CN104016408A - Synthetic method of sodium niobate nanowire - Google Patents
Synthetic method of sodium niobate nanowire Download PDFInfo
- Publication number
- CN104016408A CN104016408A CN201410255579.6A CN201410255579A CN104016408A CN 104016408 A CN104016408 A CN 104016408A CN 201410255579 A CN201410255579 A CN 201410255579A CN 104016408 A CN104016408 A CN 104016408A
- Authority
- CN
- China
- Prior art keywords
- sodium niobate
- reaction
- synthetic method
- naoh
- steps
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- UYLYBEXRJGPQSH-UHFFFAOYSA-N sodium;oxido(dioxo)niobium Chemical compound [Na+].[O-][Nb](=O)=O UYLYBEXRJGPQSH-UHFFFAOYSA-N 0.000 title claims abstract description 32
- 238000010189 synthetic method Methods 0.000 title claims description 5
- 239000002070 nanowire Substances 0.000 title abstract description 28
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 39
- 238000006243 chemical reaction Methods 0.000 claims abstract description 22
- 239000003960 organic solvent Substances 0.000 claims abstract description 12
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 9
- 239000002994 raw material Substances 0.000 claims abstract description 7
- 238000001035 drying Methods 0.000 claims abstract description 5
- 238000002156 mixing Methods 0.000 claims abstract 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 21
- 239000000843 powder Substances 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 10
- 239000000047 product Substances 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims description 5
- 239000010935 stainless steel Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000002244 precipitate Substances 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 238000005119 centrifugation Methods 0.000 claims 1
- 239000007810 chemical reaction solvent Substances 0.000 claims 1
- 229960000935 dehydrated alcohol Drugs 0.000 claims 1
- 238000000151 deposition Methods 0.000 claims 1
- 230000008021 deposition Effects 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 22
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 238000003786 synthesis reaction Methods 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 238000000137 annealing Methods 0.000 abstract description 3
- 238000002360 preparation method Methods 0.000 abstract description 3
- 239000002243 precursor Substances 0.000 abstract description 2
- 239000004094 surface-active agent Substances 0.000 abstract description 2
- 230000002194 synthesizing effect Effects 0.000 abstract description 2
- 238000000926 separation method Methods 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- 239000011259 mixed solution Substances 0.000 description 9
- 238000004729 solvothermal method Methods 0.000 description 7
- 230000001699 photocatalysis Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 4
- 238000007146 photocatalysis Methods 0.000 description 4
- -1 polytetrafluoroethylene Polymers 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000009776 industrial production Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910003378 NaNbO3 Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000001523 electrospinning Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- MUPJWXCPTRQOKY-UHFFFAOYSA-N sodium;niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Na+].[Nb+5] MUPJWXCPTRQOKY-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005621 ferroelectricity Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000005616 pyroelectricity Effects 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开了一种铌酸钠纳米线的合成方法,包括NaOH与有机溶剂混合的步骤、水热反应的步骤、洗涤和离心分离的步骤以及烘干的步骤,本发明的方法所用设备简单,反应条件温和,无需中间相前驱体的制备以及后期退火处理;反应原料价格低廉,无需昂贵的表面活性剂作为模板;具有工艺流程简单,节约能源,成本低廉,易于操作和控制,重复性好,便于工业化生产等主要特点,可有效的缩短合成时间,提高生产效率,是一种理想的绿色合成工艺。
The invention discloses a method for synthesizing sodium niobate nanowires, which includes the steps of mixing NaOH with an organic solvent, the steps of hydrothermal reaction, the steps of washing and centrifugal separation, and the steps of drying. The equipment used in the method of the invention is simple, The reaction conditions are mild, without the preparation of mesophase precursors and post-annealing treatment; the reaction raw materials are cheap, and no expensive surfactants are used as templates; the process is simple, energy saving, low cost, easy to operate and control, and good repeatability. The main features of being convenient for industrialized production can effectively shorten the synthesis time and improve production efficiency, and it is an ideal green synthesis process.
Description
the
技术领域 technical field
本发明涉及一种铌酸钠纳米线的溶剂热合成方法,尤其涉及一种可重复地一步合成铌酸钠纳米线的方法,属于碱金属铌酸盐纳米功能材料领域。 The invention relates to a solvothermal synthesis method of sodium niobate nanowires, in particular to a method for repeatedly synthesizing sodium niobate nanowires in one step, and belongs to the field of alkali metal niobate nanometer functional materials.
背景技术 Background technique
铌酸钠是一种重要的无机非金属功能材料,具有典型的钙钛矿结构,因表现出良好的非线性光学性、铁电性、压电性、光催化性和热释电性等性能,在能量回收、智能传感、能量转化和光催化等领域具有巨大的应用潜力,引起了科学研究和技术应用领域的极大关注。[W. Zeng, X. M. Tao, S. Chen, S. M. Shang, H. L. W. Chan, S. H. Choy, Energy Environ. Sci., 2013, 6, 2631-2638; M. Blomqvist, S. Khartsev, A. Grishin, A. Petraru, C. Buchal, Appl. Phys. Lett., 2003, 82, 439.] 材料的微观结构,包括颗粒尺寸、形貌和分布等情况对其性能起着决定性的作用。由于界面效应和尺寸效应,低维纳米化的功能材料表现出显著的性能增强。特别地,一维铌酸钠纳米粉体(包括纳米线、纳米纤维、纳米棒等)的压电性能和光催化性能较其他形貌(纳米块、纳米球等)具有明显的优势。[J. Lv, T. Kako, Z. S. Li, Z. G. Zou, J. H. Ye, J. Phys. Chem. C, 2010, 114, 6157–6162; T. Y. Ke, H. A. Chen, H. S. Sheu, J. W. Yeh, H. N. Lin, C. Y. Lee, H. T. Chiu, J. Phys. Chem. C, 2008, 112, 8827–8831.]迄今为止,一维铌酸钠粉体的合成主要有熔盐法、静电纺丝法和水热法。Xu采用熔盐法首先制得K2Nb8O21纳米线模板,再在熔盐条件下进行离子交换进而得到铌酸钠纳米线,工艺比较繁琐,能源消耗大,且具有一定的危险性;[C. Y. Xu, L. Zhen, R. Yang, Z. L. Wang, J. Am. Chem. Soc., 2007, 129, 15444–15445.] 静电纺丝法可制备出大小均一,尺寸可控的铌酸钠纳米线,但是需要依赖于昂贵的设备,生产效率极低,不利于工业化;[W. Zeng, X. M. Tao, S. Chen, S. M. Shang, H. L. W. Chan, S. H. Choy, Energy Environ. Sci., 2013, 6, 2631-2638.] 目前普遍采用的是水热法加后期退火处理制备铌酸钠纳米线,即在水热条件下通过严格控制工艺参数(如温度、时间、碱度等)得到一维中间产物Na7(H3O)Nb6O19 .14H2O或者Na2Nb2O6,再经过后期退火处理得到铌酸钠纳米线。[J. H. Jung, C. Y. Chen, W. W. Wu, J. I. Hong, B. K. Yun, Y. S. Zhou, N. Lee, W. Jo, L. J. Chen, L. J. Chou, Z. L. Wang, J. Phys. Chem. C, 2012, 116 (42), 22261–22265.] 水热法制备铌酸钠纳米线较于熔盐法具有明显的优势,但是一维中间产物对反应环境十分敏感,反应条件需要精确控制,同时还需要后期的煅烧处理,能源消耗大,工艺较为繁杂。因此,采用简单的仪器设备,通过简单的工艺方法,实现铌酸钠纳米线的一步法合成对于铌酸钠在能量转换和光催化领域的应用具有重大意义。 Sodium niobate is an important inorganic non-metallic functional material with a typical perovskite structure, because of its good nonlinear optics, ferroelectricity, piezoelectricity, photocatalysis and pyroelectricity, etc. , has great application potential in the fields of energy recovery, smart sensing, energy conversion, and photocatalysis, and has attracted great attention in the fields of scientific research and technical applications. [W. Zeng, X. M. Tao, S. Chen, S. M. Shang, H. L. W. Chan, S. H. Choy, Energy Environ. Sci., 2013, 6, 2631-2638; M. Blomqvist, S. Khartsev, A. Grishin, A. Petraru , C. Buchal, Appl. Phys. Lett., 2003, 82, 439.] The microstructure of a material, including particle size, morphology and distribution, plays a decisive role in its performance. Due to interfacial and size effects, low-dimensional nanosized functional materials exhibit significant performance enhancements. In particular, the piezoelectric and photocatalytic properties of one-dimensional sodium niobate nanopowders (including nanowires, nanofibers, nanorods, etc.) have obvious advantages over other morphologies (nanoblocks, nanospheres, etc.). [J. Lv, T. Kako, Z. S. Li, Z. G. Zou, J. H. Ye, J. Phys. Chem. C, 2010, 114, 6157–6162; T. Y. Ke, H. A. Chen, H. S. Sheu, J. W. Yeh, H. N. Lin, C. Y. Lee, H. T. Chiu, J. Phys. Chem. C, 2008, 112, 8827–8831.] So far, the synthesis of one-dimensional sodium niobate powder mainly includes molten salt method, electrospinning method and hydrothermal method. Xu used the molten salt method to first prepare K 2 Nb 8 O 21 nanowire templates, and then performed ion exchange under molten salt conditions to obtain sodium niobate nanowires. The process is cumbersome, consumes a lot of energy, and has certain risks; [C. Y. Xu, L. Zhen, R. Yang, Z. L. Wang, J. Am. Chem. Soc., 2007, 129, 15444–15445.] Electrospinning can prepare sodium niobate with uniform size and controllable size Nanowires, but need to rely on expensive equipment, the production efficiency is extremely low, which is not conducive to industrialization; [W. Zeng, X. M. Tao, S. Chen, S. M. Shang, H. L. W. Chan, S. H. Choy, Energy Environ. , 2631-2638.] At present, the hydrothermal method plus post-annealing treatment is commonly used to prepare sodium niobate nanowires, that is, the one-dimensional intermediate The product Na 7 (H 3 O)Nb 6 O 19 . 14H 2 O or Na 2 Nb 2 O 6 is then annealed to obtain sodium niobate nanowires. [J. H. Jung, C. Y. Chen, W. W. Wu, J. I. Hong, B. K. Yun, Y. S. Zhou, N. Lee, W. Jo, L. J. Chen, L. J. Chou, Z. L. Wang, J. Phys. Chem. C, 2012, 116 (42) , 22261–22265.] The preparation of sodium niobate nanowires by the hydrothermal method has obvious advantages over the molten salt method, but the one-dimensional intermediate product is very sensitive to the reaction environment, the reaction conditions need to be precisely controlled, and the post-calcination treatment is also required. The energy consumption is large and the process is complicated. Therefore, it is of great significance to realize the one-step synthesis of sodium niobate nanowires by using simple equipment and simple process methods for the application of sodium niobate in the fields of energy conversion and photocatalysis.
the
发明内容 Contents of the invention
技术问题technical problem
本发明要解决的技术问题是提供一种实现铌酸钠纳米线粉体高效快速的一步溶剂热合成方法,通过该方法制备得到的铌酸钠纳米线粉体具有优异的光催化性能和压电性能。 The technical problem to be solved in the present invention is to provide a one-step solvothermal synthesis method that realizes sodium niobate nanowire powder efficiently and quickly. The sodium niobate nanowire powder prepared by this method has excellent photocatalytic performance and piezoelectricity. performance.
技术方案Technical solutions
为了解决上述的技术问题,本发明的铌酸钠纳米线的合成方法包括下列步骤: In order to solve the above-mentioned technical problems, the synthetic method of sodium niobate nanowire of the present invention comprises the following steps:
步骤一:在乙二醇等有机溶剂中按照0.5~1.0mol/L的浓度比例加入NaOH粉体,加热并搅拌20~30min得到NaOH与有机溶剂的混合溶液;待其充分混合后,向上述混合溶液中加入0.5~1.5g原料Nb2O5,加热搅拌15~20min,使其均匀混合,形成乳白色的混合溶液;其中,应保证NaOH与Nb2O5的物质的量之比大于1; Step 1: Add NaOH powder in an organic solvent such as ethylene glycol at a concentration ratio of 0.5~1.0mol/L, heat and stir for 20~30min to obtain a mixed solution of NaOH and organic solvent; Add 0.5~1.5g raw material Nb 2 O 5 into the solution, heat and stir for 15~20min to make it evenly mixed to form a milky white mixed solution; among them, the ratio of the amount of NaOH to Nb 2 O 5 should be greater than 1;
步骤二:将步骤一所得的混合溶液转移至聚四氟乙烯内衬中,然后将内衬放置于不锈钢水热反应釜中密封,在120~200℃进行4~16h保温反应,待反应结束后自然冷却至室温得到白色沉淀物; Step 2: Transfer the mixed solution obtained in Step 1 to the polytetrafluoroethylene lining, then place the lining in a stainless steel hydrothermal reaction kettle and seal it, and perform a heat preservation reaction at 120~200°C for 4~16h. After the reaction is completed, Cool naturally to room temperature to obtain white precipitate;
步骤三:分别采用去离子水和无水乙醇对所得白色沉淀产物进行多次洗涤和离心分离,转速为1000~3000rpm,时间为5~30min,将残余的离子和有机溶剂全部洗尽; Step 3: Use deionized water and absolute ethanol to wash and centrifuge the white precipitated product multiple times, at a speed of 1000-3000 rpm, for 5-30 minutes, to wash away all the remaining ions and organic solvents;
步骤四:在50~80℃条件下进行烘干处理,时间为12~24h,得到铌酸钠纳米线粉体。 Step 4: drying at 50-80° C. for 12-24 hours to obtain sodium niobate nanowire powder.
本发明的技术方案中,NaOH应先加入乙二醇溶剂中进行搅拌处理,尽可能的使其溶解或者混合均匀,这样可以有效控制NaNbO3纳米线的尺寸均匀性。 In the technical solution of the present invention, NaOH should be firstly added into the ethylene glycol solvent for stirring treatment, so as to dissolve or mix it as uniformly as possible, so that the size uniformity of NaNbO 3 nanowires can be effectively controlled.
the
有益效果Beneficial effect
本发明的方法所用设备简单,反应条件温和,无需中间相前驱体的制备以及后期退火处理;反应原料价格低廉,无需昂贵的表面活性剂作为模板;具有工艺流程简单,节约能源,成本低廉,易于操作和控制,重复性好,便于工业化生产等主要特点,可有效的缩短合成时间,提高生产效率,是一种理想的绿色合成工艺。与现有技术相比,本发明方法具有的有益效果是: The method of the present invention uses simple equipment, mild reaction conditions, no need for preparation of mesophase precursors and post-annealing treatment; low price of reaction raw materials, no need for expensive surfactants as templates; simple process flow, energy saving, low cost, and easy Operation and control, good repeatability, easy industrial production and other main features can effectively shorten the synthesis time and improve production efficiency. It is an ideal green synthesis process. Compared with prior art, the beneficial effect that the inventive method has is:
(1)以完全有机溶剂乙二醇作为反应介质,实现铌酸钠纳米线的一步溶剂热合成,工艺流程简单,合成效率高,便于工业化生产; (1) Using the complete organic solvent ethylene glycol as the reaction medium to realize the one-step solvothermal synthesis of sodium niobate nanowires, the process is simple, the synthesis efficiency is high, and it is convenient for industrial production;
(2)所需NaOH浓度为0.5~2mol/L,反应温度为120~200℃,反应条件温和,能源消耗低,安全性高; (2) The required NaOH concentration is 0.5~2mol/L, the reaction temperature is 120~200℃, the reaction conditions are mild, the energy consumption is low, and the safety is high;
(3)所得铌酸钠纳米线的可选择性和可调节性强,NaOH浓度为0.5~2.0mol/L,Nb2O5含量在0.5~1.5g,反应时间在4~16h均能得到铌酸钠纳米线; (3) The selectivity and adjustability of the obtained sodium niobate nanowires are strong, the concentration of NaOH is 0.5~2.0mol/L, the content of Nb 2 O 5 is 0.5~1.5g, and the reaction time is 4~16h. Sodium acid nanowires;
(4)如图1、图2、图3的图谱及照片所示,所得铌酸钠纳米线的尺寸更小(10~20nm), 尺寸分布范围窄,反应重复性好。 (4) As shown in the maps and photos of Figure 1, Figure 2, and Figure 3, the size of the obtained sodium niobate nanowires is smaller (10~20nm), the size distribution range is narrow, and the reaction repeatability is good.
本发明所合成的铌酸钠纳米线尺寸小,分布窄,同时兼具一定的选择性。这种便捷、高效的铌酸钠纳米线合成方法势必为铌酸钠材料的工业化生产以及其在能量转化和光催化领域的应用创造新的机遇和动力。 The sodium niobate nanowires synthesized by the invention have small size, narrow distribution and certain selectivity. This convenient and efficient synthesis method of sodium niobate nanowires is bound to create new opportunities and impetus for the industrial production of sodium niobate materials and their applications in the fields of energy conversion and photocatalysis.
the
附图说明 Description of drawings
图1是在140℃经8h溶剂热反应所得NaNbO3的XRD图谱; Figure 1 is the XRD pattern of NaNbO3 obtained by solvothermal reaction at 140°C for 8 hours;
图2是在180℃经8h溶剂热反应所得NaNbO3纳米线的场发射扫描电子显微镜(FE-SEM)照片; Figure 2 is a field emission scanning electron microscope (FE-SEM) photo of NaNbO 3 nanowires obtained by solvothermal reaction at 180°C for 8 hours;
图3是在200℃经4h溶剂热反应所得NaNbO3纳米线尺寸分布图,其中插图为透射电镜(TEM)照片。 Figure 3 is the size distribution diagram of NaNbO 3 nanowires obtained by solvothermal reaction at 200 ° C for 4 h, and the inset is a transmission electron microscope (TEM) photo.
the
具体实施方式 Detailed ways
以下结合具体实施例对本发明进行具体说明,但本发明绝非仅限于所述实施例所述的实施方式。凡是采用溶剂热合成铌酸钠一维纳米粉体,以及由本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。 The present invention will be specifically described below in conjunction with specific examples, but the present invention is by no means limited to the implementations described in the examples. All the one-dimensional nanometer powders of sodium niobate synthesized by solvothermal method, and all the deformations directly derived or associated from the content disclosed in the present invention should be considered as the scope of protection of the present invention.
实施例一 Embodiment one
在50ml乙二醇溶剂中加入1.6664g NaOH,加热搅拌20~30min;待其充分混合后,继续加入1.5g原料Nb2O5,加热搅拌15~20min,使其均匀混合,形成乳白色的混合溶液。将所得混合溶液转移至聚四氟乙烯内衬中,然后将内衬放置于不锈钢水热反应釜中密封,在140℃进行8h保温反应,待反应结束后自然冷却至室温。采用去离子水和无水乙醇对所得白色沉淀产物进行多次洗涤和离心分离,转速为3000rpm,时间为10min,保证残余的离子和有机溶剂全部洗尽;在60℃条件下进行24h烘干处理,得到铌酸钠(NaNbO3)纳米线粉体。 Add 1.6664g NaOH to 50ml of ethylene glycol solvent, heat and stir for 20~30min; after it is fully mixed, continue to add 1.5g of raw material Nb 2 O 5 , heat and stir for 15~20min to make it evenly mixed to form a milky white mixed solution . The resulting mixed solution was transferred to a polytetrafluoroethylene lining, and then the lining was placed in a stainless steel hydrothermal reaction kettle to seal it, and the reaction was carried out at 140°C for 8 hours, and naturally cooled to room temperature after the reaction was completed. Use deionized water and absolute ethanol to wash and centrifuge the white precipitated product multiple times at a speed of 3000 rpm for 10 minutes to ensure that all residual ions and organic solvents are washed away; dry at 60°C for 24 hours , to obtain sodium niobate (NaNbO 3 ) nanowire powder.
实施例二 Embodiment two
在50ml乙二醇溶剂中加入1.6664g NaOH,加热搅拌20~30min;待其充分混合后,继续加入1.0g原料Nb2O5,加热搅拌15~20min,使其均匀混合,形成乳白色的混合溶液。将所得混合溶液转移至聚四氟乙烯内衬中,然后将内衬放置于不锈钢水热反应釜中密封,在180℃进行8h保温反应,待反应结束后自然冷却至室温。采用去离子水和无水乙醇对所得白色沉淀产物进行多次洗涤和离心分离,转速为3000rpm,时间为10min,保证残余的离子和有机溶剂全部洗尽;在50~80℃条件下进行12~24h烘干处理,得到铌酸钠(NaNbO3)纳米线粉体。 Add 1.6664g NaOH into 50ml of ethylene glycol solvent, heat and stir for 20~30min; after it is fully mixed, continue to add 1.0g of raw material Nb 2 O 5 , heat and stir for 15~20min, make it evenly mixed, and form a milky white mixed solution . The resulting mixed solution was transferred to a polytetrafluoroethylene lining, and then the lining was placed in a stainless steel hydrothermal reaction kettle to seal it, and the reaction was carried out at 180°C for 8 hours. After the reaction was completed, it was naturally cooled to room temperature. Use deionized water and absolute ethanol to wash and centrifuge the white precipitated product several times at a speed of 3000rpm for 10min to ensure that all residual ions and organic solvents are completely washed out; After drying for 24 hours, sodium niobate (NaNbO 3 ) nanowire powder was obtained.
实施例三 Embodiment three
在50ml乙二醇溶剂中加入3.3328g NaOH,加热搅拌20~30min;待其充分混合后,继续加入0.5g原料Nb2O5,加热搅拌15~20min,使其均匀混合,形成乳白色的混合溶液。将所得混合溶液转移至聚四氟乙烯内衬中,然后将内衬放置于不锈钢水热反应釜中密封,在200℃进行4h保温反应,待反应结束后自然冷却至室温。采用去离子水和无水乙醇对所得白色沉淀产物进行多次洗涤和离心分离,转速为3000rpm,时间为10min,保证残余的离子和有机溶剂全部洗尽;在50~80℃条件下进行12~24h烘干处理,得到铌酸钠(NaNbO3)纳米线粉体。 Add 3.3328g NaOH into 50ml of ethylene glycol solvent, heat and stir for 20~30min; after it is fully mixed, continue to add 0.5g of raw material Nb 2 O 5 , heat and stir for 15~20min, make it evenly mixed, and form a milky white mixed solution . The resulting mixed solution was transferred to a polytetrafluoroethylene lining, and then the lining was placed in a stainless steel hydrothermal reaction kettle to seal it, and the reaction was carried out at 200°C for 4 hours, and naturally cooled to room temperature after the reaction was completed. Use deionized water and absolute ethanol to wash and centrifuge the white precipitated product several times at a speed of 3000rpm for 10min to ensure that all residual ions and organic solvents are completely washed out; After drying for 24 hours, sodium niobate (NaNbO3) nanowire powder was obtained.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410255579.6A CN104016408B (en) | 2014-06-10 | 2014-06-10 | A kind of synthetic method of sodium niobate nano line |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410255579.6A CN104016408B (en) | 2014-06-10 | 2014-06-10 | A kind of synthetic method of sodium niobate nano line |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104016408A true CN104016408A (en) | 2014-09-03 |
CN104016408B CN104016408B (en) | 2016-08-17 |
Family
ID=51433470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410255579.6A Active CN104016408B (en) | 2014-06-10 | 2014-06-10 | A kind of synthetic method of sodium niobate nano line |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104016408B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105110791A (en) * | 2015-09-17 | 2015-12-02 | 白杉 | Method for synthesizing niobate sheet-shaped formwork powder |
CN105399418A (en) * | 2015-12-08 | 2016-03-16 | 南京航空航天大学 | Preparation method of high-performance sodium niobate dielectric ceramic powder |
CN106076312A (en) * | 2016-06-02 | 2016-11-09 | 河南理工大学 | A kind of Nb(OH)5 nanowire/reduced graphene oxide composite photocatalyst and its preparation method and application |
CN107640788A (en) * | 2017-09-25 | 2018-01-30 | 清华大学深圳研究生院 | Niobic acid salt material and preparation method thereof |
CN107758743A (en) * | 2017-11-17 | 2018-03-06 | 北京工业大学 | A kind of method that cation exchange approach prepares sodium niobate nano line |
CN108910947A (en) * | 2018-07-17 | 2018-11-30 | 天津城建大学 | A kind of micro-nano (K, Na) NbO of thin slice3Crystal and preparation method thereof |
CN110474029A (en) * | 2019-07-11 | 2019-11-19 | 江苏师范大学 | A kind of anode composite material of lithium sulfur battery and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101172655A (en) * | 2007-10-23 | 2008-05-07 | 浙江大学 | Method of producing LiNbO* nanowire |
CN101249985A (en) * | 2008-03-25 | 2008-08-27 | 大连理工大学 | Controllable Preparation of Orthorhombic Phase and Trigonal Phase Sodium Niobate with High Curie Point |
CN101597165A (en) * | 2009-07-07 | 2009-12-09 | 桂林理工大学 | A kind of hydrothermal synthesis method of sodium niobate powder |
CN101607823A (en) * | 2009-07-09 | 2009-12-23 | 南京航空航天大学 | A kind of hydrothermal high-temperature mixing synthetic method of piezoelectric ceramic powder |
CN101891473A (en) * | 2010-07-12 | 2010-11-24 | 北京理工大学 | Method for preparing potassium-sodium niobate lead-free piezoelectric ceramics |
CN102060545A (en) * | 2010-11-29 | 2011-05-18 | 南京航空航天大学 | Preparation method of spherical microporous niobate molecular sieve fiber |
CN102180671A (en) * | 2011-03-16 | 2011-09-14 | 南京航空航天大学 | Nano functional ceramic material and preparation method thereof |
-
2014
- 2014-06-10 CN CN201410255579.6A patent/CN104016408B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101172655A (en) * | 2007-10-23 | 2008-05-07 | 浙江大学 | Method of producing LiNbO* nanowire |
CN101249985A (en) * | 2008-03-25 | 2008-08-27 | 大连理工大学 | Controllable Preparation of Orthorhombic Phase and Trigonal Phase Sodium Niobate with High Curie Point |
CN101597165A (en) * | 2009-07-07 | 2009-12-09 | 桂林理工大学 | A kind of hydrothermal synthesis method of sodium niobate powder |
CN101607823A (en) * | 2009-07-09 | 2009-12-23 | 南京航空航天大学 | A kind of hydrothermal high-temperature mixing synthetic method of piezoelectric ceramic powder |
CN101891473A (en) * | 2010-07-12 | 2010-11-24 | 北京理工大学 | Method for preparing potassium-sodium niobate lead-free piezoelectric ceramics |
CN102060545A (en) * | 2010-11-29 | 2011-05-18 | 南京航空航天大学 | Preparation method of spherical microporous niobate molecular sieve fiber |
CN102180671A (en) * | 2011-03-16 | 2011-09-14 | 南京航空航天大学 | Nano functional ceramic material and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
JONG HOON JUNG ET AL.: ""In Situ Observation of Dehydration-Induced Phase Transformation from Na2Nb2O6-H2O to NaNbO3"", 《J. PHYS. CHEM. C》, vol. 116, 2 October 2012 (2012-10-02), pages 22261 - 22265 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105110791A (en) * | 2015-09-17 | 2015-12-02 | 白杉 | Method for synthesizing niobate sheet-shaped formwork powder |
CN105399418A (en) * | 2015-12-08 | 2016-03-16 | 南京航空航天大学 | Preparation method of high-performance sodium niobate dielectric ceramic powder |
CN106076312A (en) * | 2016-06-02 | 2016-11-09 | 河南理工大学 | A kind of Nb(OH)5 nanowire/reduced graphene oxide composite photocatalyst and its preparation method and application |
CN107640788A (en) * | 2017-09-25 | 2018-01-30 | 清华大学深圳研究生院 | Niobic acid salt material and preparation method thereof |
CN107758743A (en) * | 2017-11-17 | 2018-03-06 | 北京工业大学 | A kind of method that cation exchange approach prepares sodium niobate nano line |
CN108910947A (en) * | 2018-07-17 | 2018-11-30 | 天津城建大学 | A kind of micro-nano (K, Na) NbO of thin slice3Crystal and preparation method thereof |
CN108910947B (en) * | 2018-07-17 | 2020-11-03 | 天津城建大学 | Thin-sheet micro-nano (K, Na) NbO3Crystal and method for producing same |
CN110474029A (en) * | 2019-07-11 | 2019-11-19 | 江苏师范大学 | A kind of anode composite material of lithium sulfur battery and preparation method thereof |
CN110474029B (en) * | 2019-07-11 | 2022-06-10 | 江苏师范大学 | Lithium-sulfur battery positive electrode composite material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104016408B (en) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104016408B (en) | A kind of synthetic method of sodium niobate nano line | |
CN102773110B (en) | Preparation method of coin-shaped hollow structure SnS2/SnO2 composite photocatalyst material | |
CN107473261A (en) | A kind of preparation method of zinc oxide/redox graphene composite | |
CN102826593A (en) | Preparation method for indium oxide nanometer material | |
CN103818949B (en) | The hot legal system of a kind of ion exchange solvent is for the method for titanate nano-powder | |
CN103447549A (en) | Preparation method of cobalt nanosphere | |
CN106809877A (en) | A kind of preparation method of D phase hypovanadic oxides | |
CN103387257B (en) | Method for preparing nano cerium dioxide material by utilizing tween-80 as surfactant | |
CN102951686A (en) | Preparation method for granular manganese tungstate nanocrystals | |
CN103818959A (en) | Low-temperature hydrothermal preparation method of molybdenum trioxide nanorod material | |
CN103613117B (en) | A kind of method adjusting the ratio regulation and control zinc sulfide nano pattern of mixed solvent | |
CN105731396A (en) | Carbon-containing necklace-like nano nickel telluride as well as preparation and application thereof | |
CN105399418A (en) | Preparation method of high-performance sodium niobate dielectric ceramic powder | |
CN105036175B (en) | Method of preparing copper sulfide-zinc sulfide heterojunction three-dimensional nanostructure by using solid phase method | |
CN104445382A (en) | Preparation method of Bi12TiO20 nanopowder by microwave-assisted sol-gel method | |
CN104150538B (en) | A kind of method for preparing BiFeO3 at low temperature | |
CN107200345B (en) | A kind of preparation method of γ-cuprous iodide | |
CN102951685A (en) | Preparation method of rod-like manganese tungstate microcrystal | |
CN104227017A (en) | Preparation method of silver nanoparticle with controllable particle size | |
CN104176759B (en) | One prepares a cube block CeO 2the molte-salt synthesis of nano material | |
CN103588244B (en) | Without the method for the sandwich hollow titanium dioxide nano material of template synthesis | |
CN102502762A (en) | Method for preparing lanthanum sulfide crystallite with thin and laminar packed structure through microwave hydrothermal method | |
CN102153131B (en) | Preparation method for zinc oxide nano particles | |
CN104030363A (en) | Preparing method of ferroferric oxide nanometer particles | |
CN108793243A (en) | A kind of method that solid phase prepares the titanium dioxide heterogeneous knot quantum dot of cadmium sulfide- |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |