CN104016408A - Synthetic method of sodium niobate nanowire - Google Patents

Synthetic method of sodium niobate nanowire Download PDF

Info

Publication number
CN104016408A
CN104016408A CN201410255579.6A CN201410255579A CN104016408A CN 104016408 A CN104016408 A CN 104016408A CN 201410255579 A CN201410255579 A CN 201410255579A CN 104016408 A CN104016408 A CN 104016408A
Authority
CN
China
Prior art keywords
sodium niobate
reaction
synthetic method
naoh
steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410255579.6A
Other languages
Chinese (zh)
Other versions
CN104016408B (en
Inventor
朱孔军
古其林
刘劲松
王婧
裘进浩
刘鹏程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201410255579.6A priority Critical patent/CN104016408B/en
Publication of CN104016408A publication Critical patent/CN104016408A/en
Application granted granted Critical
Publication of CN104016408B publication Critical patent/CN104016408B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种铌酸钠纳米线的合成方法,包括NaOH与有机溶剂混合的步骤、水热反应的步骤、洗涤和离心分离的步骤以及烘干的步骤,本发明的方法所用设备简单,反应条件温和,无需中间相前驱体的制备以及后期退火处理;反应原料价格低廉,无需昂贵的表面活性剂作为模板;具有工艺流程简单,节约能源,成本低廉,易于操作和控制,重复性好,便于工业化生产等主要特点,可有效的缩短合成时间,提高生产效率,是一种理想的绿色合成工艺。

The invention discloses a method for synthesizing sodium niobate nanowires, which includes the steps of mixing NaOH with an organic solvent, the steps of hydrothermal reaction, the steps of washing and centrifugal separation, and the steps of drying. The equipment used in the method of the invention is simple, The reaction conditions are mild, without the preparation of mesophase precursors and post-annealing treatment; the reaction raw materials are cheap, and no expensive surfactants are used as templates; the process is simple, energy saving, low cost, easy to operate and control, and good repeatability. The main features of being convenient for industrialized production can effectively shorten the synthesis time and improve production efficiency, and it is an ideal green synthesis process.

Description

一种铌酸钠纳米线的合成方法A kind of synthetic method of sodium niobate nanowire

  the

技术领域 technical field

本发明涉及一种铌酸钠纳米线的溶剂热合成方法,尤其涉及一种可重复地一步合成铌酸钠纳米线的方法,属于碱金属铌酸盐纳米功能材料领域。 The invention relates to a solvothermal synthesis method of sodium niobate nanowires, in particular to a method for repeatedly synthesizing sodium niobate nanowires in one step, and belongs to the field of alkali metal niobate nanometer functional materials.

背景技术 Background technique

铌酸钠是一种重要的无机非金属功能材料,具有典型的钙钛矿结构,因表现出良好的非线性光学性、铁电性、压电性、光催化性和热释电性等性能,在能量回收、智能传感、能量转化和光催化等领域具有巨大的应用潜力,引起了科学研究和技术应用领域的极大关注。[W. Zeng, X. M. Tao, S. Chen, S. M. Shang, H. L. W. Chan, S. H. Choy, Energy Environ. Sci., 2013, 6, 2631-2638; M. Blomqvist, S. Khartsev, A. Grishin, A. Petraru, C. Buchal, Appl. Phys. Lett., 2003, 82, 439.] 材料的微观结构,包括颗粒尺寸、形貌和分布等情况对其性能起着决定性的作用。由于界面效应和尺寸效应,低维纳米化的功能材料表现出显著的性能增强。特别地,一维铌酸钠纳米粉体(包括纳米线、纳米纤维、纳米棒等)的压电性能和光催化性能较其他形貌(纳米块、纳米球等)具有明显的优势。[J. Lv, T. Kako, Z. S. Li, Z. G. Zou, J. H. Ye, J. Phys. Chem. C, 2010, 114, 6157–6162; T. Y. Ke, H. A. Chen, H. S. Sheu, J. W. Yeh, H. N. Lin, C. Y. Lee, H. T. Chiu, J. Phys. Chem. C, 2008, 112, 8827–8831.]迄今为止,一维铌酸钠粉体的合成主要有熔盐法、静电纺丝法和水热法。Xu采用熔盐法首先制得K2Nb8O21纳米线模板,再在熔盐条件下进行离子交换进而得到铌酸钠纳米线,工艺比较繁琐,能源消耗大,且具有一定的危险性;[C. Y. Xu, L. Zhen, R. Yang, Z. L. Wang, J. Am. Chem. Soc., 2007, 129, 15444–15445.] 静电纺丝法可制备出大小均一,尺寸可控的铌酸钠纳米线,但是需要依赖于昂贵的设备,生产效率极低,不利于工业化;[W. Zeng, X. M. Tao, S. Chen, S. M. Shang, H. L. W. Chan, S. H. Choy, Energy Environ. Sci., 2013, 6, 2631-2638.] 目前普遍采用的是水热法加后期退火处理制备铌酸钠纳米线,即在水热条件下通过严格控制工艺参数(如温度、时间、碱度等)得到一维中间产物Na7(H3O)Nb6O19 .14H2O或者Na2Nb2O6,再经过后期退火处理得到铌酸钠纳米线。[J. H. Jung, C. Y. Chen, W. W. Wu, J. I. Hong, B. K. Yun, Y. S. Zhou, N. Lee, W. Jo, L. J. Chen, L. J. Chou, Z. L. Wang, J. Phys. Chem. C, 2012, 116 (42), 22261–22265.] 水热法制备铌酸钠纳米线较于熔盐法具有明显的优势,但是一维中间产物对反应环境十分敏感,反应条件需要精确控制,同时还需要后期的煅烧处理,能源消耗大,工艺较为繁杂。因此,采用简单的仪器设备,通过简单的工艺方法,实现铌酸钠纳米线的一步法合成对于铌酸钠在能量转换和光催化领域的应用具有重大意义。 Sodium niobate is an important inorganic non-metallic functional material with a typical perovskite structure, because of its good nonlinear optics, ferroelectricity, piezoelectricity, photocatalysis and pyroelectricity, etc. , has great application potential in the fields of energy recovery, smart sensing, energy conversion, and photocatalysis, and has attracted great attention in the fields of scientific research and technical applications. [W. Zeng, X. M. Tao, S. Chen, S. M. Shang, H. L. W. Chan, S. H. Choy, Energy Environ. Sci., 2013, 6, 2631-2638; M. Blomqvist, S. Khartsev, A. Grishin, A. Petraru , C. Buchal, Appl. Phys. Lett., 2003, 82, 439.] The microstructure of a material, including particle size, morphology and distribution, plays a decisive role in its performance. Due to interfacial and size effects, low-dimensional nanosized functional materials exhibit significant performance enhancements. In particular, the piezoelectric and photocatalytic properties of one-dimensional sodium niobate nanopowders (including nanowires, nanofibers, nanorods, etc.) have obvious advantages over other morphologies (nanoblocks, nanospheres, etc.). [J. Lv, T. Kako, Z. S. Li, Z. G. Zou, J. H. Ye, J. Phys. Chem. C, 2010, 114, 6157–6162; T. Y. Ke, H. A. Chen, H. S. Sheu, J. W. Yeh, H. N. Lin, C. Y. Lee, H. T. Chiu, J. Phys. Chem. C, 2008, 112, 8827–8831.] So far, the synthesis of one-dimensional sodium niobate powder mainly includes molten salt method, electrospinning method and hydrothermal method. Xu used the molten salt method to first prepare K 2 Nb 8 O 21 nanowire templates, and then performed ion exchange under molten salt conditions to obtain sodium niobate nanowires. The process is cumbersome, consumes a lot of energy, and has certain risks; [C. Y. Xu, L. Zhen, R. Yang, Z. L. Wang, J. Am. Chem. Soc., 2007, 129, 15444–15445.] Electrospinning can prepare sodium niobate with uniform size and controllable size Nanowires, but need to rely on expensive equipment, the production efficiency is extremely low, which is not conducive to industrialization; [W. Zeng, X. M. Tao, S. Chen, S. M. Shang, H. L. W. Chan, S. H. Choy, Energy Environ. , 2631-2638.] At present, the hydrothermal method plus post-annealing treatment is commonly used to prepare sodium niobate nanowires, that is, the one-dimensional intermediate The product Na 7 (H 3 O)Nb 6 O 19 . 14H 2 O or Na 2 Nb 2 O 6 is then annealed to obtain sodium niobate nanowires. [J. H. Jung, C. Y. Chen, W. W. Wu, J. I. Hong, B. K. Yun, Y. S. Zhou, N. Lee, W. Jo, L. J. Chen, L. J. Chou, Z. L. Wang, J. Phys. Chem. C, 2012, 116 (42) , 22261–22265.] The preparation of sodium niobate nanowires by the hydrothermal method has obvious advantages over the molten salt method, but the one-dimensional intermediate product is very sensitive to the reaction environment, the reaction conditions need to be precisely controlled, and the post-calcination treatment is also required. The energy consumption is large and the process is complicated. Therefore, it is of great significance to realize the one-step synthesis of sodium niobate nanowires by using simple equipment and simple process methods for the application of sodium niobate in the fields of energy conversion and photocatalysis.

  the

发明内容 Contents of the invention

技术问题technical problem

本发明要解决的技术问题是提供一种实现铌酸钠纳米线粉体高效快速的一步溶剂热合成方法,通过该方法制备得到的铌酸钠纳米线粉体具有优异的光催化性能和压电性能。 The technical problem to be solved in the present invention is to provide a one-step solvothermal synthesis method that realizes sodium niobate nanowire powder efficiently and quickly. The sodium niobate nanowire powder prepared by this method has excellent photocatalytic performance and piezoelectricity. performance.

技术方案Technical solutions

为了解决上述的技术问题,本发明的铌酸钠纳米线的合成方法包括下列步骤: In order to solve the above-mentioned technical problems, the synthetic method of sodium niobate nanowire of the present invention comprises the following steps:

步骤一:在乙二醇等有机溶剂中按照0.5~1.0mol/L的浓度比例加入NaOH粉体,加热并搅拌20~30min得到NaOH与有机溶剂的混合溶液;待其充分混合后,向上述混合溶液中加入0.5~1.5g原料Nb2O5,加热搅拌15~20min,使其均匀混合,形成乳白色的混合溶液;其中,应保证NaOH与Nb2O5的物质的量之比大于1; Step 1: Add NaOH powder in an organic solvent such as ethylene glycol at a concentration ratio of 0.5~1.0mol/L, heat and stir for 20~30min to obtain a mixed solution of NaOH and organic solvent; Add 0.5~1.5g raw material Nb 2 O 5 into the solution, heat and stir for 15~20min to make it evenly mixed to form a milky white mixed solution; among them, the ratio of the amount of NaOH to Nb 2 O 5 should be greater than 1;

步骤二:将步骤一所得的混合溶液转移至聚四氟乙烯内衬中,然后将内衬放置于不锈钢水热反应釜中密封,在120~200℃进行4~16h保温反应,待反应结束后自然冷却至室温得到白色沉淀物; Step 2: Transfer the mixed solution obtained in Step 1 to the polytetrafluoroethylene lining, then place the lining in a stainless steel hydrothermal reaction kettle and seal it, and perform a heat preservation reaction at 120~200°C for 4~16h. After the reaction is completed, Cool naturally to room temperature to obtain white precipitate;

步骤三:分别采用去离子水和无水乙醇对所得白色沉淀产物进行多次洗涤和离心分离,转速为1000~3000rpm,时间为5~30min,将残余的离子和有机溶剂全部洗尽; Step 3: Use deionized water and absolute ethanol to wash and centrifuge the white precipitated product multiple times, at a speed of 1000-3000 rpm, for 5-30 minutes, to wash away all the remaining ions and organic solvents;

步骤四:在50~80℃条件下进行烘干处理,时间为12~24h,得到铌酸钠纳米线粉体。 Step 4: drying at 50-80° C. for 12-24 hours to obtain sodium niobate nanowire powder.

本发明的技术方案中,NaOH应先加入乙二醇溶剂中进行搅拌处理,尽可能的使其溶解或者混合均匀,这样可以有效控制NaNbO3纳米线的尺寸均匀性。 In the technical solution of the present invention, NaOH should be firstly added into the ethylene glycol solvent for stirring treatment, so as to dissolve or mix it as uniformly as possible, so that the size uniformity of NaNbO 3 nanowires can be effectively controlled.

  the

有益效果Beneficial effect

本发明的方法所用设备简单,反应条件温和,无需中间相前驱体的制备以及后期退火处理;反应原料价格低廉,无需昂贵的表面活性剂作为模板;具有工艺流程简单,节约能源,成本低廉,易于操作和控制,重复性好,便于工业化生产等主要特点,可有效的缩短合成时间,提高生产效率,是一种理想的绿色合成工艺。与现有技术相比,本发明方法具有的有益效果是: The method of the present invention uses simple equipment, mild reaction conditions, no need for preparation of mesophase precursors and post-annealing treatment; low price of reaction raw materials, no need for expensive surfactants as templates; simple process flow, energy saving, low cost, and easy Operation and control, good repeatability, easy industrial production and other main features can effectively shorten the synthesis time and improve production efficiency. It is an ideal green synthesis process. Compared with prior art, the beneficial effect that the inventive method has is:

(1)以完全有机溶剂乙二醇作为反应介质,实现铌酸钠纳米线的一步溶剂热合成,工艺流程简单,合成效率高,便于工业化生产; (1) Using the complete organic solvent ethylene glycol as the reaction medium to realize the one-step solvothermal synthesis of sodium niobate nanowires, the process is simple, the synthesis efficiency is high, and it is convenient for industrial production;

(2)所需NaOH浓度为0.5~2mol/L,反应温度为120~200℃,反应条件温和,能源消耗低,安全性高; (2) The required NaOH concentration is 0.5~2mol/L, the reaction temperature is 120~200℃, the reaction conditions are mild, the energy consumption is low, and the safety is high;

(3)所得铌酸钠纳米线的可选择性和可调节性强,NaOH浓度为0.5~2.0mol/L,Nb2O5含量在0.5~1.5g,反应时间在4~16h均能得到铌酸钠纳米线; (3) The selectivity and adjustability of the obtained sodium niobate nanowires are strong, the concentration of NaOH is 0.5~2.0mol/L, the content of Nb 2 O 5 is 0.5~1.5g, and the reaction time is 4~16h. Sodium acid nanowires;

(4)如图1、图2、图3的图谱及照片所示,所得铌酸钠纳米线的尺寸更小(10~20nm), 尺寸分布范围窄,反应重复性好。 (4) As shown in the maps and photos of Figure 1, Figure 2, and Figure 3, the size of the obtained sodium niobate nanowires is smaller (10~20nm), the size distribution range is narrow, and the reaction repeatability is good.

本发明所合成的铌酸钠纳米线尺寸小,分布窄,同时兼具一定的选择性。这种便捷、高效的铌酸钠纳米线合成方法势必为铌酸钠材料的工业化生产以及其在能量转化和光催化领域的应用创造新的机遇和动力。 The sodium niobate nanowires synthesized by the invention have small size, narrow distribution and certain selectivity. This convenient and efficient synthesis method of sodium niobate nanowires is bound to create new opportunities and impetus for the industrial production of sodium niobate materials and their applications in the fields of energy conversion and photocatalysis.

  the

附图说明 Description of drawings

图1是在140℃经8h溶剂热反应所得NaNbO3的XRD图谱; Figure 1 is the XRD pattern of NaNbO3 obtained by solvothermal reaction at 140°C for 8 hours;

图2是在180℃经8h溶剂热反应所得NaNbO3纳米线的场发射扫描电子显微镜(FE-SEM)照片; Figure 2 is a field emission scanning electron microscope (FE-SEM) photo of NaNbO 3 nanowires obtained by solvothermal reaction at 180°C for 8 hours;

图3是在200℃经4h溶剂热反应所得NaNbO3纳米线尺寸分布图,其中插图为透射电镜(TEM)照片。 Figure 3 is the size distribution diagram of NaNbO 3 nanowires obtained by solvothermal reaction at 200 ° C for 4 h, and the inset is a transmission electron microscope (TEM) photo.

  the

具体实施方式 Detailed ways

以下结合具体实施例对本发明进行具体说明,但本发明绝非仅限于所述实施例所述的实施方式。凡是采用溶剂热合成铌酸钠一维纳米粉体,以及由本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。 The present invention will be specifically described below in conjunction with specific examples, but the present invention is by no means limited to the implementations described in the examples. All the one-dimensional nanometer powders of sodium niobate synthesized by solvothermal method, and all the deformations directly derived or associated from the content disclosed in the present invention should be considered as the scope of protection of the present invention.

实施例一 Embodiment one

在50ml乙二醇溶剂中加入1.6664g NaOH,加热搅拌20~30min;待其充分混合后,继续加入1.5g原料Nb2O5,加热搅拌15~20min,使其均匀混合,形成乳白色的混合溶液。将所得混合溶液转移至聚四氟乙烯内衬中,然后将内衬放置于不锈钢水热反应釜中密封,在140℃进行8h保温反应,待反应结束后自然冷却至室温。采用去离子水和无水乙醇对所得白色沉淀产物进行多次洗涤和离心分离,转速为3000rpm,时间为10min,保证残余的离子和有机溶剂全部洗尽;在60℃条件下进行24h烘干处理,得到铌酸钠(NaNbO3)纳米线粉体。 Add 1.6664g NaOH to 50ml of ethylene glycol solvent, heat and stir for 20~30min; after it is fully mixed, continue to add 1.5g of raw material Nb 2 O 5 , heat and stir for 15~20min to make it evenly mixed to form a milky white mixed solution . The resulting mixed solution was transferred to a polytetrafluoroethylene lining, and then the lining was placed in a stainless steel hydrothermal reaction kettle to seal it, and the reaction was carried out at 140°C for 8 hours, and naturally cooled to room temperature after the reaction was completed. Use deionized water and absolute ethanol to wash and centrifuge the white precipitated product multiple times at a speed of 3000 rpm for 10 minutes to ensure that all residual ions and organic solvents are washed away; dry at 60°C for 24 hours , to obtain sodium niobate (NaNbO 3 ) nanowire powder.

实施例二 Embodiment two

在50ml乙二醇溶剂中加入1.6664g NaOH,加热搅拌20~30min;待其充分混合后,继续加入1.0g原料Nb2O5,加热搅拌15~20min,使其均匀混合,形成乳白色的混合溶液。将所得混合溶液转移至聚四氟乙烯内衬中,然后将内衬放置于不锈钢水热反应釜中密封,在180℃进行8h保温反应,待反应结束后自然冷却至室温。采用去离子水和无水乙醇对所得白色沉淀产物进行多次洗涤和离心分离,转速为3000rpm,时间为10min,保证残余的离子和有机溶剂全部洗尽;在50~80℃条件下进行12~24h烘干处理,得到铌酸钠(NaNbO3)纳米线粉体。 Add 1.6664g NaOH into 50ml of ethylene glycol solvent, heat and stir for 20~30min; after it is fully mixed, continue to add 1.0g of raw material Nb 2 O 5 , heat and stir for 15~20min, make it evenly mixed, and form a milky white mixed solution . The resulting mixed solution was transferred to a polytetrafluoroethylene lining, and then the lining was placed in a stainless steel hydrothermal reaction kettle to seal it, and the reaction was carried out at 180°C for 8 hours. After the reaction was completed, it was naturally cooled to room temperature. Use deionized water and absolute ethanol to wash and centrifuge the white precipitated product several times at a speed of 3000rpm for 10min to ensure that all residual ions and organic solvents are completely washed out; After drying for 24 hours, sodium niobate (NaNbO 3 ) nanowire powder was obtained.

实施例三 Embodiment three

在50ml乙二醇溶剂中加入3.3328g NaOH,加热搅拌20~30min;待其充分混合后,继续加入0.5g原料Nb2O5,加热搅拌15~20min,使其均匀混合,形成乳白色的混合溶液。将所得混合溶液转移至聚四氟乙烯内衬中,然后将内衬放置于不锈钢水热反应釜中密封,在200℃进行4h保温反应,待反应结束后自然冷却至室温。采用去离子水和无水乙醇对所得白色沉淀产物进行多次洗涤和离心分离,转速为3000rpm,时间为10min,保证残余的离子和有机溶剂全部洗尽;在50~80℃条件下进行12~24h烘干处理,得到铌酸钠(NaNbO3)纳米线粉体。 Add 3.3328g NaOH into 50ml of ethylene glycol solvent, heat and stir for 20~30min; after it is fully mixed, continue to add 0.5g of raw material Nb 2 O 5 , heat and stir for 15~20min, make it evenly mixed, and form a milky white mixed solution . The resulting mixed solution was transferred to a polytetrafluoroethylene lining, and then the lining was placed in a stainless steel hydrothermal reaction kettle to seal it, and the reaction was carried out at 200°C for 4 hours, and naturally cooled to room temperature after the reaction was completed. Use deionized water and absolute ethanol to wash and centrifuge the white precipitated product several times at a speed of 3000rpm for 10min to ensure that all residual ions and organic solvents are completely washed out; After drying for 24 hours, sodium niobate (NaNbO3) nanowire powder was obtained.

Claims (3)

1. onethe synthetic method of planting sodium niobate nano line, is characterized in that, comprises the following steps:
Step 1: add NaOH powder according to the concentration ratio of 0.5 ~ 1.0mol/L in organic solvent, heat and stir 20 ~ 30min and obtain the mixing solutions of NaOH and organic solvent; After it fully mixes, in above-mentioned mixing solutions, add 0.5 ~ 1.5g raw material Nb 2o 5, heated and stirred 15 ~ 20min, evenly mixes it, forms milky mixing solutions;
Step 2: the mixing solutions of step 1 gained is transferred in polytetrafluoroethyllining lining, then liner is positioned in stainless steel hydrothermal reaction kettle and is sealed, carry out 4 ~ 16h insulation reaction at 120 ~ 200 DEG C, after question response finishes, naturally cool to room temperature and obtain white depositions;
Step 3: adopt respectively deionized water and dehydrated alcohol repeatedly to wash and centrifugation gained white precipitate product, rotating speed is 1000 ~ 3000rpm, and the time is 5 ~ 30min, all washes remaining ion and organic solvent to the greatest extent;
Step 4: carry out drying and processing under 50 ~ 80 DEG C of conditions, the time is 12 ~ 24h, obtains sodium niobate nano line powder.
2. a kind of synthetic method of sodium niobate nano line as described in claim 1, is characterized in that: the organic solvents such as selected reaction solvent is ethylene glycol.
3. a kind of synthetic method of sodium niobate nano line as described in claim 1, is characterized in that: ensure NaOH and Nb 2o 5the ratio of amount of substance be greater than 1, temperature of reaction is 120 ~ 200 DEG C, the reaction times is 4 ~ 16h.
CN201410255579.6A 2014-06-10 2014-06-10 A kind of synthetic method of sodium niobate nano line Active CN104016408B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410255579.6A CN104016408B (en) 2014-06-10 2014-06-10 A kind of synthetic method of sodium niobate nano line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410255579.6A CN104016408B (en) 2014-06-10 2014-06-10 A kind of synthetic method of sodium niobate nano line

Publications (2)

Publication Number Publication Date
CN104016408A true CN104016408A (en) 2014-09-03
CN104016408B CN104016408B (en) 2016-08-17

Family

ID=51433470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410255579.6A Active CN104016408B (en) 2014-06-10 2014-06-10 A kind of synthetic method of sodium niobate nano line

Country Status (1)

Country Link
CN (1) CN104016408B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105110791A (en) * 2015-09-17 2015-12-02 白杉 Method for synthesizing niobate sheet-shaped formwork powder
CN105399418A (en) * 2015-12-08 2016-03-16 南京航空航天大学 Preparation method of high-performance sodium niobate dielectric ceramic powder
CN106076312A (en) * 2016-06-02 2016-11-09 河南理工大学 A kind of Nb(OH)5 nanowire/reduced graphene oxide composite photocatalyst and its preparation method and application
CN107640788A (en) * 2017-09-25 2018-01-30 清华大学深圳研究生院 Niobic acid salt material and preparation method thereof
CN107758743A (en) * 2017-11-17 2018-03-06 北京工业大学 A kind of method that cation exchange approach prepares sodium niobate nano line
CN108910947A (en) * 2018-07-17 2018-11-30 天津城建大学 A kind of micro-nano (K, Na) NbO of thin slice3Crystal and preparation method thereof
CN110474029A (en) * 2019-07-11 2019-11-19 江苏师范大学 A kind of anode composite material of lithium sulfur battery and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101172655A (en) * 2007-10-23 2008-05-07 浙江大学 Method of producing LiNbO* nanowire
CN101249985A (en) * 2008-03-25 2008-08-27 大连理工大学 Controllable Preparation of Orthorhombic Phase and Trigonal Phase Sodium Niobate with High Curie Point
CN101597165A (en) * 2009-07-07 2009-12-09 桂林理工大学 A kind of hydrothermal synthesis method of sodium niobate powder
CN101607823A (en) * 2009-07-09 2009-12-23 南京航空航天大学 A kind of hydrothermal high-temperature mixing synthetic method of piezoelectric ceramic powder
CN101891473A (en) * 2010-07-12 2010-11-24 北京理工大学 Method for preparing potassium-sodium niobate lead-free piezoelectric ceramics
CN102060545A (en) * 2010-11-29 2011-05-18 南京航空航天大学 Preparation method of spherical microporous niobate molecular sieve fiber
CN102180671A (en) * 2011-03-16 2011-09-14 南京航空航天大学 Nano functional ceramic material and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101172655A (en) * 2007-10-23 2008-05-07 浙江大学 Method of producing LiNbO* nanowire
CN101249985A (en) * 2008-03-25 2008-08-27 大连理工大学 Controllable Preparation of Orthorhombic Phase and Trigonal Phase Sodium Niobate with High Curie Point
CN101597165A (en) * 2009-07-07 2009-12-09 桂林理工大学 A kind of hydrothermal synthesis method of sodium niobate powder
CN101607823A (en) * 2009-07-09 2009-12-23 南京航空航天大学 A kind of hydrothermal high-temperature mixing synthetic method of piezoelectric ceramic powder
CN101891473A (en) * 2010-07-12 2010-11-24 北京理工大学 Method for preparing potassium-sodium niobate lead-free piezoelectric ceramics
CN102060545A (en) * 2010-11-29 2011-05-18 南京航空航天大学 Preparation method of spherical microporous niobate molecular sieve fiber
CN102180671A (en) * 2011-03-16 2011-09-14 南京航空航天大学 Nano functional ceramic material and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JONG HOON JUNG ET AL.: ""In Situ Observation of Dehydration-Induced Phase Transformation from Na2Nb2O6-H2O to NaNbO3"", 《J. PHYS. CHEM. C》, vol. 116, 2 October 2012 (2012-10-02), pages 22261 - 22265 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105110791A (en) * 2015-09-17 2015-12-02 白杉 Method for synthesizing niobate sheet-shaped formwork powder
CN105399418A (en) * 2015-12-08 2016-03-16 南京航空航天大学 Preparation method of high-performance sodium niobate dielectric ceramic powder
CN106076312A (en) * 2016-06-02 2016-11-09 河南理工大学 A kind of Nb(OH)5 nanowire/reduced graphene oxide composite photocatalyst and its preparation method and application
CN107640788A (en) * 2017-09-25 2018-01-30 清华大学深圳研究生院 Niobic acid salt material and preparation method thereof
CN107758743A (en) * 2017-11-17 2018-03-06 北京工业大学 A kind of method that cation exchange approach prepares sodium niobate nano line
CN108910947A (en) * 2018-07-17 2018-11-30 天津城建大学 A kind of micro-nano (K, Na) NbO of thin slice3Crystal and preparation method thereof
CN108910947B (en) * 2018-07-17 2020-11-03 天津城建大学 Thin-sheet micro-nano (K, Na) NbO3Crystal and method for producing same
CN110474029A (en) * 2019-07-11 2019-11-19 江苏师范大学 A kind of anode composite material of lithium sulfur battery and preparation method thereof
CN110474029B (en) * 2019-07-11 2022-06-10 江苏师范大学 Lithium-sulfur battery positive electrode composite material and preparation method thereof

