract description 8
- 239000000835 fiber Substances 0.000 claims abstract description 3
- 239000011259 mixed solution Substances 0.000 claims abstract description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 48
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 claims description 26
- 238000006243 chemical reaction Methods 0.000 claims description 20
- 239000010936 titanium Substances 0.000 claims description 20
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 16
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 16
- 150000002500 ions Chemical class 0.000 claims description 15
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 14
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000008367 deionised water Substances 0.000 claims description 10
- 229910021641 deionized water Inorganic materials 0.000 claims description 10
- 239000004642 Polyimide Substances 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 9
- 229920001721 polyimide Polymers 0.000 claims description 9
- GHDSNRQFECQVII-UHFFFAOYSA-N [Ti].OOO Chemical compound [Ti].OOO GHDSNRQFECQVII-UHFFFAOYSA-N 0.000 claims description 8
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 claims description 8
- 229920000515 polycarbonate Polymers 0.000 claims description 8
- 239000004417 polycarbonate Substances 0.000 claims description 8
- 239000011112 polyethylene naphthalate Substances 0.000 claims description 8
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 claims description 7
- 238000001556 precipitation Methods 0.000 claims description 7
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 claims description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 6
- 239000007795 chemical reaction product Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- -1 polyethylene terephthalate Polymers 0.000 claims description 5
- 239000002244 precipitate Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- IJRVLVIFMRWJRQ-UHFFFAOYSA-N nitric acid zinc Chemical compound [Zn].O[N+]([O-])=O IJRVLVIFMRWJRQ-UHFFFAOYSA-N 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 5
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 abstract description 3
- 238000001027 hydrothermal synthesis Methods 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 abstract description 2
- 239000006185 dispersion Substances 0.000 abstract 1
- 239000000047 product Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 230000005621 ferroelectricity Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开的柔性基底上钛酸铅/氧化锌复合纳米结构的制备方法,步骤包括:采用水热法制得粉末状一维柱状结构钛酸铅单晶纳米纤维,加无水乙醇超声波振荡成悬浮液滴至硅片上,经干燥、退火,得到四方相钛酸铅单晶纳米纤维,将其从硅片上刮下并加入无水乙醇,滴至柔性基底上,在柔性基底上形成钛酸铅单晶纳米纤维膜;然后以醋酸锌为氧化锌种子溶液,硝酸锌水溶液、六次甲基四胺水溶液及柠檬酸钠水溶液的混合液为氧化锌生长液,在具有钛酸铅单晶纳米纤维膜的柔性基底上生长氧化锌,得到柔性基底上钛酸铅/氧化锌复合纳米结构。本发明工艺过程简单,易于控制,无污染,成本低。柔性基底上制得的钛酸铅/氧化锌复合纳米结构纯度高,分散性好。The preparation method of the lead titanate/zinc oxide composite nanostructure on the flexible substrate disclosed by the present invention comprises the steps of: preparing powdered one-dimensional columnar structure lead titanate single crystal nanofibers by hydrothermal method, adding absolute ethanol and ultrasonically oscillating into suspension The liquid is dropped onto the silicon wafer, dried and annealed to obtain tetragonal lead titanate single crystal nanofibers, which are scraped off from the silicon wafer, added with absolute ethanol, and dropped onto the flexible substrate to form titanic acid on the flexible substrate. lead single crystal nanofiber film; then zinc acetate is used as the zinc oxide seed solution, and the mixed solution of zinc nitrate aqueous solution, hexamethylenetetramine aqueous solution and sodium citrate aqueous solution is the zinc oxide growth solution. Zinc oxide is grown on the flexible substrate of the fiber membrane to obtain a lead titanate/zinc oxide composite nanostructure on the flexible substrate. The process of the invention is simple, easy to control, pollution-free and low in cost. The lead titanate/zinc oxide composite nanostructures prepared on the flexible substrate have high purity and good dispersion.
Description
技术领域 technical field
本发明涉及一种钛酸铅/氧化锌复合纳米结构的制备方法,尤其涉及一种柔性基底上钛酸铅/氧化锌复合纳米结构的制备方法。 The invention relates to a preparation method of a lead titanate/zinc oxide composite nanostructure, in particular to a preparation method of a lead titanate/zinc oxide composite nanostructure on a flexible substrate.
背景技术 Background technique
钛酸铅是一种典型的钙钛矿型铁电氧化物,由于结构简单,压电性和铁电性强,自从50年代发现以来,钛酸铅一直是铁电和压电领域研究的原型材料,对于人们认识钙钛矿氧化物压电和铁电性的电子起源有着十分重要的意义。此外,它作为热释电材料也具有很大的应用潜力,是很有前途的铁电、压电和热释电材料。浙江大学首次使用高分子辅助水热法制得一维柱状结构的钛酸铅单晶纳米纤维(Zhaohui Ren, Gang Xu, Yong Liu, Xiao Wei, Yihan Zhu, Xiaobin Zhang, Guanglie Lv, Youwen Wang, Yuewu Zeng, Piyi Du, Wenjian Weng, Ge Shen, J. Z. Jiang and Gaorong Han,PbTiO3 Nanofibers with Edge-Shared TiO6 Octahedra,2010,132(16), 5572-5573.)。这种结构的钛酸铅晶体,其钛氧八面体是通过共边连接形成一维柱状结构。这种一维柱状结构钛酸铅经过一定条件退火处理后,能够相变成四方相(P4mm)钛酸铅,同时保持一维纳米纤维的形貌。但针对这种材料与其他氧化物的复合材料的研究,尤其是在柔性基地上进行复合材料的制备及性能探究目前仍处于探索阶段,国内外均未见相关报道。 Lead titanate is a typical perovskite-type ferroelectric oxide. Due to its simple structure and strong piezoelectricity and ferroelectricity, lead titanate has been the prototype of research in the field of ferroelectricity and piezoelectricity since its discovery in the 1950s. It is of great significance for people to understand the electronic origin of piezoelectricity and ferroelectricity of perovskite oxides. In addition, it also has great application potential as a pyroelectric material and is a promising ferroelectric, piezoelectric, and pyroelectric material. Zhejiang University used polymer-assisted hydrothermal method for the first time to prepare lead titanate single crystal nanofibers with one-dimensional columnar structure (Zhaohui Ren, Gang Xu, Yong Liu, Xiao Wei, Yihan Zhu, Xiaobin Zhang, Guanglie Lv, Youwen Wang, Yuewu Zeng , Piyi Du, Wenjian Weng, Ge Shen, JZ Jiang and Gaorong Han, PbTiO 3 Nanofibers with Edge-Shared TiO 6 Octahedra, 2010, 132(16), 5572-5573.). In lead titanate crystals with this structure, the titanyl octahedrons are connected by common edges to form a one-dimensional columnar structure. This one-dimensional columnar structure lead titanate can be transformed into tetragonal phase (P4mm) lead titanate after annealing under certain conditions, while maintaining the morphology of one-dimensional nanofibers. However, the research on composite materials of this material and other oxides, especially the preparation and performance exploration of composite materials on flexible substrates is still in the exploratory stage, and there are no relevant reports at home and abroad.
