CN104003557B - Method for carrying out photocatalytic degradation on sulfamethoxazole - Google Patents

Method for carrying out photocatalytic degradation on sulfamethoxazole Download PDF

Info

Publication number
CN104003557B
CN104003557B CN201410268764.9A CN201410268764A CN104003557B CN 104003557 B CN104003557 B CN 104003557B CN 201410268764 A CN201410268764 A CN 201410268764A CN 104003557 B CN104003557 B CN 104003557B
Authority
CN
China
Prior art keywords
sulfamethoxazole
expanded graphite
composite nano
concentration
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410268764.9A
Other languages
Chinese (zh)
Other versions
CN104003557A (en
Inventor
郑宾国
李春光
姜灵彦
彭伟功
陶贺
牛俊玲
崔节虎
梁丽珍
刘蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Aeronautics
Original Assignee
Zhengzhou University of Aeronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Aeronautics filed Critical Zhengzhou University of Aeronautics
Priority to CN201410268764.9A priority Critical patent/CN104003557B/en
Publication of CN104003557A publication Critical patent/CN104003557A/en
Application granted granted Critical
Publication of CN104003557B publication Critical patent/CN104003557B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

The invention relates to a method for carrying out photocatalytic degradation on sulfamethoxazole. The problem of waste water treatment of the sulfamethoxazole hard to biodegraded can be effectively solved. The method comprises the steps that elements of iron, molybdenum and bismuth are adopted to be doped with expanded graphite to prepare a Fe/Bi/Mo-expanded graphite composite nano material, the Fe/Bi/Mo-expanded graphite composite nano material is added to waste water with the sulfamethoxazole, the pH value is adjusted to be 5.5-8.5 through alkaline matter, irradiation is carried out under visible light for 170 minutes to 190 minutes, the Fe/Bi/Mo-expanded graphite composite nano material is utilized, the waste water with the sulfamethoxazole with the concentration of 5 mg/L to 10 mg/L is directly oxidized through the single Fe/Bi/Mo-expanded graphite composite nano material without adding other promoters, and the adding amount of the Fe/Bi/Mo-expanded graphite composite nano material is 1 g/L to 2 g/L; finally, the degradation rate of the sulfamethoxazole is measured. Acidic materials do not need to be added manually, the solution of the sulfamethoxazole is acidic, a photocatalytic reaction can be carried out conveniently, after the photocatalytic reaction, the sulfamethoxazole is degraded, even part of the sulfamethoxazole is mineralized, the removal rate of the sulfamethoxazole is more than 90 percent, energy conservation and environmental protection are achieved, and great economic and social benefits are achieved.

Description

A kind of method of photocatalytic degradation Sulfamethoxazole
Technical field
The present invention relates to environmental protection field, particularly a kind of method of photocatalytic degradation Sulfamethoxazole.
Background technology
Since microbiotic self-discovery, in disease prevention and treatment, make great contribution.Current antibiotic is mainly used in agriculture production and medical treatment, and the microbiotic used at present is mainly tetracyclines, amides, Macrolide and sulfamido.The annual whole world has at least the microbiotic of more than 50% to be for animal husbandry and aquaculture at present according to statistics.Investigation display, at present, all detect that antibiotic medicine pollutes in the soil and water in global many areas, kind is more, and concentration is also in rising trend.Detected 4 class microbiotic medicines in 5 sewage effluentses of such as Sweden, comprise 3 kinds of quinolone antibiotics and a kind of tetracycline antibiotics, maximum concentration reaches 1.34 μ g/mL.In the Inlet and outlet water of Pekinese of China Gaobeidian City's Sewage Plant, also detected 8 kinds of quinolone antibiotics, concentration range is between 5 ~ 18 μ g/mL.
The microbiotic of Environmental Trace can cause water pollution, has a negative impact to people and animals and plants, threatens the balance of the ecosystem.Although antibiotic concentration is lower in environment, but strong, the difficult volatilization of most of antibiotic substance polarity, not easily escape from water body environment, hydrobiont is subject to antibiotic permanence and exposes, easily cause the biological accumulation effect that food chain transmission causes, thus human body is produced to the disadvantageous effect being difficult to predict.Such as, microbiotic residual in food, may cause crowd's anaphylaxis; Part has the physiological function of medicine energy severe jamming people of carcinogenic, teratogenesis, mutagenesis; Some Hormones class medicine and some makeup can cause organism endocrine regulation, cause sex entanglement or deformity.In view of microbiotic is to the potential hazard of environment and human health, part microbiotic is listed in the short-list of priority monitoring and control polluted articles by Environmental Protection Agency (EPA) and " EU Water framework directive/guide ".European Union, for antibiotic use, has promulgated relevant laws and regulations, prohibites in herding and aquaculture and uses the microbiotic of non-drug character as animal growth promoter.In China, although the parties concerned have noticed that antibiotic a large amount of production and abuse can cause potential ecological hazard, regrettably ensure that the laws and regulations of microbiotic safe handling are also fewer, caused the situation of abuse of antibiotics still to exist.
For reducing or eliminating antibiotic ecological hazard, lot of domestic and international scientist has carried out antibiotic removal research in water surrounding, minimizing technology mainly comprises the following aspects: coagulation and flocculation, sand filtration, charcoal absorption, active sludge treatment, artificial wetland treatment, advanced oxidation process, the chlorination in advanced oxidation, ozone oxidation, photochemical catalytic oxidation, Fenton oxidation, Oxone/Co 2+oxidation, wet air oxidation and x ray irradiation x etc. all can be used for antibiotic removal.But aforesaid method all has certain defect, such as coagulation and absorption can not change the molecular structure of antibiotic substance, just microbiotic are transferred to solid phase from liquid phase, easily cause secondary pollution; Different sorts is different with the processing requirement of structure microbiotic to active sludge; Artificial wetland treatment then needs big area soil.
In sum, more or less all there is certain defect in existing antibiotic treatment method.In the long run, reduction antibiotic usage amount or Sources controlling turnout are the most effectual ways preventing microbiotic from polluting, but are difficult in a short time accomplish, especially China.The antibiotic turnout of current China about 210,000 t/, consumption is about 138g year per capita, is 10 times of the U.S..Therefore, finding out technique microbiotic removal technology that is simple, efficient, non-secondary pollution is technical problem urgently to be resolved hurrily.
Summary of the invention
For above-mentioned situation, for overcoming the defect of prior art, the object of the present invention is just to provide a kind of method of photocatalytic degradation Sulfamethoxazole, effectively can solve and be difficult to biodegradable Sulfamethoxazole waste water handling problem.
The technical scheme that the present invention solves is, adopt iron, molybdenum, bismuth element doping expanded graphite prepares Fe/Bi/Mo-expanded graphite composite nano materials, add in the waste water containing Sulfamethoxazole, be 5.5-8.5 by alkaline matter adjust pH, irradiate 170-190 minute under visible light, utilize Fe/Bi/Mo-expanded graphite composite nano materials, when not adding other promotor, be directly the Sulfamethoxazole waste water of 5-10mg/L by single Fe/Bi/Mo-expanded graphite composite nano materials oxide treatment concentration, Fe/Bi/Mo-expanded graphite composite nano materials add-on is 1-2g/L, finally measure the degradation rate of Sulfamethoxazole, its degradation rate formula is: wherein C 0for the starting point concentration of Sulfamethoxazole waste water, C tfor the residual concentration of Sulfamethoxazole in final solution,
Described alkaline matter is the one of sodium hydroxide, potassium hydroxide or saleratus;
The mass ratio of described iron, molybdenum, bismuth, expanded graphite is 7.5-8.5 ︰ 45-55 ︰ 190-210 ︰ 4.8-5.2, is preferably 8 ︰ 50 ︰ 200 ︰ 5;
Described Fe/Bi/Mo-expanded graphite composite nano materials is, take natural graphite as raw material, be less than at 4 DEG C, natural graphite 9-11g slowly being joined concentration is in the vitriol oil 50-70mL of 98%, rapid stirring 30min, slowly add 18-22g potassium permanganate again and stir 10min, vibrate after 1h under 30 DEG C of constant temperature, add the warm water dilution of 90-110mL40-50 DEG C, obtain suspension, the hydrogen peroxide adding 28-32mL concentration 30% in suspension is oxidized natural graphite further, reaction 5min, filter to obtain graphite oxide, 3-5 graphite oxide is rinsed respectively with the dilute hydrochloric acid of mass concentration 5% and rare saleratus of mass concentration 5%, dry under 80 DEG C of constant temperature again, pass through microwave, graphite oxide is expanded, obtain expanded graphite, by expanded graphite 0.04-0.06g and Fe 3o 4nano powder 0.009-0.011g joins in 90-110mL distilled water, and ultrasonic disperse 1h must be oxidized expanded graphite suspension, by the Bi (NO of 4.5-5.0g 3) 35H 2o slowly joins in expanded graphite suspension (or claiming dispersion liquid), stirred at ambient temperature 1h, then by (the NH of 0.8-1.0g 4) 6mo 7o 244H 2o slowly adds in expanded graphite suspension, stirred at ambient temperature 2h, and regulator solution, to neutral, obtains mixing suspension, after mixing suspension is reacted 2h under 100 DEG C of constant temperature, filter, obtain screening, screening washing 3-5 time, at 75-85 DEG C, dry 2h, grinding, obtains the Fe/Bi/Mo-expanded graphite composite nano materials that magnetic is visible light-responded.
The present invention artificially need not add acidic substance, and Sulfamethoxazole solution itself is aobvious acid, is conducive to light-catalyzed reaction and carries out.After light-catalyzed reaction, Sulfamethoxazole is degraded, and even part is by mineralising, and Sulfamethoxazole clearance is up to more than 90%, and energy-conserving and environment-protective, economic and social benefit is huge.
Embodiment
Below in conjunction with embodiment, the specific embodiment of the present invention is elaborated.
Embodiment 1
The present invention, in concrete enforcement, is realized by following methods:
First Fe/Bi/Mo-expanded graphite composite nano materials is prepared, method is, adopt electrooptical balance precise 10g natural graphite, at the vitriol oil 60mL that the beaker centerbody volume concentrations of 500mL is 98%, being less than under 4 DEG C of ice wash one's hair, natural graphite is slowly joined in beaker, after vigorous stirring 30min, slowly add 20g potassium permanganate and stir 10min, beaker being placed in constant temperature 30 DEG C of vibrators and vibrating after 1h, add 100mL warm water and dilute.After this in above-mentioned suspension, the hydrogen peroxide adding 30mL volumetric concentration 30% is oxidized natural graphite further, after reaction 5min, filter out graphite oxide, graphite oxide is rinsed 3-5 time with volumetric concentration 5% dilute hydrochloric acid and the rare saleratus of volumetric concentration 5%, fully dry in 80 DEG C of thermostatic drying chambers, after its steady quality, by 1kw microwave, expand graphite oxide obtained expanded graphite; Get 0.05g expanded graphite and 0.01gFe 3o 4nano-powder joins in the beaker that 100mL distilled water is housed, and ultrasonic disperse 1h obtains oxidation expanded graphite suspension; By the Bi (NO of 4.85g 3) 35H 2o slowly joins in expanded graphite suspension, stirred at ambient temperature 1h, then by (the NH of 0.9g 4) 6mo 7o 244H 2o slowly adds in expanded graphite suspension, stirred at ambient temperature 2h, regulator solution is to neutral, mixing suspension, mixing suspension is moved into constant temperature in reactor and to react 2h, filter, obtain screening, screening washes 5 times, 80 DEG C dries 2h, and grinding, obtains the Fe/Bi/Mo-expanded graphite composite nano materials that magnetic is visible light-responded;
Adopt Fe/Bi/Mo-expanded graphite composite nano materials again, the Sulfamethoxazole under natural light irradiation in the catalyzed degradation aqueous solution, first in photo catalysis reactor, add starting point concentration (C 0) be the Sulfamethoxazole solution 100mL of 10mg/L, the Fe/Bi/Mo-expanded graphite composite nano materials of 2g/L is added in Sulfamethoxazole solution, in dark surrounds, with the constant temperature oscillator vibration 40min that frequency is 150Hz, the Sulfamethoxazole in solution is made to be adsorbed to Fe/Bi/Mo-expanded graphite composite nano materials surface, then reactor is moved to irradiation 3h under natural light, catalyzed degradation Sulfamethoxazole, every 30min, the solution (sample) of 1mL containing the catalyzed degraded of Sulfamethoxazole is got with liquid-transfering gun, after 0.45 μm of membrane filtration, with the residual concentration (C of Sulfamethoxazole in efficient liquid phase chromatographic analysis solution t), the clearance of Sulfamethoxazole at the end of reaction if desired, also after photoresponse 3h, by HLPC-MS test analysis, the Photodegradation Products (determine what degraded product is, not in the scope of request protection of the present invention, therefore be not described further) of Sulfamethoxazole can be confirmed.
The present invention is through experiment and test, its add-on on the degradation rate of Sulfamethoxazole and Fe/Bi/Mo-expanded graphite composite nano materials, the concentration of Sulfamethoxazole solution and the pH value of solution have direct impact, and obtain sufficient proof through test, related tests data is as follows:
In the present invention, the Optimum of Fe/Bi/Mo-expanded graphite composite Nano photocatalyst material is determined by following test.Be in the Sulfamethoxazole solution of 10mg/L in concentration, add different amounts (0,0.25,0.5,1.0,1.5,2g/L) Fe/Bi/Mo-exfoliated-graphite composite, after dark surrounds absorption 40min, adopt visible radiation 3h, analyze the impact that different amounts Fe/Bi/Mo-expanded graphite composite Nano photocatalyst material is degraded on Sulfamethoxazole, test-results is as shown in the table.As can be seen from the table, when Fe/Bi/Mo-expanded graphite composite Nano photocatalyst material is more than 1g/L, to 10mg/L Sulfamethoxazole, there is good removal effect.
In the present invention, the effect of Sulfamethoxazole solution to photocatalytic degradation of different starting point concentration has certain influence.Configure respectively starting point concentration be 5,10, three parts of Sulfamethoxazole solution of 15mg/L, the Fe/Bi/Mo-exfoliated-graphite composite of 2g/L is all added in every part of solution, whip attachment 40min in dark surrounds, optical radiation 3h, adopt high performance liquid chromatograph to measure radiation and terminate remaining Sulfamethoxazole concentration in rear solution, and calculate its clearance.When starting point concentration is 5mg/L, after photochemical catalysis 3h, the clearance of Sulfamethoxazole can reach 95.78%; When starting point concentration is 10mg/L, after photochemical catalysis 3h, the clearance of Sulfamethoxazole can reach 93.56%; When starting point concentration is 15mg/L, after photochemical catalysis 3h, the clearance of Sulfamethoxazole can reach 90.12%.This shows that the starting point concentration of Sulfamethoxazole has impact to its degradation process, and as its concentration lower (5 ~ 10mg/L), the light-catalyzed reaction of short period of time (3h) just can obtain the clearance of more than 90%.
In the present invention, the degraded of solution ph on Sulfamethoxazole has impact.Be 2g/L when the concentration of Sulfamethoxazole solution is 10mg/L, Fe/Bi/Mo-expanded graphite composite Nano photocatalyst material consumption, dark adsorption time is 40min, and light application time is under 3h condition, and when pH value of solution is 5.5, the clearance of Sulfamethoxazole is 98.87%; When pH value of solution is 6.1, the clearance of Sulfamethoxazole is 95.78%; When pH value of solution is 7.0, the clearance of Sulfamethoxazole is 93.26%; When pH value of solution is 8.5, the clearance of Sulfamethoxazole is 90.14%; When pH value of solution is 9.0, the clearance of Sulfamethoxazole is 86.72%.This shows in sour environment, and the clearance of Sulfamethoxazole is higher, and reason is in sour environment, and the content of the oxidative free radical of light reaction procedure is higher, and its catalytic activity is strong.Need not be artificial in present method add acidic substance again, Sulfamethoxazole solution itself presents slightly acidic.
After adopting the method degraded Sulfamethoxazole in the present invention, analyzed by HPLC-MS, find that Sulfamethoxazole is degraded, be degraded to small-molecule substance by macromolecular substance, and part Sulfamethoxazole is by mineralising, illustrates that this kind of method is feasible.
From the above, the present invention adopts iron, molybdenum, bismuth element doping expanded graphite prepares Fe/Bi/Mo-expanded graphite composite nano materials, with the Sulfamethoxazole in its wastewater by photocatalysis, under natural light (visible ray) irradiates, make full use of the characteristic of this composite Nano luminescent material, direct oxidation process is containing the Sulfamethoxazole waste water of different concns, other promotor is no longer added in treating processes, technique is simple, cost is low, due in Fe/Bi/Mo-expanded graphite composite nano materials doped with ferro element, the composite Nano luminescent material of preparation is made to have magnetic, fundamentally can solve the problem that photocatalyst is difficult to reclaim, and then realize its recycling.Sulfamethoxazole waste water can be processed rapidly, can light-catalyzed reaction be completed in 3h, and efficiency be high, the efficiency of degraded Sulfamethoxazole, higher than 90%, does not add promotor in treating processes, such as metal ion, too much acidity and alkaline matter, avoid secondary pollution, energy-conserving and environment-protective; The expanded graphite base composite nano photocatalyst material process Sulfamethoxazole waste water particularly adopting iron, molybdenum, bismuth to adulterate, do not need the concentration regulating Sulfamethoxazole waste water, by regulating the consumption of Fe/Bi/Mo-expanded graphite composite Nano photocatalyst material, the Sulfamethoxazole waste water of concentration range 5 ~ 15mg/L is processed, equal can obtain more than 90% high clearance, therefore have very strong practicality, economic and social benefit is huge.

Claims (4)

1. the method for a photocatalytic degradation Sulfamethoxazole, it is characterized in that, adopt iron, molybdenum, bismuth element doping expanded graphite prepares Fe/Bi/Mo-expanded graphite composite nano materials, add in the waste water containing Sulfamethoxazole, be 5.5-8.5 by alkaline matter adjust pH, irradiate 170-190 minute under visible light, utilize Fe/Bi/Mo-expanded graphite composite nano materials, when not adding other promotor, be directly the Sulfamethoxazole waste water of 5-10mg/L by single Fe/Bi/Mo-expanded graphite composite nano materials oxide treatment concentration, Fe/Bi/Mo-expanded graphite composite nano materials add-on is 1-2g/L, finally measure the degradation rate of Sulfamethoxazole, its degradation rate formula is: wherein C 0for the starting point concentration of Sulfamethoxazole waste water, C tfor the residual concentration of Sulfamethoxazole in final solution,
Described alkaline matter is the one of sodium hydroxide, potassium hydroxide or saleratus;
Described Fe/Bi/Mo-expanded graphite composite nano materials is, take natural graphite as raw material, be less than at 4 DEG C, natural graphite 9-11g slowly being joined concentration is in the vitriol oil 50-70mL of 98%, rapid stirring 30min, slowly add 18-22g potassium permanganate again and stir 10min, vibrate after 1h under 30 DEG C of constant temperature, add the warm water dilution of 90-110mL 40-50 DEG C, obtain suspension, the hydrogen peroxide adding 28-32mL concentration 30% in suspension is oxidized natural graphite further, reaction 5min, filter to obtain graphite oxide, 3-5 graphite oxide is rinsed respectively with the dilute hydrochloric acid of mass concentration 5% and rare saleratus of mass concentration 5%, dry under 80 DEG C of constant temperature again, pass through microwave, graphite oxide is expanded, obtain expanded graphite, by expanded graphite 0.04-0.06g and Fe 3o 4nano powder 0.009-0.011g joins in 90-110mL distilled water, and ultrasonic disperse 1h must be oxidized expanded graphite suspension, by the Bi (NO of 4.5-5.0g 3) 35H 2o slowly joins in expanded graphite suspension, stirred at ambient temperature 1h, then by (the NH of 0.8-1.0g 4) 6mo 7o 244H 2o slowly adds in expanded graphite suspension, stirred at ambient temperature 2h, and regulator solution, to neutral, obtains mixing suspension, after mixing suspension is reacted 2h under 100 DEG C of constant temperature, filter, obtain screening, screening washing 3-5 time, at 75-85 DEG C, dry 2h, grinding, obtains the Fe/Bi/Mo-expanded graphite composite nano materials that magnetic is visible light-responded.
2. the method for photocatalytic degradation Sulfamethoxazole according to claim 1, is characterized in that, the mass ratio of described iron, molybdenum, bismuth, expanded graphite is 7.5-8.5 ︰ 45-55 ︰ 190-210 ︰ 4.8-5.2.
3. the method for photocatalytic degradation Sulfamethoxazole according to claim 1 and 2, is characterized in that, the mass ratio of described iron, molybdenum, bismuth, expanded graphite is 8 ︰ 50 ︰ 200 ︰ 5.
4. the method for photocatalytic degradation Sulfamethoxazole according to claim 1, is characterized in that, realized by following methods:
First Fe/Bi/Mo-expanded graphite composite nano materials is prepared, method is, adopt electrooptical balance precise 10g natural graphite, at the vitriol oil 60mL that the beaker centerbody volume concentrations of 500mL is 98%, be less than under 4 DEG C of ice wash one's hair, natural graphite is slowly joined in beaker, after vigorous stirring 30min, slowly add 20g potassium permanganate and stir 10min, beaker being placed in constant temperature 30 DEG C of vibrators vibrates after 1h, add 100mL warm water to dilute, after this in above-mentioned suspension, the hydrogen peroxide adding 30mL volumetric concentration 30% is oxidized natural graphite further, after reaction 5min, filter out graphite oxide, graphite oxide is rinsed 3-5 time with volumetric concentration 5% dilute hydrochloric acid and the rare saleratus of volumetric concentration 5%, fully dry in 80 DEG C of thermostatic drying chambers, after its steady quality, by 1kw microwave, expand graphite oxide obtained expanded graphite, get 0.05g expanded graphite and 0.01gFe 3o 4nano-powder joins in the beaker that 100mL distilled water is housed, and ultrasonic disperse 1h obtains oxidation expanded graphite suspension, by the Bi (NO of 4.85g 3) 35H 2o slowly joins in expanded graphite suspension, stirred at ambient temperature 1h, then by (the NH of 0.9g 4) 6mo 7o 244H 2o slowly adds in expanded graphite suspension, stirred at ambient temperature 2h, regulator solution is to neutral, mixing suspension, mixing suspension is moved into constant temperature in reactor and to react 2h, filter, obtain screening, screening washes 5 times, 80 DEG C dries 2h, and grinding, obtains the Fe/Bi/Mo-expanded graphite composite nano materials that magnetic is visible light-responded,
Adopt Fe/Bi/Mo-expanded graphite composite nano materials again, the Sulfamethoxazole under natural light irradiation in the catalyzed degradation aqueous solution, first in photo catalysis reactor, add starting point concentration C 0for the Sulfamethoxazole solution 100mL of 10mg/L, the Fe/Bi/Mo-expanded graphite composite nano materials of 2g/L is added in Sulfamethoxazole solution, in dark surrounds, with the constant temperature oscillator vibration 40min that frequency is 150Hz, the Sulfamethoxazole in solution is made to be adsorbed to Fe/Bi/Mo-expanded graphite composite nano materials surface, then reactor is moved to irradiation 3h under natural light, catalyzed degradation Sulfamethoxazole, every 30min, the solution of 1mL containing the catalyzed degraded of Sulfamethoxazole is got with liquid-transfering gun, after 0.45 μm of membrane filtration, with the residual concentration C of Sulfamethoxazole in efficient liquid phase chromatographic analysis solution t, the clearance of Sulfamethoxazole at the end of reaction
CN201410268764.9A 2014-06-16 2014-06-16 Method for carrying out photocatalytic degradation on sulfamethoxazole Expired - Fee Related CN104003557B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410268764.9A CN104003557B (en) 2014-06-16 2014-06-16 Method for carrying out photocatalytic degradation on sulfamethoxazole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410268764.9A CN104003557B (en) 2014-06-16 2014-06-16 Method for carrying out photocatalytic degradation on sulfamethoxazole

Publications (2)

Publication Number Publication Date
CN104003557A CN104003557A (en) 2014-08-27
CN104003557B true CN104003557B (en) 2015-06-17

Family

ID=51364502

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410268764.9A Expired - Fee Related CN104003557B (en) 2014-06-16 2014-06-16 Method for carrying out photocatalytic degradation on sulfamethoxazole

Country Status (1)

Country Link
CN (1) CN104003557B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106442818B (en) * 2015-08-04 2018-09-25 中国水产科学研究院 A method of quickly measuring sulfa antibiotics residual quantity in animal muscle tissue based on Magneto separate
CN106124659A (en) * 2016-06-23 2016-11-16 井冈山大学 The method of prediction sulfa antibiotics rate of photocatalytic oxidation
CN115350729A (en) * 2022-07-13 2022-11-18 润赢科技(郑州)有限公司 Novel efficient environment-friendly photocatalytic formaldehyde scavenger and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7311839B2 (en) * 2002-12-09 2007-12-25 New Mexico Tech Research Foundation Removal of biological pathogens using surfactant-modified zeolite
CN102784626A (en) * 2012-08-08 2012-11-21 江苏大学 Temperature-sensitive magnetic sulfadimidine molecular imprinted adsorbent as well as preparation method and application thereof
CN103007882A (en) * 2012-12-13 2013-04-03 同济大学 Preparation method of Fe3O4@MnO2/active carbon magnetic compound adsorption material
CN103111258B (en) * 2013-02-22 2015-03-11 山东大学 Reaction column filled with river-sand loaded graphene oxide/titanium dioxide (GO/TiO2) filler

Also Published As

Publication number Publication date
CN104003557A (en) 2014-08-27

Similar Documents

Publication Publication Date Title
Tahir et al. The detoxification of heavy metals from aqueous environment using nano-photocatalysis approach: a review
Ghenaatgar et al. Photocatalytic degradation and mineralization of dexamethasone using WO3 and ZrO2 nanoparticles: Optimization of operational parameters and kinetic studies
Hou et al. Three-dimensional heterogeneous electro-Fenton oxidation of biologically pretreated coal gasification wastewater using sludge derived carbon as catalytic particle electrodes and catalyst
Silva et al. Insights into solar photo-Fenton reaction parameters in the oxidation of a sanitary landfill leachate at lab-scale
Aisien et al. Photocatalytic decolourisation of industrial wastewater from a soft drink compan
Swaminathan et al. Advanced oxidation processes for wastewater treatment
Brinzila et al. Degradation of tetracycline at a boron-doped diamond anode: influence of initial pH, applied current intensity and electrolyte
Bouafıa-Cherguı et al. TiO2-photocatalyzed degradation of tetracycline: kinetic study, adsorption isotherms, mineralization and toxicity reduction
CN104003557B (en) Method for carrying out photocatalytic degradation on sulfamethoxazole
Lu et al. Photo-Fenton pretreatment of carbofuran–analyses via experimental design, detoxification and biodegradability enhancement
Hasegawa et al. COD removal and toxicity decrease from tannery wastewater by zinc oxide-assisted photocatalysis: a case study
Singh et al. Solar light-induced photocatalytic degradation of methyl red in an aqueous suspension of commercial ZnO: a green approach
Abidemi et al. Treatment technologies for wastewater from cosmetic industry–A review
CN107088413A (en) A kind of CuO/Cu2O photochemical catalysts and preparation method and application
CN106865658A (en) A kind of water quality cleansing agent and preparation method thereof
Chen et al. In-situ synthesis of biochar modified PbMoO4: An efficient visible light-driven photocatalyst for tetracycline removal
CN107442153A (en) A kind of g C based on the modification of waste paper biomass carbon3N4The Preparation method and use of composite photo-catalyst
CN106006795A (en) Bagasse, bentonite and kaolin composite wastewater treatment agent
Tomašević et al. The influence of polychromatic light on methomyl degradation in TiO2 and ZnO aqueous suspension
CN105731584B (en) A kind of method for removing micropollutants brufen in water removal
El Mrabet et al. Treatment of stabilized landfill leachate using coupled Fenton-like and adsorption process onto Moroccan bentonite clay
Fenoll et al. Photooxidation of three spirocyclic acid derivative insecticides in aqueous suspensions as catalyzed by titanium and zinc oxides
Khani et al. Enhancing purification of an azo dye solution in nanosized zero-valent iron-ZnO photocatalyst system using subsequent semibatch packed-bed reactor
Mohammed et al. BOD5 removal from tannery wastewater over ZnO-ZnFe2O4 composite photocatalyst supported on activated carbon
CN107744835A (en) A kind of preparation method of sodium bismuthate base visible light catalytic paper material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150617

Termination date: 20160616