CN104031253A - Process method for synthesizing polybutylene glycol adipate-co-butylene terephthalate by adopting cyclo-guanidine catalyst process - Google Patents
Process method for synthesizing polybutylene glycol adipate-co-butylene terephthalate by adopting cyclo-guanidine catalyst process Download PDFInfo
- Publication number
- CN104031253A CN104031253A CN201410291726.5A CN201410291726A CN104031253A CN 104031253 A CN104031253 A CN 104031253A CN 201410291726 A CN201410291726 A CN 201410291726A CN 104031253 A CN104031253 A CN 104031253A
- Authority
- CN
- China
- Prior art keywords
- reaction
- guanidine
- catalyst
- cyclo
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 33
- -1 polybutylene Polymers 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 17
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 title abstract 6
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 title abstract 3
- 229920001748 polybutylene Polymers 0.000 title abstract 3
- 230000002194 synthesizing effect Effects 0.000 title abstract 2
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 claims abstract description 82
- 238000006243 chemical reaction Methods 0.000 claims abstract description 55
- 238000006068 polycondensation reaction Methods 0.000 claims abstract description 18
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 7
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- 239000010936 titanium Substances 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 238000005886 esterification reaction Methods 0.000 claims abstract description 5
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 claims description 30
- 239000002253 acid Substances 0.000 claims description 23
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 claims description 16
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 claims description 16
- NIHJEJFQQFQLTK-UHFFFAOYSA-N butanedioic acid;hexanedioic acid Chemical compound OC(=O)CCC(O)=O.OC(=O)CCCCC(O)=O NIHJEJFQQFQLTK-UHFFFAOYSA-N 0.000 claims description 10
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 claims description 10
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 claims description 10
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 125000006606 n-butoxy group Chemical group 0.000 claims description 8
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 claims description 8
- 230000035484 reaction time Effects 0.000 claims description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- 150000002357 guanidines Chemical class 0.000 claims description 6
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 claims description 5
- 229940109239 creatinine Drugs 0.000 claims description 5
- 150000003254 radicals Chemical class 0.000 claims description 5
- 230000032050 esterification Effects 0.000 claims description 4
- 238000003672 processing method Methods 0.000 claims description 4
- 238000005809 transesterification reaction Methods 0.000 claims description 4
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 claims description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- QYMFNZIUDRQRSA-UHFFFAOYSA-N dimethyl butanedioate;dimethyl hexanedioate;dimethyl pentanedioate Chemical compound COC(=O)CCC(=O)OC.COC(=O)CCCC(=O)OC.COC(=O)CCCCC(=O)OC QYMFNZIUDRQRSA-UHFFFAOYSA-N 0.000 claims description 2
- 150000007520 diprotic acids Chemical class 0.000 claims description 2
- 239000000376 reactant Substances 0.000 claims description 2
- 230000000630 rising effect Effects 0.000 claims description 2
- 230000003197 catalytic effect Effects 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 229920000642 polymer Polymers 0.000 abstract description 2
- 238000006116 polymerization reaction Methods 0.000 abstract description 2
- 238000003786 synthesis reaction Methods 0.000 abstract description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 abstract 2
- 235000011037 adipic acid Nutrition 0.000 abstract 1
- 239000001361 adipic acid Substances 0.000 abstract 1
- 125000001931 aliphatic group Chemical group 0.000 abstract 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 abstract 1
- 229920001577 copolymer Polymers 0.000 abstract 1
- 150000002148 esters Chemical group 0.000 abstract 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 24
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 24
- 239000000126 substance Substances 0.000 description 13
- 229910052786 argon Inorganic materials 0.000 description 12
- 238000009835 boiling Methods 0.000 description 12
- 238000010792 warming Methods 0.000 description 12
- APQHKWPGGHMYKJ-UHFFFAOYSA-N Tributyltin oxide Chemical compound CCCC[Sn](CCCC)(CCCC)O[Sn](CCCC)(CCCC)CCCC APQHKWPGGHMYKJ-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 3
- 229920001634 Copolyester Polymers 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical class [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- JYYOBHFYCIDXHH-UHFFFAOYSA-N carbonic acid;hydrate Chemical compound O.OC(O)=O JYYOBHFYCIDXHH-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920001896 polybutyrate Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Polyesters Or Polycarbonates (AREA)
Abstract
The invention belongs to the technical field of biodegradable aliphatic ester-aromatic ester copolymer synthesis and in particular relates to a process method for synthesizing polybutylene glycol adipate-co-butylene terephthalate by adopting a cyclo-guanidine catalyst process. The method comprises the following steps: adding butanediol and dimethyl terephthalate into a reactor, adding binary catalysts, and performing ester exchange reaction; adding adipic acid and performing esterification reaction; finally performing polycondensation reaction to obtain polybutylene glycol adipate-co-butylene terephthalate, wherein a main catalyst is a cyclo-guanidine compound and an auxiliary catalyst is a tetraalkoxy compound of group IVB titanium or zirconium in the binary catalysts. The method has the beneficial effects that the catalyst consumption is low, the catalytic efficiency is high, the polymerization reaction rate is greatly increased, and the production cost is reduced; the molecular weight of polymers is increased and the product color is improved.
Description
Technical field
The invention belongs to biodegradability aliphatic-aromatic copolyester preparation field technology, be specifically related to a kind of poly adipate succinic acid ester-altogether-mutual-phenenyl two acid bromide two alcohol ester's synthesis technique.
Background technology
Owing to causing the growing interest of environmental pollution in world wide for non-degradable petroleum-based plastics, development environment friendly and biodegradable material substitute non-degradable petroleum-based plastics has become Materials science study hotspot.Poly adipate succinic acid ester-altogether-mutual-phenenyl two acid bromide two alcohol ester is a kind of biodegradability polyester material, easily, by enzyme decomposition, metabolism in the multiple-microorganism of occurring in nature or animal and plant body, finally generates carbonic acid gas and water.Poly adipate succinic acid ester-altogether-mutual-phenenyl two acid bromide two alcohol ester has the characteristic of poly adipate succinic acid ester and polybutylene terephthalate concurrently, existing good ductility and elongation at break, also there are good thermotolerance and impact property, greatly improved the performance of original binary polyester material, and cost is not high, there is larger practical value.
At present synthetic poly adipate succinic acid ester-altogether-mutual-phenenyl two acid bromide two alcohol ester adopts four titanium butoxide class catalyzer conventionally, catalyst levels is larger, because metal catalyst after polyreaction can not be removed completely, residual metal catalyzer causes polymeric articles heat, oxidative stability to decline, poor (the Zhu Kui of color and luster of polymkeric substance, the synthetic fragrant-aliphatic series copolyesters of rare earth catalyst polycondensation and functionalized polyester and performance study, Zhejiang University's Ph D dissertation, 2010).
Summary of the invention
The object of the invention is to solve that the catalyst levels that traditional method exists is large, catalytic efficiency is low, cost is high, and the problem such as melt high temperature is unstable, hue difference, a kind of processing method of encircling guanidine catalyst method synthetic poly adipate succinic acid ester-altogether-mutual-phenenyl two acid bromide two alcohol ester is provided.
Ring guanidine catalyst method of the present invention is synthesized poly adipate succinic acid ester-altogether-mutual-phenenyl two acid bromide two alcohol ester's processing method, comprises the steps:
Butyleneglycol and dimethyl terephthalate (DMT) are placed in to reactor, add binary catalyst, carry out transesterification reaction, to distillating without methyl alcohol; Add hexanodioic acid, carry out esterification, to anhydrous distillating; Rising system vacuum tightness, to absolute pressure 0.5 ~ 3 Torr, is carried out polycondensation, obtains product.
Wherein: in binary catalyst, Primary Catalysts is ring guanidine compound, four alkoxy compounds of promotor WeiIVB family metal titanium, zirconium, wherein encircling guanidine class Primary Catalysts is bicyclo guanidine, guanine, guanidine radicals benzoglyoxaline, creatinine, and four alkoxy compound promotors of IVB family metal titanium, zirconium are tetraisopropoxy titanium or four n-butoxy zirconiums.
In binary catalyst, encircling guanidine class Primary Catalysts consumption is 0.01 ‰ ~ 0.05 ‰ of reactant integral molar quantity, and four alkoxy compound promotor consumption mol ratios of ring guanidine class Primary Catalysts consumption YuIVB family metal titanium, zirconium are 1 ~ 2:1.Adopt this binary catalyst, shortened the reaction times, reduced traditional catalyst consumption, reduced production cost.
The molar weight ratio of alcohol, diprotic acid and dibasic ester is 2 ~ 3:1 ~ 1.5:1.
The temperature of transesterification reaction is 160 ~ 200 ℃, and reaction pressure is normal pressure, and the reaction times is 2 ~ 4 hours; The temperature of esterification is 180 ~ 220 ℃, and reaction pressure is normal pressure, and the reaction times is 2 ~ 4 hours; The temperature of polycondensation is 220 ~ 240 ℃, and reaction pressure is 0.5 ~ 3Torr, and the reaction times is 10 ~ 16 hours.
Poly adipate succinic acid ester-altogether-mutual-phenenyl two acid bromide two alcohol ester's (PBAT) that the present invention is synthetic molecular weight is 1.05 ~ 1.35 * 10
5, molecular weight distributing index 1.50 ~ 1.90.Product molecular weight distribution index is narrow, product color good.
advantage of the present invention and beneficial effect:
1. adopt binary catalyst, catalyst levels is few, and catalytic efficiency is high, and polymerization rate increases greatly, has reduced production cost;
2. adopt binary catalyst, reduced high temperature degradation side reaction, improved the molecular weight of polymkeric substance, improved product color.
Embodiment
embodiment 1
By dimethyl terephthalate (DMT) (DMT, 58.25g), BDO (BDO, 64.89g) and tetraisopropoxy titanium (TBOT; 4.49mg), creatinine (CR, 1.49mg), add in four-hole boiling flask; under argon shield, 160 ℃ are carried out normal pressure transesterify, reaction 2h.In reaction system, add hexanodioic acid (AA, 43.84g), 180 ℃ of temperature, reaction 2h.Be warming up to 240 ℃, be decompressed to 0.5 Torr and carry out polycondensation, reaction 12h, recording polymer average molecular weight is 1.11 * 10
5, molecular weight distributing index is 1.75.
embodiment 2
By dimethyl terephthalate (DMT) (DMT, 52.43g), BDO (BDO, 81.12g) and tetraisopropoxy titanium (TBOT; 2.55mg), creatinine (CR, 1.70mg), add in four-hole boiling flask; under argon gas stream protection, 180 ℃ are carried out normal pressure transesterify, reaction 3h.In reaction system, add hexanodioic acid (AA, 48.23g), 200 ℃ of temperature, reaction 3h.Be warming up to 220 ℃, be decompressed to 1.5 Torr and carry out polycondensation, reaction 14h, records polymkeric substance average weight-molecular mass 1.24 * 10
5, molecular weight distributing index is 1.63.
embodiment 3
By dimethyl terephthalate (DMT) (DMT, 46.61g), BDO (BDO, 54.07g) and tetraisopropoxy titanium (TBOT; 10.21mg), creatinine (CR, 6.79mg), add in four-hole boiling flask; under argon gas stream protection, 200 ℃ are carried out normal pressure transesterify, reaction 4h.In reaction system, add hexanodioic acid (AA, 52.61g), 220 ℃ of temperature, reaction 4h.Be warming up to 230 ℃, be decompressed to 3.0 Torr and carry out polycondensation, reaction 16h, records polymkeric substance average weight-molecular mass 1.30 * 10
5, molecular weight distributing index is 1.50.
embodiment 4
By dimethyl terephthalate (DMT) (DMT, 58.25g), BDO (BDO, 64.89g) and tetraisopropoxy titanium (TBOT; 4.49mg), bicyclo guanidine (TBD, 1.84mg), add in four-hole boiling flask; under argon shield, 170 ℃ are carried out normal pressure transesterify, reaction 2h.In reaction system, add hexanodioic acid (AA, 43.84g), 180 ℃ of temperature, reaction 2h.Be warming up to 230 ℃, be decompressed to 0.5 Torr and carry out polycondensation, reaction 11h, records polymkeric substance average weight-molecular mass 1.19 * 10
5, molecular weight distributing index is 1.90.
embodiment 5
By dimethyl terephthalate (DMT) (DMT, 52.43g), BDO (BDO, 81.12g) and tetraisopropoxy titanium (TBOT; 2.55mg), bicyclo guanidine (TBD, 2.09mg), add in four-hole boiling flask; under argon shield, 160 ℃ are carried out normal pressure transesterify, reaction 3h.In reaction system, add hexanodioic acid (AA, 48.23g), 180 ℃ of temperature, reaction 3h.Be warming up to 240 ℃, be decompressed to 1.5 Torr and carry out polycondensation, reaction 10h, records polymkeric substance average weight-molecular mass 1.23 * 10
5, molecular weight distributing index is 1.67.
embodiment 6
By dimethyl terephthalate (DMT) (DMT, 46.61g), BDO (BDO, 54.07g) and tetraisopropoxy titanium (TBOT; 10.21mg), bicyclo guanidine (TBD, 8.35mg), add in four-hole boiling flask; under argon shield, 170 ℃ are carried out normal pressure transesterify, reaction 4h.In reaction system, add hexanodioic acid (AA, 52.61g), 180 ℃ of temperature, reaction 4h.Be warming up to 220 ℃, be decompressed to 2.5 Torr and carry out polycondensation, reaction 11h, records polymkeric substance average weight-molecular mass 1.27 * 10
5, molecular weight distributing index is 1.62.
embodiment 7
By dimethyl terephthalate (DMT) (DMT, 58.25g), BDO (BDO; 64.89g) He four n-butoxy zirconiums (5.06mg), guanine (1.99mg), add in four-hole boiling flask, under argon shield; 170 ℃ are carried out normal pressure transesterify, reaction 2h.In reaction system, add hexanodioic acid (AA, 43.84g), 180 ℃ of temperature, reaction 2h.Be warming up to 240 ℃, be decompressed to 0.5 Torr and carry out polycondensation, reaction 11h, records polymkeric substance average weight-molecular mass 1.05 * 10
5, molecular weight distributing index is 1.83.
embodiment 8
By dimethyl terephthalate (DMT) (DMT, 52.43g), BDO (BDO; 81.12g) He four n-butoxy zirconiums (2.88mg), guanine (2.27mg), add in four-hole boiling flask, under argon shield; 170 ℃ are carried out normal pressure transesterify, reaction 3h.In reaction system, add hexanodioic acid (AA, 48.23g), 180 ℃ of temperature, reaction 3h.Be warming up to 230 ℃, be decompressed to 1.5 Torr and carry out polycondensation, reaction 12h, records polymkeric substance average weight-molecular mass 1.15 * 10
5, molecular weight distributing index is 1.59.
embodiment 9
By dimethyl terephthalate (DMT) (DMT, 46.61g), BDO (BDO; 54.07g) He four n-butoxy zirconiums (23.02mg), guanine (9.07mg), add in four-hole boiling flask, under argon shield; 170 ℃ are carried out normal pressure transesterify, reaction 4h.In reaction system, add hexanodioic acid (AA, 52.61g), 180 ℃ of temperature, reaction 4h.Be warming up to 240 ℃, be decompressed to 2.0 Torr and carry out polycondensation, reaction 13h, records polymkeric substance average weight-molecular mass 1.27 * 10
5, molecular weight distributing index is 1.55.
embodiment 10
By dimethyl terephthalate (DMT) (DMT, 58.25g), BDO (BDO; 64.89g) He four n-butoxy zirconiums (5.06mg), guanidine radicals benzoglyoxaline (2.31mg), add in four-hole boiling flask, under argon shield; 170 ℃ are carried out normal pressure transesterify, reaction 2h.In reaction system, add hexanodioic acid (AA, 43.84g), 180 ℃ of temperature, reaction 2h.Be warming up to 240 ℃, be decompressed to 0.5 Torr and carry out polycondensation, reaction 14h, records polymkeric substance average weight-molecular mass 1.10 * 10
5, molecular weight distributing index is 1.77.
embodiment 11
By dimethyl terephthalate (DMT) (DMT, 52.43g), BDO (BDO; 81.12g) He four n-butoxy zirconiums (2.88mg), guanidine radicals benzoglyoxaline (2.63mg), add in four-hole boiling flask, under argon shield; 170 ℃ are carried out normal pressure transesterify, reaction 3h.In reaction system, add hexanodioic acid (AA, 48.23g), 180 ℃ of temperature, reaction 3h.Be warming up to 240 ℃, be decompressed to 1.5 Torr and carry out polycondensation, reaction 12h, records polymkeric substance average weight-molecular mass 1.18 * 10
5, molecular weight distributing index is 1.68.
embodiment 12
By dimethyl terephthalate (DMT) (DMT, 46.61g), BDO (BDO; 54.07g) He four n-butoxy zirconiums (23.02mg), guanidine radicals benzoglyoxaline (10.51mg), add in four-hole boiling flask, under argon shield; 170 ℃ are carried out normal pressure transesterify, reaction 4h.In reaction system, add hexanodioic acid (AA, 52.61g), 180 ℃ of temperature, reaction 4h.Be warming up to 240 ℃, be decompressed to 3.0 Torr and carry out polycondensation, reaction 15h, records polymkeric substance average weight-molecular mass 1.30 * 10
5, molecular weight distributing index is 1.50.
Claims (4)
1. a processing method of encircling guanidine catalyst method synthetic poly adipate succinic acid ester-altogether-mutual-phenenyl two acid bromide two alcohol ester, is characterized in that, comprises the steps:
Butyleneglycol and dimethyl terephthalate (DMT) are placed in to reactor, add binary catalyst, carry out transesterification reaction, to distillating without methyl alcohol; Add hexanodioic acid, carry out esterification, to anhydrous distillating; Rising system vacuum tightness, to absolute pressure 0.5 ~ 3 Torr, is carried out polycondensation, obtains product;
Wherein: in binary catalyst, Primary Catalysts is ring guanidine compound, four alkoxy compounds of promotor WeiIVB family metal titanium, zirconium, ring guanidine class Primary Catalysts consumption is 0.01 ‰ ~ 0.05 ‰ of reactant integral molar quantity, and four alkoxy compound promotor consumption mol ratios of ring guanidine class catalyst levels YuIVB family metal titanium, zirconium are 1 ~ 2:1.
2. method according to claim 1, is characterized in that, ring guanidine class Primary Catalysts is bicyclo guanidine, guanine, guanidine radicals benzoglyoxaline, creatinine, and four alkoxy compound promotors of IVB family metal titanium, zirconium are tetraisopropoxy titanium or four n-butoxy zirconiums.
3. method according to claim 1 and 2, is characterized in that: the molar weight ratio of alcohol, diprotic acid and dibasic ester is 2 ~ 3:1 ~ 1.5:1.
4. method according to claim 1, is characterized in that: the temperature of transesterification reaction is 160 ~ 200 ℃, and reaction pressure is normal pressure, and the reaction times is 2 ~ 4 hours; The temperature of esterification is 180 ~ 220 ℃, and reaction pressure is normal pressure, and the reaction times is 2 ~ 4 hours; The temperature of polycondensation is 220 ~ 240 ℃, and reaction pressure is 0.5 ~ 3Torr, and the reaction times is 10 ~ 16 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410291726.5A CN104031253B (en) | 2014-06-26 | 2014-06-26 | Process method for synthesizing polybutylene glycol adipate-co-butylene terephthalate by adopting cyclo-guanidine catalyst process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410291726.5A CN104031253B (en) | 2014-06-26 | 2014-06-26 | Process method for synthesizing polybutylene glycol adipate-co-butylene terephthalate by adopting cyclo-guanidine catalyst process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104031253A true CN104031253A (en) | 2014-09-10 |
CN104031253B CN104031253B (en) | 2017-02-01 |
Family
ID=51462263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410291726.5A Expired - Fee Related CN104031253B (en) | 2014-06-26 | 2014-06-26 | Process method for synthesizing polybutylene glycol adipate-co-butylene terephthalate by adopting cyclo-guanidine catalyst process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104031253B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104725616A (en) * | 2015-04-13 | 2015-06-24 | 南京大学 | Novel process for using organic guanidine catalysis melt-solid polycondensation to synthesize poly (butylene adipate-co-terephthalate) |
CN104725615A (en) * | 2015-04-13 | 2015-06-24 | 南京大学 | Poly butylene glycol ester synthesis process by biologic organic guanidine catalysis method |
JP2016535129A (en) * | 2014-07-22 | 2016-11-10 | 南京大学 | Poly (butylene succinate-co-adipic acid) (PBSA) synthesis process method by biomass creatinine catalysis method |
CN106939077A (en) * | 2017-05-12 | 2017-07-11 | 南京大学 | A kind of Biodegradable three-element copolymerized ester PBAST synthetic process |
CN109081908A (en) * | 2018-07-09 | 2018-12-25 | 南京大学 | The technique of organic nontoxic hydrochlorate catalysis direct melt polycondensation synthesis polybutylene terephthalate (PBT) of biguanides |
CN109081909A (en) * | 2018-07-09 | 2018-12-25 | 南京大学 | A kind of technique using organic biguanides catalyst synthesis polypropylene terephthalate |
WO2019062599A1 (en) * | 2017-09-29 | 2019-04-04 | 南京大学 | Method for synthesizing biodegradable poly(succinic acid-co-butylene terephthalate) catalyzed by organic guanidine |
CN111848692A (en) * | 2020-08-02 | 2020-10-30 | 扬州普立特科技发展有限公司 | Preparation method of biomass organic guanidine complex and application of biomass organic guanidine complex in catalytic synthesis of PET or PEIT polyester |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3254054A (en) * | 1961-03-10 | 1966-05-31 | American Enka Corp | Polyester production using a guanidine catalyst |
CN103709679A (en) * | 2013-11-29 | 2014-04-09 | 金发科技股份有限公司 | Modified aliphatic-aromatic copolyester and its preparation method and use |
-
2014
- 2014-06-26 CN CN201410291726.5A patent/CN104031253B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3254054A (en) * | 1961-03-10 | 1966-05-31 | American Enka Corp | Polyester production using a guanidine catalyst |
CN103709679A (en) * | 2013-11-29 | 2014-04-09 | 金发科技股份有限公司 | Modified aliphatic-aromatic copolyester and its preparation method and use |
Non-Patent Citations (1)
Title |
---|
马一萍等: "PBAT的制备与性能", 《塑料》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016535129A (en) * | 2014-07-22 | 2016-11-10 | 南京大学 | Poly (butylene succinate-co-adipic acid) (PBSA) synthesis process method by biomass creatinine catalysis method |
US9688811B2 (en) | 2015-04-13 | 2017-06-27 | Nanjing University | Method for synthesizing poly(butylene succinate) catalyzed by biogenic guanidinine |
WO2016165533A1 (en) * | 2015-04-13 | 2016-10-20 | 南京大学 | Process method for synthesizing polybutylene succinate using bio-organic guanidine catalysis |
WO2016165534A1 (en) * | 2015-04-13 | 2016-10-20 | 南京大学 | Organic guanidine catalysis melt/solid polycondensation synthesis of poly(butylene adipate-co-terephthalate) |
CN104725615A (en) * | 2015-04-13 | 2015-06-24 | 南京大学 | Poly butylene glycol ester synthesis process by biologic organic guanidine catalysis method |
CN104725616B (en) * | 2015-04-13 | 2017-01-11 | 南京大学 | Novel process for using organic guanidine catalysis melt-solid polycondensation to synthesize poly (butylene adipate-co-terephthalate) |
CN104725616A (en) * | 2015-04-13 | 2015-06-24 | 南京大学 | Novel process for using organic guanidine catalysis melt-solid polycondensation to synthesize poly (butylene adipate-co-terephthalate) |
CN106939077A (en) * | 2017-05-12 | 2017-07-11 | 南京大学 | A kind of Biodegradable three-element copolymerized ester PBAST synthetic process |
WO2019062599A1 (en) * | 2017-09-29 | 2019-04-04 | 南京大学 | Method for synthesizing biodegradable poly(succinic acid-co-butylene terephthalate) catalyzed by organic guanidine |
CN109081908A (en) * | 2018-07-09 | 2018-12-25 | 南京大学 | The technique of organic nontoxic hydrochlorate catalysis direct melt polycondensation synthesis polybutylene terephthalate (PBT) of biguanides |
CN109081909A (en) * | 2018-07-09 | 2018-12-25 | 南京大学 | A kind of technique using organic biguanides catalyst synthesis polypropylene terephthalate |
CN111848692A (en) * | 2020-08-02 | 2020-10-30 | 扬州普立特科技发展有限公司 | Preparation method of biomass organic guanidine complex and application of biomass organic guanidine complex in catalytic synthesis of PET or PEIT polyester |
CN111848692B (en) * | 2020-08-02 | 2021-03-19 | 扬州普立特科技发展有限公司 | Preparation method of biomass organic guanidine complex and application of biomass organic guanidine complex in catalytic synthesis of PET or PEIT polyester |
Also Published As
Publication number | Publication date |
---|---|
CN104031253B (en) | 2017-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104031253A (en) | Process method for synthesizing polybutylene glycol adipate-co-butylene terephthalate by adopting cyclo-guanidine catalyst process | |
CN112266471B (en) | Preparation method of polybutylene adipate-terephthalate | |
WO2016011939A1 (en) | Process method for synthesizing poly(butylene succinate-co-butylene adipate) catalyzed by biomass creatinine | |
CN102432849B (en) | Polymerization production method of transparent amorphous copolyester | |
JP2018510260A (en) | Organoguanidine-catalyzed melting-solid phase polycondensation synthetic poly (butylene adipate-co-butylene terephthalate) | |
CN107365412A (en) | The preparation method of biodegradable plastic poly butylene succinate | |
CN103709383B (en) | Titanium series polyester catalyst and its preparation method and application | |
CN112280011B (en) | Preparation method of low-melting-index poly (butylene succinate) | |
CN105873895A (en) | Method for forming an aromatic diacid and/or an aromatic diacid precursor from a polyester-containing feedstock | |
CN113388100B (en) | Catalyst system for synthesizing aliphatic-aromatic copolyester and application thereof | |
CN108484531B (en) | Synthesis process of diglycidyl terephthalate | |
CN107955142B (en) | Process for preparing isosorbide-containing polyesters | |
CN112280012B (en) | Preparation method of poly (butylene succinate) | |
CN102604053B (en) | Method for preparing biomass polyester | |
CN112390940A (en) | Catalyst for polyester synthesis | |
CN109575252A (en) | A kind of preparation method of low melting point PBT copolyester | |
RU2006101284A (en) | TITANIUM-CONTAINING SOLUTION, CATALYST FOR PRODUCING COMPLEX POLYESTER, METHOD FOR PRODUCING RESIN BASED ON COMPLEX POLYESTER AND BLOW FORMING PRODUCT CONTAINING COMPLEX POLYESTER | |
CN104387568A (en) | Synthesis method of biological-based polyester polyol | |
WO2019062599A1 (en) | Method for synthesizing biodegradable poly(succinic acid-co-butylene terephthalate) catalyzed by organic guanidine | |
CN114015026A (en) | Method for synthesizing poly (1, 4-butylene succinate) by ring-opening polymerization | |
CN103214659A (en) | High molecular weight bio-based poly(butylene succinate) synthesis method | |
CN103665349A (en) | Method for synthesizing polybutylene terephthalate | |
CN103408736B (en) | The preparation method of high-molecular-weighbiodegradable biodegradable polyester | |
TW561163B (en) | Process for preparing polypropylene terephthalate/polyethylene terephthalate copolymers | |
CN114790282B (en) | Preparation method and application of nano-microparticle in-situ polymerization catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170201 |