发明内容 Contents of the invention
本发明的目的在于提供一种工艺简单、易于控制的柔性基底上的钛酸铅/氧化锌复合纳米结构的制备方法。 The purpose of the present invention is to provide a method for preparing a lead titanate/zinc oxide composite nanostructure on a flexible substrate with simple process and easy control.
本发明的柔性基底上钛酸铅/氧化锌复合纳米结构的制备方法,包括如下步骤: The preparation method of the lead titanate/zinc oxide composite nanostructure on the flexible substrate of the present invention comprises the following steps:
1)按欲合成的一维柱状结构钛酸铅单晶纳米纤维的化学式PbTiO3计量,称取硝酸铅溶于去离子水中,调节Pb2+离子浓度为0.25-1mol/L; 1) Measure according to the chemical formula PbTiO 3 of the one-dimensional columnar structure lead titanate single crystal nanofiber to be synthesized, weigh lead nitrate and dissolve it in deionized water, and adjust the Pb 2+ ion concentration to 0.25-1mol/L;
将钛酸丁酯溶于乙二醇甲醚,调节溶液中的Ti4+离子浓度为0.25-1mol/L,加入质量浓度30%的氨水至Ti4+离子完全沉淀,过滤、清洗、获得钛的羟基氧化物沉淀; Dissolve butyl titanate in ethylene glycol methyl ether, adjust the concentration of Ti 4+ ions in the solution to 0.25-1mol/L, add ammonia water with a mass concentration of 30% until Ti 4+ ions are completely precipitated, filter, wash, and obtain titanium Precipitation of oxyhydroxides;
2)分别配置0.5-5mol/L的氢氧化钾水溶液和浓度为2g/L的聚乙烯醇水溶液,将氢氧化钾水溶液、聚乙烯醇水溶液、钛的羟基氧化物沉淀及步骤1)的硝酸铅水溶液一起加入到反应釜内胆中,氢氧化钾水溶液、聚乙烯醇水溶液和硝酸铅水溶液的体积比为1:2:1,Ti4+与硝酸铅溶液中Pb2+摩尔比为1:1,将反应釜内胆置于反应釜中,密闭,置于180-200oC的炉中保温反应8-12小时后,置于空气中自然降温至室温,取出反应产物,过滤,用去离子水清洗,烘干,得到粉末状一维柱状结构钛酸铅单晶纳米纤维; 2) Prepare potassium hydroxide aqueous solution of 0.5-5mol/L and polyvinyl alcohol aqueous solution with a concentration of 2g/L respectively, and precipitate potassium hydroxide aqueous solution, polyvinyl alcohol aqueous solution, titanium oxyhydroxide and lead nitrate in step 1) The aqueous solution is added to the inner tank of the reactor together, the volume ratio of potassium hydroxide aqueous solution, polyvinyl alcohol aqueous solution and lead nitrate aqueous solution is 1:2:1, and the molar ratio of Ti 4+ and Pb 2+ in the lead nitrate solution is 1:1 , put the liner of the reaction kettle in the reaction kettle, seal it tightly, put it in a furnace at 180-200 o C and keep it warm for 8-12 hours, then cool it down to room temperature naturally in the air, take out the reaction product, filter it, and use deionized Washing with water and drying to obtain powdery one-dimensional columnar structure lead titanate single crystal nanofibers;
3)将步骤2)制得的粉末状一维柱状结构钛酸铅单晶纳米纤维加到体积为步骤2)中硝酸铅水溶液体积0.25~1倍的无水乙醇中,超声波振荡得到悬浮液,将其滴至经清洗的硅片上至其铺满,干燥,再次将悬浮液滴至硅片上,干燥,重复4~5次,随后将硅片于600~750℃保温至少1.5h,冷却后取出,在硅片上得到四方相钛酸铅单晶纳米纤维; 3) Add the powdery one-dimensional columnar structure lead titanate single crystal nanofibers prepared in step 2) to absolute ethanol whose volume is 0.25 to 1 times the volume of the lead nitrate aqueous solution in step 2), and ultrasonically oscillate to obtain a suspension. Drop it on the cleaned silicon wafer until it is covered, dry, drop the suspension on the silicon wafer again, dry, repeat 4~5 times, then keep the silicon wafer at 600~750℃ for at least 1.5h, cool After taking it out, the tetragonal phase lead titanate single crystal nanofibers are obtained on the silicon wafer;
4)将步骤3)得到的四方相钛酸铅单晶纳米纤维膜从硅片上刮下,加到体积为步骤2)中硝酸铅水溶液体积0.25~1倍的无水乙醇中,超声波振荡得到悬浮液,将其滴加至经清洗的柔性基底上至其铺满,干燥,再次将悬浮液滴至柔性基底上,干燥,重复4~5次,在柔性基底上形成钛酸铅单晶纳米纤维膜; 4) Scrape off the tetragonal lead titanate single crystal nanofiber film obtained in step 3) from the silicon wafer, add it to absolute ethanol whose volume is 0.25 to 1 times the volume of the lead nitrate aqueous solution in step 2), and ultrasonically oscillate to obtain Suspension, drop it on the cleaned flexible substrate until it is covered, dry, drop the suspension on the flexible substrate again, dry, repeat 4 to 5 times, and form lead titanate single crystal nanometer on the flexible substrate Fiber membrane;
5)配置0.001~0.01mol/L的醋酸锌水溶液,并滴至步骤4)的具有钛酸铅单晶纳米纤维膜的柔性基底上至其铺满,干燥,再次将醋酸锌水溶液滴至柔性基底上,干燥,重复4~5次,然后将其于100℃保温0.5~2h; 5) Configure 0.001~0.01mol/L zinc acetate aqueous solution, and drop it on the flexible substrate with lead titanate single crystal nanofiber membrane in step 4) until it is covered, dry, and drop the zinc acetate aqueous solution on the flexible substrate again on, dry, repeat 4~5 times, and then keep it warm at 100℃ for 0.5~2h;
6)分别配置0.001mol/L~0.1mol/L的硝酸锌水溶液、0.001mol/L-0.1mol/L的六次甲基四胺水溶液及2~80mM/L的柠檬酸钠水溶液,并将硝酸锌水溶液、六次甲基四胺水溶液及柠檬酸钠水溶液按体积比20:20:1混合加入到反应容器中,将经步骤5)处理的柔性基底浸入混合液,封口,于85~100℃保温0.5~12h,冷却后取出,清洗并烘干,得到柔性基底上的钛酸铅/氧化锌复合纳米结构。 6) Prepare 0.001mol/L~0.1mol/L zinc nitrate aqueous solution, 0.001mol/L-0.1mol/L hexamethylenetetramine aqueous solution and 2~80mM/L sodium citrate aqueous solution respectively, and mix nitric acid Zinc aqueous solution, hexamethylenetetramine aqueous solution and sodium citrate aqueous solution are mixed and added to the reaction vessel at a volume ratio of 20:20:1, and the flexible substrate treated in step 5) is immersed in the mixed solution, sealed, and placed at 85~100°C Keep it warm for 0.5-12 hours, take it out after cooling, wash and dry to obtain the lead titanate/zinc oxide composite nanostructure on the flexible substrate.
本发明中,所述的柔性基底可以为聚对苯二甲酸乙二醇酯(PET)、聚碳酸酯(PC)、聚萘二甲酸乙二醇酯(PEN)或聚酰亚胺(PI)。 In the present invention, the flexible base can be polyethylene terephthalate (PET), polycarbonate (PC), polyethylene naphthalate (PEN) or polyimide (PI) .
所述的硝酸铅、钛酸丁酯、氢氧化钾、聚乙烯醇、醋酸锌、硝酸锌、六次甲基四胺、无水乙醇和柠檬酸钠纯度均不低于化学纯。 The purity of lead nitrate, butyl titanate, potassium hydroxide, polyvinyl alcohol, zinc acetate, zinc nitrate, hexamethylenetetramine, absolute ethanol and sodium citrate is not lower than chemical purity.
所述的反应釜为具有聚四氟乙烯内胆并采用不锈钢套件密闭的反应釜。 The reaction kettle is a reaction kettle with a polytetrafluoroethylene liner and sealed with a stainless steel sleeve.
本发明工艺过程简单,易于控制,无污染,成本低,且制得的柔性基底上钛酸铅/氧化锌复合纳米结构纯度高,分散性好。可为钙钛矿氧化物与半导体氧化物的复合材料的制备提供发展基础。 The invention has the advantages of simple process, easy control, no pollution and low cost, and the prepared lead titanate/zinc oxide composite nanostructure on the flexible substrate has high purity and good dispersibility. It can provide a development basis for the preparation of composite materials of perovskite oxides and semiconductor oxides.
附图说明 Description of drawings
图1是实施例1制得的PET上钛酸铅/氧化锌复合纳米结构的XRD图谱。 FIG. 1 is an XRD spectrum of the lead titanate/zinc oxide composite nanostructure on PET prepared in Example 1.
图2是实施例1制得的PET上钛酸铅/氧化锌复合纳米结构的扫描电镜图片。 2 is a scanning electron microscope picture of the lead titanate/zinc oxide composite nanostructure on PET prepared in Example 1.
具体实施方式 Detailed ways
以下结合实施例对本发明作进一步说明。 The present invention will be further described below in conjunction with embodiment.
实施例1 Example 1
1)配置Pb2+离子浓度为0.25mol/L的硝酸铅水溶液20ml;将钛酸丁酯溶于乙二醇甲醚,使溶液中的Ti4+离子浓度为0.25mol/L,加入质量浓度30%的氨水至Ti4+离子完全沉淀,过滤、清洗、获得钛的羟基氧化物沉淀; 1) Prepare 20ml of lead nitrate aqueous solution with a Pb 2+ ion concentration of 0.25mol/L; dissolve butyl titanate in ethylene glycol methyl ether to make the Ti 4+ ion concentration in the solution 0.25mol/L, add mass concentration 30% ammonia water until Ti 4+ ions are completely precipitated, filtered, washed, and titanium oxyhydroxide precipitates are obtained;
2)分别配置1mol/L的氢氧化钾水溶液20ml和2g/L的聚乙烯醇水溶液40ml,将氢氧化钾水溶液、聚乙烯醇水溶液、钛的羟基氧化物沉淀及步骤1)的硝酸铅水溶液一起加入到反应釜内胆中,Ti4+与硝酸铅溶液中Pb2+摩尔比为1:1,置于反应釜中,密闭,于180oC的炉中保温,反应12小时后,置于空气中自然降温至室温,取出反应产物,过滤,用去离子水清洗,烘干,得到粉状一维柱状结构钛酸铅单晶纳米纤维,; 2) Prepare 20ml of 1mol/L potassium hydroxide aqueous solution and 40ml of 2g/L polyvinyl alcohol aqueous solution respectively, and combine potassium hydroxide aqueous solution, polyvinyl alcohol aqueous solution, titanium oxyhydroxide precipitation and step 1) lead nitrate aqueous solution together Add it to the inner tank of the reaction kettle, the molar ratio of Ti 4+ and Pb 2+ in the lead nitrate solution is 1:1, put it in the reaction kettle, seal it, keep it warm in a furnace at 180 o C, and after reacting for 12 hours, put it in The temperature is naturally cooled to room temperature in the air, the reaction product is taken out, filtered, washed with deionized water, and dried to obtain a powdery one-dimensional columnar structure lead titanate single crystal nanofiber;
3)将步骤2)制得的粉状一维柱状结构钛酸铅单晶纳米纤维加入到5mL无水乙醇中,超声波振荡得到分散好的悬浮液,将悬浮液滴加至经清洗的3×3cm2硅片上至其铺满,置于红外灯下干燥,再次将悬浮液滴至硅片上,干燥,如此重复4次后,在硅片上形成钛酸铅单晶纳米纤维膜,随后放入马弗炉中750oC保温1.5h,冷却至室温后取出,使产物相变为四方相钛酸铅单晶纳米纤维; 3) Add the powdery one-dimensional columnar structure lead titanate single crystal nanofibers prepared in step 2) into 5mL of absolute ethanol, and ultrasonically oscillate to obtain a dispersed suspension, which is added dropwise to the cleaned 3× 3cm 2 silicon wafer until it is covered, put it under the infrared lamp to dry, drop the suspension liquid on the silicon wafer again, dry, after repeating this 4 times, a lead titanate single crystal nanofiber film is formed on the silicon wafer, and then Put it in a muffle furnace at 750 o C for 1.5 hours, cool to room temperature and take it out, so that the product phase changes into tetragonal phase lead titanate single crystal nanofibers;
4)将步骤3)得到的四方相钛酸铅单晶纳米纤维膜从硅片上刮下,加到5mL无水乙醇中,超声波振荡得到分散较好的悬浮液,将悬浮液滴加至经清洗的PET上至其铺满,置于红外灯下干燥,再次将悬浮液滴至PET上,干燥,如此重复4次,在PET上形成钛酸铅单晶纳米纤维膜; 4) Scrape off the tetragonal phase lead titanate single crystal nanofiber film obtained in step 3) from the silicon wafer, add it to 5mL of absolute ethanol, and ultrasonically oscillate to obtain a well-dispersed suspension. Add the suspension dropwise to the The cleaned PET is covered until it is covered, dried under an infrared lamp, and the suspension is dropped on the PET again, dried, and so repeated 4 times to form a lead titanate single crystal nanofiber film on the PET;
5)配置浓度为0.01mol/L的醋酸锌水溶液作为次级氧化锌种子溶液,将该种子溶液滴至步骤4)的具有钛酸铅单晶纳米纤维膜的PET上至其铺满,置于干燥箱60oC干燥5min,再次将醋酸锌水溶液滴至PET上,干燥,如此重复4次,将处理好的样品置于马弗炉中于 100oC保温30min,冷却至室温后取出; 5) Configure zinc acetate aqueous solution with a concentration of 0.01mol/L as the secondary zinc oxide seed solution, drop the seed solution onto the PET with lead titanate single crystal nanofiber membrane in step 4) until it is covered, and place Dry in a drying oven at 60 o C for 5 minutes, drop the aqueous solution of zinc acetate on the PET again, and dry, repeat this 4 times, place the processed sample in a muffle furnace at 100 o C for 30 minutes, cool to room temperature and take it out;
6)分别配置0.05mol/L的硝酸锌水溶液40ml、0.05mol/L的六次甲基四胺水溶液40ml及20mM/L的柠檬酸钠水溶液2ml,并将它们混合作为氧化锌生长液置于反应容器中,将步骤5)处理好的样品浸入盛有生长液的容器中,保鲜膜封口后置于保温箱中90oC,保温2h后自然降温至室温,取出样品,用去离子水清洗,烘干,在PET上得到钛酸铅/氧化锌复合纳米结构。 6) Prepare 40ml of 0.05mol/L zinc nitrate aqueous solution, 40ml of 0.05mol/L hexamethylenetetramine aqueous solution and 2ml of 20mM/L sodium citrate aqueous solution, and mix them as zinc oxide growth solution and put them in the reaction In the container, immerse the sample treated in step 5) into the container containing the growth solution, seal it with plastic wrap and place it in an incubator at 90 o C, keep it warm for 2 hours, then cool it down to room temperature naturally, take out the sample, and wash it with deionized water. After drying, a lead titanate/zinc oxide composite nanostructure is obtained on the PET.
本例制得的PET上钛酸铅/氧化锌复合纳米结构的XRD谱线如图1所示,可以看出样品晶化程度良好,同时具有四方相(P4mm)钛酸铅和纤锌矿氧化锌的衍射峰,表明产物为两种材料的复合。相应的SEM照片如图2所示,钛酸铅/氧化锌复合纳米结构在PET上均匀分布。制得的PET上钛酸铅/氧化锌复合纳米结构能承受较大形变,具有良好的柔韧性。 The XRD spectrum of the lead titanate/zinc oxide composite nanostructure on PET prepared in this example is shown in Figure 1. It can be seen that the sample has a good degree of crystallization and has tetragonal phase (P4mm) lead titanate and wurtzite oxidation. The diffraction peak of zinc indicates that the product is a composite of two materials. The corresponding SEM photos are shown in Figure 2, and the lead titanate/zinc oxide composite nanostructures are uniformly distributed on the PET. The obtained lead titanate/zinc oxide composite nanostructure on PET can withstand large deformation and has good flexibility.
实施例2 Example 2
1)配置Pb2+离子浓度为0.5mol/L的硝酸铅水溶液20ml;将钛酸丁酯溶于乙二醇甲醚,使溶液中的Ti4+浓度为0. 5mol/L,加入质量浓度30%的氨水至Ti4+离子完全沉淀,过滤清洗获得钛的羟基氧化物沉淀; 1) Prepare 20ml of lead nitrate aqueous solution with a Pb 2+ ion concentration of 0.5mol/L; dissolve butyl titanate in ethylene glycol methyl ether to make the Ti 4+ concentration in the solution 0.5mol/L, add mass 30% ammonia water until Ti 4+ ions are completely precipitated, filtered and cleaned to obtain titanium oxyhydroxide precipitation;
2)分别配置0.5mol/L的氢氧化钾水溶液20ml和2g/L的聚乙烯醇水溶液40ml,将氢氧化钾水溶液、聚乙烯醇水溶液、钛的羟基氧化物沉淀及步骤1)的硝酸铅水溶液一起加入到反应釜内胆中,Ti4+与硝酸铅溶液中Pb2+摩尔比为1:1,置于反应釜中,密闭,于200oC的炉中保温,反应12小时后,置于空气中自然降温至室温,取出反应产物,过滤,用去离子水清洗,烘干,得到粉状一维柱状结构钛酸铅单晶纳米纤维; 2) Prepare 20ml of 0.5mol/L potassium hydroxide aqueous solution and 40ml of 2g/L polyvinyl alcohol aqueous solution respectively, and deposit potassium hydroxide aqueous solution, polyvinyl alcohol aqueous solution, titanium hydroxide solution and lead nitrate aqueous solution in step 1) Add them together into the inner tank of the reaction kettle, the molar ratio of Ti 4+ and Pb 2+ in the lead nitrate solution is 1:1, place in the reaction kettle, seal it, keep it warm in a furnace at 200 o C, and after reacting for 12 hours, put it in the Naturally cool down to room temperature in the air, take out the reaction product, filter, wash with deionized water, and dry to obtain powdery one-dimensional columnar structure lead titanate single crystal nanofibers;
3)在步骤2)制得的粉状一维柱状结构钛酸铅单晶纳米纤维中加入10mL无水乙醇,超声波振荡得到分散好的悬浮液,滴加至经清洗的3×3cm2硅片上至其铺满,置于红外灯下干燥5min,再次将悬浮液滴至硅片上,干燥,重复4次后,在硅片上形成钛酸铅单晶纳米纤维膜,随后放入马弗炉中650oC保温2h,冷却至室温后取出,使产物相变为四方相钛酸铅单晶纳米纤维。 3) Add 10mL of absolute ethanol to the powdery one-dimensional columnar structure lead titanate single crystal nanofibers prepared in step 2), and ultrasonically oscillate to obtain a dispersed suspension, which is added dropwise to the cleaned 3×3cm 2 silicon wafer Up until it is covered, dry it under an infrared lamp for 5 minutes, drop the suspension on the silicon wafer again, and dry it. After repeating 4 times, a lead titanate single crystal nanofiber film is formed on the silicon wafer, and then placed in the muffle Keep it in the furnace at 650 o C for 2 hours, take it out after cooling to room temperature, and make the product phase change into tetragonal phase lead titanate single crystal nanofibers.
4)将步骤3)得到的四方相钛酸铅单晶纳米纤维膜从硅片上刮下,加入5mL无水乙醇,超声波振荡得到分散较好的悬浮液,将悬浮液滴加至经清洗的PC上至其铺满,置于红外灯下干燥,再次将悬浮液滴至PC上,干燥,如此重复4次,在PC上形成钛酸铅单晶纳米纤维膜; 4) Scrape off the tetragonal phase lead titanate single crystal nanofiber film obtained in step 3) from the silicon wafer, add 5mL of absolute ethanol, and ultrasonically oscillate to obtain a well-dispersed suspension, and add the suspension dropwise to the cleaned Put it on the PC until it is covered, dry it under an infrared lamp, drop the suspension on the PC again, and dry it. Repeat this 4 times to form a lead titanate single crystal nanofiber film on the PC;
5)配置浓度为0.005mol/L的醋酸锌水溶液作为次级氧化锌种子溶液,将该种子溶液滴至步骤4)的具有钛酸铅单晶纳米纤维膜的PC上至其铺满,置于干燥箱60oC干燥5min,再次将醋酸锌水溶液滴至PC上,干燥,如此重复4次,将处理好的样品置于马弗炉中于100oC保温2h,冷却至室温后取出; 5) Configure an aqueous zinc acetate solution with a concentration of 0.005mol/L as the secondary zinc oxide seed solution, drop the seed solution onto the PC with the lead titanate single crystal nanofiber film in step 4) until it is covered, and place Dry in a drying oven at 60 o C for 5 minutes, drop the zinc acetate aqueous solution on the PC again, and dry, repeat this 4 times, place the processed sample in a muffle furnace at 100 o C for 2 hours, cool to room temperature and take it out;
6)分别配置0.001mol/L的硝酸锌水溶液20ml、0.001mol/L的六次甲基四胺水溶液20ml及2mM/L的柠檬酸钠水溶液1ml,并将它们混合作为氧化锌生长液置于反应容器中,将步骤5)处理好的样品浸入盛有生长液的容器中,保鲜膜封口后置于保温箱中85oC,保温12h后自然降温至室温,取出样品,用去离子水清洗,烘干,在PC上得到钛酸铅/氧化锌复合纳米结构。 6) Prepare 20ml of 0.001mol/L zinc nitrate aqueous solution, 20ml of 0.001mol/L hexamethylenetetramine aqueous solution and 1ml of 2mM/L sodium citrate aqueous solution, and mix them as zinc oxide growth solution and put them in the reaction In the container, immerse the sample treated in step 5) into the container containing the growth solution, seal it with plastic wrap and place it in an incubator at 85 o C, keep it warm for 12 hours, and then cool it down to room temperature naturally, take out the sample, and wash it with deionized water. After drying, a lead titanate/zinc oxide composite nanostructure is obtained on the PC.
实施例3 Example 3
1)配置Pb2+离子浓度为1mol/L的硝酸铅水溶液20ml;将钛酸丁酯溶于乙二醇甲醚,使溶液中Ti4+浓度为1mol/L,加入质量浓度30%的氨水至Ti4+离子完全沉淀,过滤清洗获得钛的羟基氧化物沉淀; 1) Prepare 20ml of lead nitrate aqueous solution with a Pb 2+ ion concentration of 1mol/L; dissolve butyl titanate in ethylene glycol methyl ether to make the Ti 4+ concentration in the solution 1mol/L, add ammonia water with a mass concentration of 30% Until Ti 4+ ions are completely precipitated, filter and wash to obtain titanium oxyhydroxide precipitation;
2)分别配置2mol/L的氢氧化钾水溶液20ml和2g/L的聚乙烯醇水溶液40ml,将氢氧化钾水溶液、聚乙烯醇水溶液、钛的羟基氧化物沉淀及步骤1)的硝酸铅水溶液一起加入到反应釜内胆中,Ti4+与硝酸铅溶液中Pb2+摩尔比为1:1,置于反应釜中,密闭,于200oC的炉中保温,反应10小时后,置于空气中自然降温至室温,取出反应产物,过滤,用去离子水清洗,烘干,得到粉状一维柱状结构钛酸铅单晶纳米纤维; 2) Prepare 20ml of 2mol/L potassium hydroxide aqueous solution and 40ml of 2g/L polyvinyl alcohol aqueous solution respectively, and combine potassium hydroxide aqueous solution, polyvinyl alcohol aqueous solution, titanium oxyhydroxide precipitation and step 1) lead nitrate aqueous solution together Add it into the inner tank of the reaction kettle, the molar ratio of Ti 4+ and Pb 2+ in the lead nitrate solution is 1:1, put it in the reaction kettle, seal it, keep it warm in a furnace at 200 o C, and after reacting for 10 hours, put it in Naturally cool down to room temperature in the air, take out the reaction product, filter, wash with deionized water, and dry to obtain powdery one-dimensional columnar structure lead titanate single crystal nanofibers;
3)在步骤2)制得的粉状一维柱状结构钛酸铅单晶纳米纤维中加入20mL无水乙醇,超声波振荡得到悬浮液,将悬浮液滴加至经清洗的3×3cm2硅片上至其铺满,置于60oC红外灯下干燥5min,再次将悬浮液滴至硅片上,干燥,如此重复5次,在硅片上形成钛酸铅单晶纳米纤维膜,随后放入马弗炉中600oC保温4h,冷却至室温后取出,使产物相变为四方相钛酸铅单晶纳米纤维; 3) Add 20mL of absolute ethanol to the powdery one-dimensional columnar structure lead titanate single crystal nanofibers prepared in step 2), and ultrasonically oscillate to obtain a suspension, and add the suspension dropwise to the cleaned 3×3cm 2 silicon wafer Up until it is covered, dry under 60 o C infrared lamp for 5min, drop the suspension on the silicon wafer again, dry, repeat this 5 times, and form a lead titanate single crystal nanofiber film on the silicon wafer, then put Put it into a muffle furnace at 600 o C for 4 hours, cool to room temperature and take it out, so that the product phase changes into tetragonal phase lead titanate single crystal nanofibers;
4)将步骤3)得到的四方相钛酸铅单晶纳米纤维膜从硅片上刮下,加入10mL无水乙醇,超声波振荡得到悬浮液,将悬浮液滴加至经清洗的PEN上至其铺满,置于红外灯下干燥,再次将悬浮液滴至PEN上,干燥,如此重复5次,在PEN上形成钛酸铅单晶纳米纤维膜; 4) Scrape off the tetragonal phase lead titanate single crystal nanofiber film obtained in step 3) from the silicon wafer, add 10mL of absolute ethanol, and ultrasonically oscillate to obtain a suspension, and drop the suspension onto the cleaned PEN to its Spread it all over, dry it under an infrared lamp, drop the suspension on the PEN again, dry it, and repeat this 5 times to form a lead titanate single crystal nanofiber film on the PEN;
5)配置浓度为0.001mol/L的醋酸锌水溶液作为次级氧化锌种子溶液,将该种子溶液滴至步骤4)的具有钛酸铅单晶纳米纤维膜的PEN上至其铺满,置于干燥箱60oC干燥5min,再次将醋酸锌水溶液滴至PEN上,干燥,如此重复5次,将处理好的样品置于马弗炉100oC保温1h,冷却至室温后取出; 5) Configure zinc acetate aqueous solution with a concentration of 0.001mol/L as the secondary zinc oxide seed solution, drop the seed solution onto the PEN with lead titanate single crystal nanofiber membrane in step 4) until it is covered, and place Dry in a drying oven at 60 o C for 5 minutes, drop the zinc acetate aqueous solution on the PEN again, and dry, repeat this 5 times, place the processed sample in a muffle furnace at 100 o C for 1 hour, cool to room temperature and take it out;
6)分别配置0.05mol/L的硝酸锌水溶液40ml、0.05mol/L的六次甲基四胺水溶液40ml,及20mM/L的柠檬酸钠水溶液2ml,并将它们混合作为氧化锌生长液置于反应容器中,将步骤5)处理好的样品浸入盛有生长液的容器中,保鲜膜封口后置于保温箱中90oC,保温4h后自然降温至室温,取出样品,用去离子水清洗,烘干,在PEN上得到钛酸铅/氧化锌复合纳米结构。 6) Prepare 40ml of 0.05mol/L zinc nitrate aqueous solution, 40ml of 0.05mol/L hexamethylenetetramine aqueous solution, and 2ml of 20mM/L sodium citrate aqueous solution, and mix them as zinc oxide growth solution in In the reaction container, immerse the sample treated in step 5) into the container containing the growth solution, seal it with plastic wrap and place it in an incubator at 90 o C, keep it warm for 4 hours, then cool it down to room temperature naturally, take out the sample, and wash it with deionized water , and dried to obtain a lead titanate/zinc oxide composite nanostructure on PEN.
实施例4 Example 4
1)配置Pb2+离子浓度为0.75mol/L的硝酸铅水溶液20ml;将钛酸丁酯溶于乙二醇甲醚,使溶液中Ti4+浓度为0.75mol/L,加入质量浓度30%的氨水至Ti4+离子完全沉淀,过滤清洗获得钛的羟基氧化物沉淀; 1) Prepare 20ml of lead nitrate aqueous solution with a Pb 2+ ion concentration of 0.75mol/L; dissolve butyl titanate in ethylene glycol methyl ether to make the Ti 4+ concentration in the solution 0.75mol/L, and add a mass concentration of 30% ammonia water until Ti 4+ ions are completely precipitated, filtered and cleaned to obtain titanium oxyhydroxide precipitation;
2)分别配置5mol/L的氢氧化钾水溶液20ml、2g/L的聚乙烯醇水溶液40ml将氢氧化钾水溶液、聚乙烯醇水溶液、钛的羟基氧化物沉淀及步骤1)的硝酸铅水溶液一起加入到反应釜内胆中,Ti4+与硝酸铅溶液中Pb2+摩尔比为1:1,置于反应釜中,密闭,于200oC的炉中保温,反应8小时后,置于空气中自然降温至室温,取出反应产物,过滤,用去离子水清洗,烘干,得到粉状一维柱状结构钛酸铅单晶纳米纤维; 2) Prepare 20ml of 5mol/L potassium hydroxide aqueous solution and 40ml of 2g/L polyvinyl alcohol aqueous solution, add potassium hydroxide aqueous solution, polyvinyl alcohol aqueous solution, titanium hydroxide precipitate and step 1) lead nitrate aqueous solution together Into the reactor liner, the molar ratio of Ti 4+ and Pb 2+ in the lead nitrate solution is 1:1, put it in the reactor, seal it, keep it warm in a furnace at 200 o C, and after reacting for 8 hours, place it in the air naturally cool down to room temperature, take out the reaction product, filter, wash with deionized water, and dry to obtain powdery one-dimensional columnar structure lead titanate single crystal nanofibers;
3)在步骤2)制得的粉状一维柱状结构钛酸铅单晶纳米纤维中加入10mL无水乙醇,超声波振荡得到分散好的悬浮液,将悬浮液滴加至经清洗的3×3cm2硅片上至其铺满,置于红外灯下干燥5min,再次将悬浮液滴至硅片上,干燥,如此重复5次后,在硅片上形成钛酸铅单晶纳米纤维膜,随后放入马弗炉中于700oC保温2h,冷却至室温后取出,使产物相变为四方相钛酸铅单晶纳米纤维; 3) Add 10mL of absolute ethanol to the powdery one-dimensional columnar structure lead titanate single crystal nanofibers prepared in step 2), ultrasonically oscillate to obtain a dispersed suspension, and add the suspension dropwise to the cleaned 3×3cm 2 Place the silicon wafer until it is fully covered, dry it under an infrared lamp for 5 minutes, drop the suspension on the silicon wafer again, and dry it. After repeating this 5 times, a lead titanate single crystal nanofiber film is formed on the silicon wafer, and then Put it in a muffle furnace at 700 o C for 2 hours, cool to room temperature and take it out, so that the product phase changes into tetragonal phase lead titanate single crystal nanofibers;
4)将步骤3)中得到的四方相钛酸铅单晶纳米纤维膜从硅片上刮下,加入20mL无水乙醇,超声波振荡得到分散较好的悬浮液,将悬浮液滴加至经清洗的PI上至其铺满,置于红外灯下干燥,再次将悬浮液滴至PI上,干燥,如此重复4次,在PI上形成钛酸铅单晶纳米纤维膜; 4) Scrape off the tetragonal phase lead titanate single crystal nanofiber film obtained in step 3) from the silicon wafer, add 20mL of absolute ethanol, and ultrasonically oscillate to obtain a well-dispersed suspension, add the suspension dropwise to the cleaned The PI is covered until it is covered, dried under an infrared lamp, and the suspension is dropped on the PI again, dried, and so repeated 4 times to form a lead titanate single crystal nanofiber film on the PI;
5)配置浓度为0.005mol/L的醋酸锌水溶液作为次级氧化锌种子溶液,将该种子溶液滴至步骤4)的有钛酸铅单晶纳米纤维膜的PI上至其铺满,置于干燥箱60oC干燥5min,再次将醋酸锌水溶液滴至PI上,干燥,如此重复4次,将处理好的样品置于马弗炉中于100oC保温30min,冷却至室温后取出; 5) Configure zinc acetate aqueous solution with a concentration of 0.005mol/L as the secondary zinc oxide seed solution, drop the seed solution onto the PI with lead titanate single crystal nanofiber membrane in step 4) until it is covered, and place Dry in a drying oven at 60 o C for 5 minutes, drop the zinc acetate aqueous solution on the PI again, and dry, repeat this 4 times, place the processed sample in a muffle furnace at 100 o C for 30 minutes, cool to room temperature and take it out;
6)分别配置0.1mol/L的硝酸锌水溶液40ml、0.1mol/L的六次甲基四胺水溶液40ml,及80mM/L的柠檬酸钠水溶液2ml,并将它们混合作为氧化锌生长液置于反应容器中,将步骤5)处理好的样品浸入盛有生长液的容器中,保鲜膜封口后置于保温箱中100oC,保温0.5h后自然降温至室温,取出样品,用去离子水清洗,烘干,在PI上得到钛酸铅/氧化锌复合纳米结构。 6) Prepare 40ml of 0.1mol/L zinc nitrate aqueous solution, 40ml of 0.1mol/L hexamethylenetetramine aqueous solution, and 2ml of 80mM/L sodium citrate aqueous solution, and mix them as zinc oxide growth solution in In the reaction container, immerse the sample treated in step 5) into the container containing the growth solution, seal it with plastic wrap and place it in an incubator at 100 o C, keep it warm for 0.5h, and then cool it down to room temperature naturally, take out the sample, and wash it with deionized water. After cleaning and drying, lead titanate/zinc oxide composite nanostructures were obtained on PI.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410207459.9A CN104032374B (en) | 2014-05-16 | 2014-05-16 | The preparation method of lead titanates/zinc oxide composite nanostructure in a kind of flexible substrates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410207459.9A CN104032374B (en) | 2014-05-16 | 2014-05-16 | The preparation method of lead titanates/zinc oxide composite nanostructure in a kind of flexible substrates |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104032374A true CN104032374A (en) | 2014-09-10 |
CN104032374B CN104032374B (en) | 2016-09-28 |
Family
ID=51463359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410207459.9A Active CN104032374B (en) | 2014-05-16 | 2014-05-16 | The preparation method of lead titanates/zinc oxide composite nanostructure in a kind of flexible substrates |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104032374B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112444542A (en) * | 2019-08-28 | 2021-03-05 | 河海大学 | Bismuth oxybromide/zinc oxide ITO electrode and application and preparation method thereof |
CN112816581A (en) * | 2020-12-30 | 2021-05-18 | 浙江大学 | Method for detecting halogenated quinoneimine in drinking water by derivatization-solid phase extraction-liquid chromatography tandem mass spectrometry |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1563194A (en) * | 2004-03-16 | 2005-01-12 | 南京大学 | Electro-optical polarized polymer containing nano ferroelectric crystals, and preparation method |
KR20070024884A (en) * | 2005-08-31 | 2007-03-08 | 한국화학연구원 | Process for producing zinc oxide single crystal |
CN101367544A (en) * | 2008-10-08 | 2009-02-18 | 湘潭大学 | Preparation method of necklace-like lead titanate nanowires |
CN101533889A (en) * | 2009-04-22 | 2009-09-16 | 北京理工大学 | Preparation method of ZnO nano crystal whisker reinforced silicon-based lead zirconate titanate piezoelectric composite thick film |
CN102916611A (en) * | 2012-09-26 | 2013-02-06 | 华中科技大学 | Flexible power generation device and manufacturing method thereof |
CN103173866A (en) * | 2013-03-06 | 2013-06-26 | 浙江大学 | Preparation method of brush-structured lead titanate/zinc oxide composite nano-fiber |
CN103199737A (en) * | 2012-01-10 | 2013-07-10 | 三星电子株式会社 | Nanopiezoelectric generator and method of manufacturing the same |
CN103353583A (en) * | 2012-11-02 | 2013-10-16 | 国家纳米科学中心 | Magnetic field sensor |
-
2014
- 2014-05-16 CN CN201410207459.9A patent/CN104032374B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1563194A (en) * | 2004-03-16 | 2005-01-12 | 南京大学 | Electro-optical polarized polymer containing nano ferroelectric crystals, and preparation method |
KR20070024884A (en) * | 2005-08-31 | 2007-03-08 | 한국화학연구원 | Process for producing zinc oxide single crystal |
CN101367544A (en) * | 2008-10-08 | 2009-02-18 | 湘潭大学 | Preparation method of necklace-like lead titanate nanowires |
CN101533889A (en) * | 2009-04-22 | 2009-09-16 | 北京理工大学 | Preparation method of ZnO nano crystal whisker reinforced silicon-based lead zirconate titanate piezoelectric composite thick film |
CN103199737A (en) * | 2012-01-10 | 2013-07-10 | 三星电子株式会社 | Nanopiezoelectric generator and method of manufacturing the same |
CN102916611A (en) * | 2012-09-26 | 2013-02-06 | 华中科技大学 | Flexible power generation device and manufacturing method thereof |
CN103353583A (en) * | 2012-11-02 | 2013-10-16 | 国家纳米科学中心 | Magnetic field sensor |
CN103173866A (en) * | 2013-03-06 | 2013-06-26 | 浙江大学 | Preparation method of brush-structured lead titanate/zinc oxide composite nano-fiber |
Non-Patent Citations (1)
Title |
---|
曹茂盛等: "高性能PZT压电厚膜及MEMS微驱动器技术研究", 《黑龙江大学工程学报》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112444542A (en) * | 2019-08-28 | 2021-03-05 | 河海大学 | Bismuth oxybromide/zinc oxide ITO electrode and application and preparation method thereof |
CN112444542B (en) * | 2019-08-28 | 2022-02-11 | 河海大学 | Bismuth oxybromide/zinc oxide ITO electrode and application and preparation method thereof |
CN112816581A (en) * | 2020-12-30 | 2021-05-18 | 浙江大学 | Method for detecting halogenated quinoneimine in drinking water by derivatization-solid phase extraction-liquid chromatography tandem mass spectrometry |
Also Published As
Publication number | Publication date |
---|---|
CN104032374B (en) | 2016-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | Ferroelectric mesocrystalline BaTiO3/SrTiO3 nanocomposites with enhanced dielectric and piezoelectric responses | |
CN102583517B (en) | A kind of preparation method of strontium titanate nanosheet | |
CN102534794B (en) | Preparation method for perovskite lead titanate single-crystal nanometer sheet | |
Hu et al. | Ferroelectric mesocrystals of bismuth sodium titanate: formation mechanism, nanostructure, and application to piezoelectric materials | |
CN103173866B (en) | Preparation method of brush-structured lead titanate/zinc oxide composite nano-fiber | |
CN103276448B (en) | A kind of preparation method of perovskite structure lead titanate monocrystal nano sheet | |
CN101619494A (en) | Method for preparing perovskite structure lead titanate monocrystal nano rod | |
CN102923766B (en) | Preparation method of lead-titanate ceramic single-crystal nanosheet | |
Hector et al. | Chemical synthesis of β-Ga2O3 microrods on silicon and its dependence on the gallium nitrate concentration | |
CN102531582A (en) | Method for preparing sodium bismuth titanate nanometer sheet | |
CN101831710B (en) | Method for preparing lead titanate monocrystal nanometer branch crystal with perovskite structure | |
CN105126803A (en) | Preparation method of strontium titanate/graphene composite nanometer catalyst | |
CN104192914B (en) | A kind of preparation method of manganese tungstate monocrystal nanowire | |
CN104032374B (en) | The preparation method of lead titanates/zinc oxide composite nanostructure in a kind of flexible substrates | |
CN102181930B (en) | Method for preparing one-dimensional columnar structure calcium-doped lead titanate monocrystal nano-fibers | |
CN102060325B (en) | Tetragonal-phase barium titanate nanorod array and preparation method thereof | |
CN102925980B (en) | Preparation method of tetragonal perovskite structure lead zirconate ceramic single crystal nanosheet | |
CN104211116A (en) | A preparation method and product of Bi4Ti3O12 single crystal nanorods | |
CN104261463A (en) | Method for preparing lead titanate nanosheet and cadmium sulfide nano-particle composite material | |
CN102140693A (en) | Method for preparing zirconium-doped lead titanate single crystal nanofiber with one-dimensional columnar structure | |
CN106186051A (en) | A kind of preparation method of hollow structure strontium titanate nanoparticles | |
CN102515263B (en) | Preparation method of barium strontium titanate stellar crystal | |
CN103603030B (en) | The preparation method of the one-dimensional columnar structure lead titanate monocrystal nano fiber that a kind of size is controlled | |
CN104261464A (en) | Preparation method of one-dimensional lead titanate/cadmium sulfide composite nano structure | |
CN106517319B (en) | A kind of preparation method of calcium titanate micron particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |