CN104021375B - 一种基于机器学习的车型识别方法 - Google Patents

一种基于机器学习的车型识别方法 Download PDF

Info

Publication number
CN104021375B
CN104021375B CN201410238905.2A CN201410238905A CN104021375B CN 104021375 B CN104021375 B CN 104021375B CN 201410238905 A CN201410238905 A CN 201410238905A CN 104021375 B CN104021375 B CN 104021375B
Authority
CN
China
Prior art keywords
mrow
msub
vehicle
mtd
eta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410238905.2A
Other languages
English (en)
Other versions
CN104021375A (zh
Inventor
李建元
陈涛
王辉
倪升华
李丹
薛依赵
钱涛
陆俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yinjiang Technology Co.,Ltd.
Original Assignee
Enjoyor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enjoyor Co Ltd filed Critical Enjoyor Co Ltd
Priority to CN201410238905.2A priority Critical patent/CN104021375B/zh
Publication of CN104021375A publication Critical patent/CN104021375A/zh
Application granted granted Critical
Publication of CN104021375B publication Critical patent/CN104021375B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种基于机器学习的车型识别方法,包括以下步骤:1)采用背景差分法进行车辆检测,进行运动目标轮廓跟踪,获得运动目标的外部轮廓特征,并对目标图像进行车辆预判和图像预处理;2)车辆特征提取,(2.1)车辆几何特征提取;(2.2)车辆的7个不变矩特征提取;3)车型分类训练:采用基于metric learning的KNN分类器对输入的15维车型特征样本进行训练,并获得4种车型分类4)基于局部线性重构误差最小化的车型分类:采用重构误差最小化方法对新进测试样本进行局部线性重构误差计算并分类。本发明提供了一种在类型较多时具有较高的准确性和良好的实时性的基于机器学习的车型识别方法。

Description

一种基于机器学习的车型识别方法
技术领域
本发明涉及智能交通识别领域,尤其是一种车型识别方法。
背景技术
智能交通系统的关键功能之一是能够准确地进行车型识别。车型识别是通过检测车辆本身固有的参数,在一定的车辆分类标准下运用适当的分类识别算法,主动地对车辆进行分类。车型识别技术可应用于高速公路、过桥过路等各类车辆收费站以及大型停车场的自动收费系统,从而提高交通资源利用,在现代交通监控和管理中有着非常广阔的应用前景和重要的研究和应用意义。
当前,利用视频处理技术进行车辆识别的方法大致可以分为两类:基于图像匹配的方法和基于模式识别的方法。其中,基于图像匹配的方法主要有基于Harris角点特征检测的车型识别和基于车辆SIFT特征的车型识别。这两种方法共同的优点是不容易受摄像机姿态和光照条件的影响,对噪声敏感度较低。但是在实际应用过程中,由于部分中型车与大型车的外部轮廓比较接近,使得利用Harris角点特征进行车型识别的方法,在两者的区分上识别准确率很低。而SIFT特征虽然能够对车辆类型进行较为详细的分类,但前期需要对识别车型建立较大的样本库,且在识别过程中计算量较大,当数据库中的车辆类型较多时,所需识别时间较长,限制了其在实际中的运用。
基于模式识别的方法主要以支持向量机(Support Vector Machine,SVM)作为分类器设计的车型分类方法,能够快速有效地识别车辆类型。但是SVM主要是针对两类的分类问题提出的,对于多种不同类型的车型,则需要设计多层的SVM分类器进行分类,并且传统的SVM算法在每次有新数据加入时,都需要对所有样本进行重新训练,容易导致大量的资源消耗。另外,随着样本数量的逐渐增大,训练时间也不断增加,使得系统的实时性要求得不得满足。
同时,从上述已有的工作中还可以看出,目前的车型识别方法多为直接采用提取的原始特征空间在经典的机器学习分类器上进行学习和判断,其本质是利用欧式空间的良好性质进行学习器的训练,不一定能够很好地反映出样本之间的相似性,不同程度地影响了分类器的性能。
发明内容
为了克服已有车型识别方法的在类型较多时无法满足准确性和实时性要求的不足,本发明提供了一种在类型较多时具有较高的准确性和良好的实时性的基于机器学习的车型识别方法。
本发明解决其技术问题所采用的技术方案是:
一种基于机器学习的车型识别方法,所述识别方法包括以下步骤:
1)采用背景差分法进行车辆检测,进行运动目标轮廓跟踪,获得运动目标的外部轮廓特征,并对目标图像进行车辆预判和图像预处理;
2)车辆特征提取
(2.1)车辆几何特征提取
(2.1.1)车长、车高、车辆长高比:根据运动目标轮廓定位结果,车长L是目标轮廓左右边界的最大值与最小值之差,车高H是目标轮廓上下边界的最大值与最小值之差,即:
L=(Li)max-(Li)min (2)
H=(Hi)max-(Hi)min (3)
再加入车辆长高比R为:R=L/H
(2.1.2)车型图像周长、面积和分散度:根据运动目标轮廓定位结果,车型图像的周长P为轮廓边界的像素个数,车型图像面积A为轮廓所包含区域内像素点得到个数,车型图像分散度定义为F=P2/A;
(2.1.3)车辆图像的轴间距、轴间距与车长之比:利用Hough变换对车辆图像进行圆检测,并标出两个圆心的位置,则车辆图像的轴间距Z=(Zi)max-(Zi)min,轴间距与车长之比为U=Z/L;
(2.2)车辆的7个不变矩特征提取:采用Freeman链码计算图像(p+q)阶矩mpq,并进而计算车辆图像的7个Hu不变矩;
3)车型分类训练
采用基于metric learning的KNN分类器对输入的15维车型特征样本进行训练,并获得4种车型分类,过程如下:
(3.1)训练数据归一化,将所有训练数据按照维度归一化为方差1;
(3.2)训练数据标定
对部分车型数据进行4类标定,以用作后续训练,4种车型及其标签分别为:特种车型标签为1;小型车标签为2;中型车标签为3;大型车标签为4;
(3.3)对训练数据进行基于成对约束的距离度量学习,获得半正定的对角矩阵A,作为
设xi和xj分别为两个样本,如果xi和xj属于同类,记为S={(xi,xj)},若果xi和xj不属于同类,则记为D={(xi,xj)}。矩阵A满足下式:
利用牛顿-拉夫逊(Newton-Raphson)法求解对角矩阵A,如下式:
(3.4)对数据进行特征加权,以对车型样本中各个特征维度重要性进行区分,如下式:
Y=AX (14)
其中X为未进行特征加权的数据集,Y为进行特征加权后的数据集,利用特征加权后的数据集,进行步骤4)的分类;
4)基于局部线性重构误差最小化的车型分类:采用重构误差最小化方法对新进测试样本进行局部线性重构误差计算并分类,令f(·)表示一个可以返回训练样本标签的函数,令δl(wij)返回一个标量值,即:
过程如下:
(4.1)对于测试样本yi,找到它的k个最近邻居样本集{yj},即{yj}=KNN(yi),其中j=1,2,3...,k;
(4.2)计算重构系数向量wij,如下式:
其中,wij表示样本yj对样本yi的重构系数,并且约束yj∈KNN(yi),使得每一个样本yi只能由其近邻来重构;
(4.3)计算yi与每一类最近邻居样本yi的重构误差
(4.4)通过比较最小重构误差,输出yi所在类别的标签:li=argminl(el)。
(4.5)重复(4.2)~(4.4),完成对测试样本集{yi}的分类。
进一步,所述步骤(1)的过程如下:
(1.1)对于视频图像中运动目标较少的背景图片,采用统计中值法建立背景模型;对于运动目标较多的背景图片,采用混合高斯模型建立背景模型;
(1.2)去除阴影:取一帧无车的彩色图像作为背景,将背景帧与当前帧的像素点从RGB空间转换到HSV空间进行阴影检测,然后应用公式(1)
将当前图像的像素值同背景对应的像素值相比较的方法来检测阴影,在公式(1)中,Ih(x,y)、Is(x,y)、Iv(x,y)分别表示当前图像在HSV空间中的H、S、V分量,Bh、Bs、Bv分别表示背景图像在HSV中的H、S、V分量,此时阴影检测的背景为无车的一帧图像,调整并确定ts、th以及α、β的值,去除视频图像中车辆的阴影;
(1.3)运动目标边界定位和图像预处理:采用Freeman方向链码进行运动目标轮廓跟踪,获得运动目标的外部轮廓特征,并对目标图像进行车辆预判和图像预处理。
再进一步,所述(2.2)中,车辆的7个不变矩特征提取过程如下:
设二维图像为f(x,y),将车辆图像转换为二值车辆图像,车辆像素值为1,其他像素值为0,则图像矩阵的(p+q)阶矩mpq和(p+q)阶中心矩μpq可以表示为:
其中p,q=0,1,2...,经过计算,可以推导出mpq和μpq之间的关系如下:
μ00=m00,μ10=m01=0, m00表示图像矩阵的(0+0)阶矩,μ00表示图像矩阵的(0+0)阶中心矩,依此类推;从上述表达式可以看出,图像矩阵的(p+q)阶中心矩μpq可以用图像矩阵的(p+q)阶矩mpq来表示,进而得到从而得到7个不变矩特征T1~T7,分别为:
T1=η2002 (6)
T2=(η2002)2+4η11 2 (7)
T3=(η30-3η12)2+(3η2103)2 (8)
T4=(η3012)2+(η2103)2 (9)
T6=(η2002)[(η3012)2-(η2103)2]+4η113012)(η2103)
(11)
本发明的有益效果主要表现在:在类型较多时,具有较高的准确性和良好的实时性。
附图说明
图1是车型识别过程流程图
图2是车型图像基础处理部分效果图,其中,(a)是原图,(b)是处理后的图。
具体实施方式
下面结合附图对本发明作进一步描述。
参照图1和图2,一种基于机器学习的车型识别方法,所述识别方法包括以下步骤:
1)采用背景差分法进行车辆检测,过程如下:
(1.1)对于视频图像中运动目标较少的背景图片,采用统计中值法建立背景模型;对于运动目标较多的背景图片,采用混合高斯模型建立背景模型。
(1.2)去除阴影:取一帧无车的彩色图像作为背景,将背景帧与当前帧的像素点从RGB空间转换到HSV空间进行阴影检测,然后应用公式(1)
将当前图像的像素值同背景对应的像素值相比较的方法来检测阴影。在公式(1)中,Ih(x,y)、Is(x,y)、Iv(x,y)分别表示当前图像在HSV空间中的H、S、V分量,Bh、Bs、Bv分别表示背景图像在HSV中的H、S、V分量,此时阴影检测的背景为无车的一帧图像,调整并确定ts、th以及α、β的值,去除视频图像中车辆的阴影。
(1.3)运动目标边界定位和图像预处理:采用Freeman方向链码进行运动目标轮廓跟踪,获得运动目标的外部轮廓特征,并对目标图像进行车辆预判和图像预处理,为车辆特征提取做好准备。
2)车辆特征提取
本发明对所有车辆提取的车型特征主要包括2类特征共同构成的15维车辆特征。2类特征分别为几何特征和矩特征。其中几何特征主要包括:①车长;②车高;③车辆长高比;④车型图像周长;⑤车型图像面积;⑥车型图像分散度(车型图像周长的平方与面积之比)⑦车型图像的轴间距;⑧车型图像的轴间距与车长之比。车型的矩特征主要包括车辆的7个不变特征距。
(2.1)车辆几何特征提取
(2.1.1)车长、车高、车辆长高比:根据步骤(1.3)得到的运动目标轮廓定位结果,车长L可以看做是目标轮廓左右边界的最大值与最小值之差,车高H可以看做是目标轮廓上下边界的最大值与最小值之差,即:
L=(Li)max-(Li)min (2)
H=(Hi)max-(Hi)min (3)
为了消除在拍摄图像时镜头与车辆间的距离、角度的微小变化对车型识别造成的影响,再加入车辆长高比R为:R=L/H
(2.1.2)车型图像周长、面积和分散度:根据步骤(1.3)得到的运动目标轮廓定位结果,车型图像的周长P为轮廓边界的像素个数,车型图像面积A为轮廓所包含区域内像素点得到个数,车型图像分散度定义为F=P2/A,反映了目标形状的紧凑度,相同面积的物体周长越小则越紧凑。
(2.1.3)车辆图像的轴间距、轴间距与车长之比:利用Hough变换对车辆图像进行圆检测,并标出两个圆心的位置,则车辆图像的轴间距Z=(Zi)max-(Zi)min,轴间距与车长之比为U=Z/L。
(2.2)车辆的7个不变矩特征提取
本发明采用Freeman链码计算图像(p+q)阶矩mpq,并进而计算车辆图像的7个Hu不变矩的快速算法,大大提高了不变矩特征的计算速度。过程如下:
设二维图像为f(x,y),通过步骤(1.3)的预处理之后,得到二值车辆图像,车辆像素值为1,其他像素值为0,则图像矩阵的(p+q)阶矩和(p+q)阶中心距可以表示为:
其中p,q=0,1,2...,经过计算,可以推导出mpq和μpq之间的关系如下:
μ00=m00,μ10=m01=0, m00表示图像矩阵的(0+0)阶矩,μ00表示图像矩阵的(0+0)阶中心矩,依此类推;从上述表达式可以看出,图像矩阵的(p+q)阶中心矩μpq可以用图像矩阵的(p+q)阶矩mpq来表示,进而得到从而得到7个不变矩特征,分别为:
T1=η2002 (6)
T2=(η2002)2+4η11 2 (7)
T3=(η30-3η12)2+(3η2103)2 (8)
T4=(η3012)2+(η2103)2 (9)
T6=(η2002)[(η3012)2-(η2103)2]+4η113012)(η2103)
(11)
3)车型分类训练
本发明采用了一种基于metric learning的KNN分类器对输入的15维车型特征样本进行训练,并获得4种车型分类。主要过程如下:
(3.1)训练数据归一化,将所有训练数据按照维度归一化为方差1。
(3.2)训练数据标定
本发明需要对部分车型数据进行4类标定,以用作后续训练,4种车型及其标签分别为:特种车型(如摩托车、农用车等)标签为1;小型车标签为2;中型车标签为3;大型车标签为4。
(3.3)对训练数据进行基于成对约束的距离度量学习,获得半正定的对角矩阵A,作为
设xi和xj分别为两个样本,如果xi和xj属于同类,记为S={(xi,xj)},若果xi和xj不属于同类,则记为D={(xi,xj)}。矩阵A满足下式:
利用牛顿-拉夫逊(Newton-Raphson)法求解对角矩阵A,如下式:
(3.4)对数据进行特征加权,以对车型样本中各个特征维度重要性进行区分,如下式:
Y=AX (14)
其中X为未进行特征加权的数据集,Y为进行特征加权后的数据集,利用特征加权后的数据集,进行步骤4)的分类;
4)基于局部线性重构误差最小化的车型分类:采用重构误差最小化方法对新进测试样本进行局部线性重构误差计算并分类,令f(·)表示一个可以返回训练样本标签的函数,令δl(wij)返回一个标量值,即:
过程如下:
(4.1)对于测试样本yi,找到它的k个最近邻居样本集{yj},即{yj}=KNN(yi),其中j=1,2,3...,k;
(4.2)计算重构系数向量wij,如下式:
其中,wij表示样本yj对样本yi的重构系数,并且约束yj∈KNN(yi),使得每一个样本yi只能由其近邻来重构;
(4.3)计算yi与每一类最近邻居样本yi的重构误差
(4.4)通过比较最小重构误差,输出yi所在类别的标签:li=argminl(el)。
(4.5)重复(4.2)~(4.4),完成对测试样本集{yi}的分类。
本发明利用混合高斯模型和统计中值法建立背景模型,利用用HSV空间检测阴影,并利用背景差分法获得运动目标物体。利用Freeman链码检测运动目标轮廓,进行车辆预判和图像预处理,获取车辆的几何特征和不变矩特征共15维特征向量。利用监督的度量学习获得重构对角矩阵,最后利用基于KNN的最小重构误差法进行分类。本实施例中对于164个训练样本,度量学习平均训练时间为5.3s。对于60个待分类样本,最小化重构误差完成分类的平均时间为0.006s,传统的KNN分类器完成分类的平均时间为0.008s。
表1是本发明实施例与其他方法对比结果:
表1。

Claims (3)

1.一种基于机器学习的车型识别方法,其特征在于:所述识别方法包括以下步骤:
1)采用背景差分法进行车辆检测,进行运动目标轮廓跟踪,获得运动目标的外部轮廓特征,并对目标图像进行车辆预判和图像预处理;
2)车辆特征提取
(2.1)车辆几何特征提取
(2.1.1)车长、车高、车辆长高比:根据运动目标轮廓定位结果,车长L是目标轮廓左右边界的最大值与最小值之差,车高H是目标轮廓上下边界的最大值与最小值之差,即:
L=(Li)max-(Li)min (2)
H=(Hi)max-(Hi)min (3)
下标i表示第i辆车;
再加入车辆长高比R为:R=L/H
(2.1.2)车型图像周长、面积和分散度:根据运动目标轮廓定位结果,车型图像的周长P为轮廓边界的像素个数,车型图像面积B为轮廓所包含区域内像素点得到个数,车型图像分散度定义为F=P2/B;
(2.1.3)车辆图像的轴间距、轴间距与车长之比:利用Hough变换对车辆图像进行圆检测,并标出两个圆心的位置,则车辆图像的轴间距Z=(Zi)max-(Zi)min,下标i表示第i辆车,轴间距与车长之比为U=Z/L;
(2.2)车辆的7个不变矩特征提取:采用Freeman链码计算图像(p+q)阶矩mpq,并进而计算车辆图像的7个Hu不变矩;
3)车型分类训练
采用基于metric learning的KNN分类器对输入的15维车型特征样本进行训练,并获得4种车型分类,过程如下:
(3.1)训练数据归一化,将所有训练数据按照维度归一化为方差1;
(3.2)训练数据标定
对部分车型数据进行4类标定,以用作后续训练,4种车型及其标签分别为:特种车型标签为1;小型车标签为2;中型车标签为3;大型车标签为4;
(3.3)对训练数据进行基于成对约束的距离度量学习,获得半正定的对角矩阵A,
设xi和xj分别为两个样本,如果xi和xj属于同类,记为S={(xi,xj)},若果xi和xj不属于同类,则记为D={(xi,xj)},矩阵A满足下式:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>min</mi> <mi>A</mi> </msub> <msub> <mi>&amp;Sigma;</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> <mo>)</mo> <mo>&amp;Element;</mo> <mi>S</mi> </mrow> </msub> <mo>|</mo> <mo>|</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> <mo>|</mo> <msubsup> <mo>|</mo> <mi>A</mi> <mn>2</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>&amp;Sigma;</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> <mo>)</mo> <mo>&amp;Element;</mo> <mi>D</mi> </mrow> </msub> <mo>|</mo> <mo>|</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> <mo>|</mo> <msubsup> <mo>|</mo> <mi>A</mi> <mn>2</mn> </msubsup> <mo>&amp;GreaterEqual;</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>A</mi> <mo>&amp;GreaterEqual;</mo> <mn>0.</mn> </mrow> </mtd> </mtr> </mtable> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
利用牛顿-拉夫逊(Newton-Raphson)法求解对角矩阵A,如下式:
<mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mn>11</mn> </msub> <mo>,</mo> <msub> <mi>A</mi> <mn>22</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>A</mi> <mrow> <mi>n</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> <mo>)</mo> <mo>&amp;Element;</mo> <mi>S</mi> </mrow> </munder> <mo>|</mo> <mo>|</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> <mo>|</mo> <msubsup> <mo>|</mo> <mi>A</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mi>l</mi> <mi>o</mi> <mi>g</mi> <mrow> <mo>(</mo> <munder> <mo>&amp;Sigma;</mo> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> <mo>)</mo> <mo>&amp;Element;</mo> <mi>D</mi> </mrow> </munder> <mo>|</mo> <mo>|</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> <mo>|</mo> <msub> <mo>|</mo> <mi>A</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
(3.4)对数据进行特征加权,以对车型样本中各个特征维度重要性进行区分,如下式:
Y=AX (14)
其中X为未进行特征加权的数据集,Y为进行特征加权后的数据集,利用特征加权后的数据集,进行步骤4)的分类;
4)基于局部线性重构误差最小化的车型分类:采用重构误差最小化方法对新进测试样本进行局部线性重构误差计算并分类,令f(·)表示一个返回训练样本标签的函数,令δl(wij)返回一个标量值,即:
<mrow> <msub> <mi>&amp;delta;</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>w</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>w</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mtd> <mtd> <mrow> <mi>i</mi> <mi>f</mi> <mi> </mi> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>l</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mi>e</mi> <mi>l</mi> <mi>s</mi> <mi>e</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
其中,l表示分类标签,wij表示重构系数向量;
过程如下:
(4.1)对于测试样本yi,找到它的k个最近邻居样本集{yj},即{yj}=KNN(yi),其中j=1,2,3...,k;
(4.2)计算重构系数向量wij,如下式:
<mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mi>w</mi> <mo>*</mo> </msup> <mo>=</mo> <mi>arg</mi> <mi> </mi> <msub> <mi>min</mi> <mi>w</mi> </msub> <mo>|</mo> <mo>|</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>-</mo> <munder> <mi>&amp;Sigma;</mi> <mi>j</mi> </munder> <msub> <mi>w</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>|</mo> <msub> <mo>|</mo> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <munder> <mi>&amp;Sigma;</mi> <mi>j</mi> </munder> <msub> <mi>w</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
其中,wij表示样本yj对样本yi的重构系数,并且约束yj∈KNN(yi),使得每一个样本yi只能由其近邻来重构;
(4.3)计算yi与每一类最近邻居样本yi的重构误差
(4.4)通过比较最小重构误差,输出yi所在类别的标签:li=argminl(el);
(4.5)重复(4.2)~(4.4),完成对k个最近邻居样本集{yj}的分类。
2.如权利要求1所述的基于机器学习的车型识别方法,其特征在于:所述步骤1)的过程如下:
(1.1)对于视频图像中运动目标较少的背景图片,采用统计中值法建立背景模型;对于运动目标较多的背景图片,采用混合高斯模型建立背景模型;
(1.2)去除阴影:取一帧无车的彩色图像作为背景,将背景帧与当前帧的像素点从RGB空间转换到HSV空间进行阴影检测,然后应用公式(1)
<mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mi>f</mi> <mi>&amp;alpha;</mi> <mo>&amp;le;</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mi>v</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>B</mi> <mi>v</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&amp;le;</mo> <mi>&amp;beta;</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mi> </mi> <msub> <mi>I</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <mi>t</mi> <mi>s</mi> <mi> </mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo>|</mo> <msub> <mi>I</mi> <mi>h</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>B</mi> <mi>h</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>&amp;le;</mo> <mi>t</mi> <mi>h</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>e</mi> <mi>l</mi> <mi>s</mi> <mi>e</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
其中,f(x,y)为二维图像;
将当前图像的像素值同背景对应的像素值相比较的方法来检测阴影,在公式(1)中,Ih(x,y)、Is(x,y)、Iv(x,y)分别表示当前图像在HSV空间中的H、S、V分量,Bh、Bs、Bv分别表示背景图像在HSV中的H、S、V分量,此时阴影检测的背景为无车的一帧图像,调整并确定ts、th以及α、β的值,去除视频图像中车辆的阴影;
(1.3)运动目标边界定位和图像预处理:采用Freeman方向链码进行运动目标轮廓跟踪,获得运动目标的外部轮廓特征,并对目标图像进行车辆预判和图像预处理。
3.如权利要求1或2所述的基于机器学习的车型识别方法,其特征在于:所述(2.2)中,车辆的7个不变矩特征提取过程如下:
设二维图像为f(x,y),将车辆图像转换为二值车辆图像,车辆像素值为1,其他像素值为0,则图像矩阵的(p+q)阶矩mpq和(p+q)阶中心矩μpq表示为:
<mrow> <msub> <mi>m</mi> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mi>m</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>y</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mi>x</mi> <mi>p</mi> </msup> <msup> <mi>y</mi> <mi>q</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>&amp;mu;</mi> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mi>m</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>y</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> <mi>p</mi> </msup> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <mover> <mi>y</mi> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> <mi>q</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
其中p,q=0,1,2...,经过计算,推导出mpq和μpq之间的关系如下:μ00=m00,μ10=m01=0, m00表示图像矩阵的(0+0)阶矩,μ00表示图像矩阵的(0+0)阶中心矩,依此类推;从表达式(4)和(5)中看出,图像矩阵的(p+q)阶中心矩μpq用图像矩阵的(p+q)阶矩mpq mpq来表示,进而得到从而得到7个不变矩特征T1~T7,分别为:
T1=η2002 (6)
T2=(η2002)2+4η11 2 (7)
T3=(η30-3η12)2+(3η2103)2 (8)
T4=(η3012)2+(η2103)2 (9)
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>T</mi> <mn>5</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>&amp;eta;</mi> <mn>30</mn> </msub> <mo>-</mo> <mn>3</mn> <msub> <mi>&amp;eta;</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>&amp;eta;</mi> <mn>30</mn> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;eta;</mi> <mn>30</mn> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mn>3</mn> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;eta;</mi> <mn>21</mn> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mn>03</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mn>3</mn> <msub> <mi>&amp;eta;</mi> <mn>21</mn> </msub> <mo>-</mo> <msub> <mi>&amp;eta;</mi> <mn>03</mn> </msub> <mo>)</mo> <mo>(</mo> <msub> <mi>&amp;eta;</mi> <mn>21</mn> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mn>03</mn> </msub> <mo>)</mo> <mo>&amp;lsqb;</mo> <mn>3</mn> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;eta;</mi> <mn>30</mn> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;eta;</mi> <mn>21</mn> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mn>03</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
T6=(η2002)[(η3012)2-(η2103)2]+4η113012)(η2103)
(11)
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>T</mi> <mn>7</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>3</mn> <msub> <mi>&amp;eta;</mi> <mn>21</mn> </msub> <mo>-</mo> <msub> <mi>&amp;eta;</mi> <mn>03</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>&amp;eta;</mi> <mn>30</mn> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;eta;</mi> <mn>30</mn> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mn>3</mn> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;eta;</mi> <mn>21</mn> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mn>03</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mn>3</mn> <msub> <mi>&amp;eta;</mi> <mn>12</mn> </msub> <mo>-</mo> <msub> <mi>&amp;eta;</mi> <mn>03</mn> </msub> <mo>)</mo> <mo>(</mo> <msub> <mi>&amp;eta;</mi> <mn>21</mn> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mn>03</mn> </msub> <mo>)</mo> <mo>&amp;lsqb;</mo> <mn>3</mn> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;eta;</mi> <mn>30</mn> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;eta;</mi> <mn>21</mn> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mn>03</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> 3
CN201410238905.2A 2014-05-29 2014-05-29 一种基于机器学习的车型识别方法 Active CN104021375B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410238905.2A CN104021375B (zh) 2014-05-29 2014-05-29 一种基于机器学习的车型识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410238905.2A CN104021375B (zh) 2014-05-29 2014-05-29 一种基于机器学习的车型识别方法

Publications (2)

Publication Number Publication Date
CN104021375A CN104021375A (zh) 2014-09-03
CN104021375B true CN104021375B (zh) 2017-11-07

Family

ID=51438120

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410238905.2A Active CN104021375B (zh) 2014-05-29 2014-05-29 一种基于机器学习的车型识别方法

Country Status (1)

Country Link
CN (1) CN104021375B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104361355B (zh) * 2014-12-02 2018-02-23 威海北洋电气集团股份有限公司 基于红外的人车自动分类方法及通道装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107430693A (zh) * 2015-03-13 2017-12-01 北京市商汤科技开发有限公司 用于车辆分类和验证的设备和系统
CN105335757A (zh) * 2015-11-03 2016-02-17 电子科技大学 一种基于局部特征聚合描述符的车型识别方法
CN105404859A (zh) * 2015-11-03 2016-03-16 电子科技大学 一种基于池化车辆图片原始特征的车型识别方法
CN105335758A (zh) * 2015-11-03 2016-02-17 电子科技大学 一种基于视频费舍尔向量描述符的车型识别方法
CN107025459A (zh) * 2016-01-29 2017-08-08 中兴通讯股份有限公司 一种车型识别方法及装置
CN106203368A (zh) * 2016-07-18 2016-12-07 江苏科技大学 一种基于src和svm组合分类器的交通视频车辆识别方法
CN108280467B (zh) * 2018-01-12 2020-10-16 北京摩拜科技有限公司 车辆故障检测方法、检测设备、服务器及车辆系统
CN109544930A (zh) * 2018-12-14 2019-03-29 深圳市元征科技股份有限公司 重型商用车辆的违章判断方法、系统、装置及存储介质
CN111353516A (zh) * 2018-12-21 2020-06-30 华为技术有限公司 一种用于在线学习的样本分类方法及模型更新方法
CN109949181B (zh) * 2019-03-22 2021-05-25 华立科技股份有限公司 基于knn临近算法的电网类型判断方法和装置
CN110598758A (zh) * 2019-08-23 2019-12-20 伟龙金溢科技(深圳)有限公司 训练建模方法、车辆收费方法、管理系统及存储介质
CN112598009A (zh) * 2020-09-29 2021-04-02 中科劲点(北京)科技有限公司 基于运动分析的车辆分类方法及系统
CN112967516B (zh) * 2021-02-03 2022-07-26 芜湖泊啦图信息科技有限公司 快速停车场端关键参数与整车匹配全局动态路径规划方法
CN113487544A (zh) * 2021-06-22 2021-10-08 杭州鸿泉物联网技术股份有限公司 车辆黑烟检测方法、装置、电子设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2500708A1 (de) * 2011-03-16 2012-09-19 Fahrzeugsystemdaten GmbH Anordnung und Verfahren zur Baugruppenprüfung, insbesondere zur Achsdämpfungsprüfung, in Fahrzeugen
CN103324920A (zh) * 2013-06-27 2013-09-25 华南理工大学 基于车辆正面图像与模板匹配的车型自动识别方法
CN103794056A (zh) * 2014-03-06 2014-05-14 北京卓视智通科技有限责任公司 基于实时双路视频流的车型精确分类系统及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2500708A1 (de) * 2011-03-16 2012-09-19 Fahrzeugsystemdaten GmbH Anordnung und Verfahren zur Baugruppenprüfung, insbesondere zur Achsdämpfungsprüfung, in Fahrzeugen
CN103324920A (zh) * 2013-06-27 2013-09-25 华南理工大学 基于车辆正面图像与模板匹配的车型自动识别方法
CN103794056A (zh) * 2014-03-06 2014-05-14 北京卓视智通科技有限责任公司 基于实时双路视频流的车型精确分类系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于矩不变理论的车型识别技术研究;张海宁等;《微处理机》;20140430(第2期);第55-57页 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104361355B (zh) * 2014-12-02 2018-02-23 威海北洋电气集团股份有限公司 基于红外的人车自动分类方法及通道装置

Also Published As

Publication number Publication date
CN104021375A (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
CN104021375B (zh) 一种基于机器学习的车型识别方法
CN109447034B (zh) 基于YOLOv3网络的自动驾驶中交通标识检测方法
CN108154102B (zh) 一种道路交通标志识别方法
CN104599275B (zh) 基于概率图模型的非参数化的rgb-d场景理解方法
CN106446933B (zh) 基于上下文信息的多目标检测方法
CN103996018B (zh) 基于4dlbp的人脸识别方法
CN108171112A (zh) 基于卷积神经网络的车辆识别与跟踪方法
CN111553201B (zh) 一种基于YOLOv3优化算法的交通灯检测方法
CN105069481B (zh) 基于空间金字塔稀疏编码的自然场景多标记分类方法
CN104504366A (zh) 基于光流特征的笑脸识别系统及方法
CN107657225B (zh) 一种基于聚合通道特征的行人检测方法
CN102521616B (zh) 基于稀疏表示的行人检测方法
CN108171136A (zh) 一种多任务卡口车辆以图搜图的系统及方法
CN105956560A (zh) 一种基于池化多尺度深度卷积特征的车型识别方法
CN106295532B (zh) 一种视频图像中的人体动作识别方法
CN107767416B (zh) 一种低分辨率图像中行人朝向的识别方法
CN104598885A (zh) 街景图像中的文字标牌检测与定位方法
CN106570564A (zh) 基于深度网络的多尺度行人检测方法
Ji et al. Integrating visual selective attention model with HOG features for traffic light detection and recognition
CN105760858A (zh) 一种基于类Haar中间层滤波特征的行人检测方法及装置
CN103886619A (zh) 一种融合多尺度超像素的目标跟踪方法
CN108734200B (zh) 基于bing特征的人体目标视觉检测方法和装置
CN110210538A (zh) 一种家居图像多目标识别方法及装置
CN103186776B (zh) 基于多特征和深度信息的人体检测方法
WO2021233041A1 (zh) 数据标注方法和装置、精细粒度识别方法和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 310012 floor 1, building 1, No. 223, Yile Road, Xihu District, Hangzhou City, Zhejiang Province

Patentee after: Yinjiang Technology Co.,Ltd.

Address before: 310012 floor 1, building 1, No. 223, Yile Road, Xihu District, Hangzhou City, Zhejiang Province

Patentee before: ENJOYOR Co.,Ltd.

CP01 Change in the name or title of a patent holder