Also Published As

Publication number Publication date
CN104016408B (en) 2016-08-17

Similar Documents

Publication Publication Date Title
CN104016408B (en) A kind of synthetic method of sodium niobate nano line
CN102773110B (en) Preparation method of coin-shaped hollow structure SnS2/SnO2 composite photocatalyst material
CN107473261A (en) A kind of preparation method of zinc oxide/redox graphene composite
CN102826593A (en) Preparation method for indium oxide nanometer material
CN103818949B (en) The hot legal system of a kind of ion exchange solvent is for the method for titanate nano-powder
CN103447549A (en) Preparation method of cobalt nanosphere
CN106809877A (en) A kind of preparation method of D phase hypovanadic oxides
CN103387257B (en) Method for preparing nano cerium dioxide material by utilizing tween-80 as surfactant
CN102951686A (en) Preparation method for granular manganese tungstate nanocrystals
CN103818959A (en) Low-temperature hydrothermal preparation method of molybdenum trioxide nanorod material
CN103613117B (en) A kind of method adjusting the ratio regulation and control zinc sulfide nano pattern of mixed solvent
CN105731396A (en) Carbon-containing necklace-like nano nickel telluride as well as preparation and application thereof
CN105399418A (en) Preparation method of high-performance sodium niobate dielectric ceramic powder
CN105036175B (en) Method of preparing copper sulfide-zinc sulfide heterojunction three-dimensional nanostructure by using solid phase method
CN104445382A (en) Preparation method of Bi12TiO20 nanopowder by microwave-assisted sol-gel method
CN104150538B (en) A kind of method for preparing BiFeO3 at low temperature
CN107200345B (en) A kind of preparation method of γ-cuprous iodide
CN102951685A (en) Preparation method of rod-like manganese tungstate microcrystal
CN104227017A (en) Preparation method of silver nanoparticle with controllable particle size
CN104176759B (en) One prepares a cube block CeO 2the molte-salt synthesis of nano material
CN103588244B (en) Without the method for the sandwich hollow titanium dioxide nano material of template synthesis
CN102502762A (en) Method for preparing lanthanum sulfide crystallite with thin and laminar packed structure through microwave hydrothermal method
CN102153131B (en) Preparation method for zinc oxide nano particles
CN104030363A (en) Preparing method of ferroferric oxide nanometer particles
CN108793243A (en) A kind of method that solid phase prepares the titanium dioxide heterogeneous knot quantum dot of cadmium sulfide-

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant