CN103996103B - Balance electronic system reliability allocation methods and device that supply and demand both sides require - Google Patents

Balance electronic system reliability allocation methods and device that supply and demand both sides require Download PDF

Info

Publication number
CN103996103B
CN103996103B CN201410253338.8A CN201410253338A CN103996103B CN 103996103 B CN103996103 B CN 103996103B CN 201410253338 A CN201410253338 A CN 201410253338A CN 103996103 B CN103996103 B CN 103996103B
Authority
CN
China
Prior art keywords
mrow
msub
msup
unit
lambda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410253338.8A
Other languages
Chinese (zh)
Other versions
CN103996103A (en
Inventor
尤明懿
吴献忠
吕强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 36 Research Institute
Original Assignee
CETC 36 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 36 Research Institute filed Critical CETC 36 Research Institute
Priority to CN201410253338.8A priority Critical patent/CN103996103B/en
Publication of CN103996103A publication Critical patent/CN103996103A/en
Application granted granted Critical
Publication of CN103996103B publication Critical patent/CN103996103B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Electronic system reliability allocation methods and the device that supply and demand both sides require are balanced the invention discloses a kind of, wherein method includes:Specify electronic system reliability index requirements;For each unit of system, receive supply and demand both sides and the appraisal result that Reliability Distribution scores is carried out according to predetermined evaluation factor respectively, and based on electronic system reliability index requirements and supply and demand both sides, each appraisal result carries out Reliability Distribution respectively, obtains the respective Reliability Distribution result of supply and demand both sides for the unit;Processing is weighted based on the respective Reliability Distribution result of supply and demand both sides, the final Reliability Distribution result for the unit is obtained;The present invention combines the different considerations of supply and demand both sides, improves the efficiency produced by electronic system on the premise of ensuring to meet system global reliability index.

Description

Balance electronic system reliability allocation methods and device that supply and demand both sides require
Technical field
The present invention relates to electronic system Reliability Distribution technical field, more particularly to a kind of electricity for balancing supply and demand both sides requirement Subsystem reliability distribution method and device.
Background technology
During new system is developed, requirement generally quantification of reliability, the mistake of particular task probability is completed to system Efficiency or unreliable degree index.The reliability requirement of system typically distributes to next stage working cell by Reliability Distribution technology (such as:Unit).In the primary stage of scheme Design, the unit composition of usual system is still not clear, now typically may be assumed that System is cascaded structure, and carries out Reliability Distribution based on scoring distribution method.Afterwards, commented by calculating the reliability of each unit Point, determine the distribution weight of each unit.Finally, the reliability requirement of system is distributed to by each unit based on distribution weight.
For a system, generally its working time for constituting unit is different.It is longer for supplier Working time mean higher failure risk, thus tend to relatively low RELIABILITY INDEX distributing to the working time longer Unit.Conventional scoring distribution method (Zeng Shengkui reliability designs and analysis [M], Beijing at present:National Defense Industry Press, 2011), exactly from the angle of supplier, for the unit that the working time is longer, its task time point is higher.
In some applications, scoring distribution method gradually exposes its weak point, i.e., it is only from supplier's realizability Angle, which is set out, carries out RELIABILITY INDEX distribution.For the angle of party in request, the longer working time might mean that whole The unit of this in system will play larger efficiency, produce more benefit, thus with greater need for ensure its normal work (possess compared with High RELIABILITY INDEX).However, the demand of party in request's this respect often because of it and is not involved in System Reliability Assignment and cannot get Ensure, the requirement of system overall reliability index satisfaction may finally be caused but produced efficiency (benefit) does not meet party in request It is expected that.
The content of the invention
In view of above-mentioned analysis, the present invention is intended to provide a kind of balance the electronic system Reliability Distribution that supply and demand both sides require Method and device, it is relatively low to the efficiency ratio produced by the brought electronic system of distribution that solves unilaterally to score only from supplier Problem.
The purpose of the present invention is mainly achieved through the following technical solutions:
The invention provides a kind of electronic system reliability allocation methods for balancing supply and demand both sides requirement, including:
Specify electronic system reliability index requirements;
For each unit of system, receive supply and demand both sides and Reliability Distribution is carried out according to predetermined evaluation factor respectively The appraisal result of scoring, and based on electronic system reliability index requirements and supply and demand both sides each appraisal result carry out respectively can By property distribution, the respective Reliability Distribution result of supply and demand both sides for the unit is obtained;
Processing is weighted based on the respective Reliability Distribution result of supply and demand both sides, obtaining can for the final of the unit By property allocation result.
Further, above-mentioned electronic system reliability index requirements are determined using following form:
RS(T)=r
Wherein, RS() is reliability models or reliability function, and T is the system task time, and r is Department of Electronics System reliability index.
Further, supply and demand both sides are based on scoring carries out Reliability Distribution respectively, obtains the supply and demand both sides for the unit The process of respective Reliability Distribution result is specifically included:
Scoring of the supply and demand both sides to the evaluation factor of each unit is received, is handled as follows respectively for supply and demand both sides:
Calculate each evaluation factor average of each unit;
According to the evaluation score of each evaluation factor of the unit, the comprehensive grading for obtaining the unit is calculated;
According to the comprehensive grading of the unit, the comprehensive grading for obtaining whole system is calculated;
According to the comprehensive grading of the unit and the comprehensive grading of whole system, calculate obtain the comprehensive grading of the unit because Son;
According to the comprehensive grading factor and electronic system reliability index of the unit, calculate obtain for the unit can By property allocation result.
Further, supply and demand both sides include multiple in following factor for the evaluation factor of each unit:
Prominence score, complexity scoring, maturity scoring, working environment scoring, task time scoring.
Further, if system is made up of n platform units, there are above-mentioned 5 evaluation factors, by L supplier experts to each list The evaluation factor of machine is scored;If in terms of supplier, j-th of expert is S to unit i prominence scoresij1, complexity comments It is divided into Ssij2, maturity scoring is Ssij3, working environment scoring Ssij4, task time scoring is Ssij5, then unit i score for k-th The average score of factor is:
The comprehensive grading of i-th unit is:
The comprehensive grading of whole system is:
Then the comprehensive grading factor of i-th unit is:
According to the comprehensive grading factor of i-th unit, its distribution reliability isThus have:
Wherein, Ri() is unit i reliability function, λi、tiRespectively unit i distribution crash rate and task time, λSFor system failure rate.
Further, if system is made up of n platform units, there are above-mentioned 5 evaluation factors, by Q party in request experts to each list The evaluation factor of machine is scored;If in terms of party in request, j-th of expert is S to unit i prominence scorecij1, complexity comments It is divided into Scij2, maturity scoring is Scij3, working environment scoring Scij4, task time scoring is Scij5, then unit i score for k-th The average score of factor is:
The comprehensive grading of i-th unit is:
The comprehensive grading of whole system is:
Then the comprehensive grading factor of i-th unit is:
According to the comprehensive grading factor of i-th unit, its distribution reliability isThus have:
Wherein, Ri() is unit i reliability function, λi′、tiWhen respectively unit i distribution crash rate is with task Between, λSFor system failure rate.
Further, based on the respective Reliability Distribution result λ of supply and demand both sidesiAnd λi' and predetermined weight factor W enter Row weighting is handled, and common confirmation by both party, obtains the final Reliability Distribution result for the unit;The weight factor W span is 0≤W≤1.
Further, processing is weighted based on the respective Reliability Distribution result of supply and demand both sides, obtains and be directed to the unit The process of final Reliability Distribution result specifically include:
Wherein, Ri(ti) the distribution reliabilitys of unit i finally are represented,Supply and demand side's distribution reliability is represented,Represent to need The side of asking distributes reliability, and T represents system task time, λifFor unit i final Reliability Distribution result.
Present invention also offers a kind of electronic system Reliability Distribution device for balancing supply and demand both sides requirement, including:
Index determining module, for clear and definite electronic system reliability index requirements;
Score processing module, for each unit for system, receives supply and demand both sides respectively according to predetermined scoring Factor carries out the appraisal result of Reliability Distribution scoring;
First reliability processing module, the appraisal result for being based respectively on supply and demand both sides is handled, and is obtained for being somebody's turn to do The respective Reliability Distribution result of supply and demand both sides of unit;
Second reliability processing module, for being weighted processing based on the respective Reliability Distribution result of supply and demand both sides, Obtain the final Reliability Distribution result for the unit.
Further, the first reliability processing module specifically for, receive supply and demand both sides to the scoring of each unit because The scoring of element, is handled as follows for supply and demand both sides respectively:
Calculate each evaluation factor average of each unit;According to the evaluation score of each evaluation factor of the unit, calculate Obtain the comprehensive grading of the unit;According to the comprehensive grading of the unit, the comprehensive grading for obtaining whole system is calculated;According to the list The comprehensive grading of machine and the comprehensive grading of whole system, calculate the comprehensive grading factor for obtaining the unit;According to the unit The comprehensive grading factor and electronic system reliability index, calculate the Reliability Distribution result obtained for the unit.
The present invention has the beneficial effect that:
The present invention allows supply and demand both sides to propose to constitute system the Reliability Distribution scheme of unit from respective angle, Most the allocation result of both sides carries out balance consideration and determines final allocation result at last, improves the effect produced by electronic system Energy.
Other features and advantages of the present invention will be illustrated in the following description, also, the partial change from specification Obtain it is clear that or being understood by implementing the present invention.The purpose of the present invention and other advantages can be by the explanations write Specifically noted structure is realized and obtained in book, claims and accompanying drawing.
Brief description of the drawings
Fig. 1 is the schematic flow sheet of methods described of the embodiment of the present invention;
Fig. 2 is the system construction drawing in instantiation of the embodiment of the present invention;
Fig. 3 is the number based on supplier, party in request and final Reliability Distribution result in instantiation of the embodiment of the present invention Word receiver A reliability function figure;
Fig. 4 is the structural scheme of mechanism of described device of the embodiment of the present invention.
Embodiment
The present invention proposes a kind of electronic system reliability allocation methods and device for coordinating supply and demand both sides requirement, and it is main special Point is:Consider that supply and demand both sides are required the difference of different operating time unit reliability, first by supply and demand both sides from respective Angle proposes Reliability Distribution scheme, and weighting determines final reliability on the premise of ensuring that system reliability meets requirement Allocation result.
The preferred embodiments of the present invention are specifically described below in conjunction with the accompanying drawings, wherein, accompanying drawing constitutes the application part, and It is used for the principle for explaining the present invention together with embodiments of the present invention.
Methods described of the embodiment of the present invention is described in detail to accompanying drawing 3 with reference to accompanying drawing 1 first.
As shown in figure 1, Fig. 1 is the schematic flow sheet of methods described of the embodiment of the present invention, it can specifically include:
Step 101:Specify electronic system reliability index requirements;
Electronic system reliability index requirements are the inputs of Reliability Distribution work, and Reliability Distribution is with reference to system Unit is constituted and its this general requirement classifying rationally of electronic system reliability index is given each composition unit by feature.
Current electronic system reliability index requirements are often determined in following form:
RS(T)=r (1)
In formula (1), RS() is electronic system Reliable Mathematics model (or reliability function), and T is the system task time, R is Reliability Index.
Step 102:Supply and demand both sides determine evaluation factor;
Evaluation factor should constitute the principal element of unit comprising influence system.It is main to use according to current applicable cases Evaluation factor have:Importance, complexity, maturity, working environment, task time.Wherein to refer to unit complete in system for importance Significance level into during its assigned tasks, is key component if unit failure will cause mission failure, casualties, if single Machine failure will cause systemic-function, severe performance degradation to be then important parts.Complexity refers mainly to the quantity that unit constitutes component How much, usual unit composition component number more at most its complexity is higher.Maturity refers to the maturity of unit development, if Then its maturity is high with application through repeatedly development for the unit (or close unit), and its maturity is low if unit is newly grinds product. Working environment refers to unit and performs task environment quality, can use for reference GJB299C-2006《The estimated handbook of reliability of electronic equipment》Ring Classify in border.Task time is the start working time for referring to unit.
Step 103:Receive the appraisal result that supplier carries out scoring based on its point system;
Wherein, for supplier, its point system is as shown in table 1.
The supplier's point system of table 1
Sequence number Evaluation factor Score range Point system
1 Importance 1~10 Key component 1~4, important parts 4~7, general part 7~10
2 Complexity 1~10 More complicated, score value is about high
3 Maturity 1~10 Adult form 1~4, modified 4~7, brand-new type 7~10
4 Working environment 1~10 More severe, score value is higher
5 Task time 1~10 Time is longer, and score value is about high
Step 104:For every machine of system, according to the appraisal result of supplier and current electronic system reliability Index request carries out Reliability Distribution, obtains the Reliability Distribution result of the supplier for the unit;
If system is made up of n platform units, there is above-mentioned 5 evaluation factors, by L supplier experts to the scoring of each unit because Element is scored.If in terms of supplier, j-th of expert is S to unit i prominence scoresij1, complexity scoring is Ssij2, into Maturity scoring is Ssij3, working environment scoring Ssij4, task time scoring is Ssij5, then unit i k-th of evaluation factor be averaged Score and be:
The comprehensive grading of i-th unit is:
The comprehensive grading of whole system is:
According to formula (3) and formula (4), the comprehensive grading factor of i-th unit is:
According to the comprehensive grading factor of i-th unit, its distribution reliability isThus have:
In formula (6), Ri() is unit i reliability function, λi、tiWhen respectively unit i distribution crash rate is with task Between, λSFor system failure rate.Thus, Reliability Distribution result of the supplier to unit i is just obtained.
Step 105:Receive the appraisal result that party in request carries out scoring based on its point system;
For party in request, its point system is as shown in table 2.
The party in request's point system of table 2
Sequence number Evaluation factor Score range Point system
1 Importance 1~10 Key component 1~4, important parts 4~7, general part 7~10
2 Complexity 1~10 More complicated, score value is about high
3 Maturity 1~10 Adult form 1~4, modified 4~7, brand-new type 7~10
4 Working environment 1~10 More severe, score value is higher
5 Task time 1~10 Time is longer, and score value is about low
Step 106:For the appraisal result and current electronic system reliability of every machine of system, according to demand side Index request carries out Reliability Distribution, obtains the Reliability Distribution result of the party in request for the unit;
If system is made up of n platform units, there is above-mentioned 5 evaluation factors, by Q party in request experts to the scoring of each unit because Element is scored.If in terms of party in request, j-th of expert is S to unit i prominence scorecij1, complexity scoring is Scij2, into Maturity scoring is Scij3, working environment scoring Scij4, task time scoring is Scij5, then unit i k-th of evaluation factor be averaged Score and be:
The comprehensive grading of i-th unit is:
The comprehensive grading of whole system is:
According to formula (8) and formula (9), the comprehensive grading factor of i-th unit is:
According to the comprehensive grading factor of i-th unit, its distribution reliability isThus have:
In formula (11), Ri() is unit i reliability function, λi′、tiRespectively unit i distribution crash rate and task Time, λSFor system failure rate.Thus, Reliability Distribution result of the party in request to unit i is just obtained.
Step 107:Processing is weighted based on the respective Reliability Distribution result of supply and demand both sides, obtained for unit i's Final Reliability Distribution result;
It is determined that during final Reliability Distribution result, introducing weight factor W (0≤W≤1):
In formula (12), λifFor unit i final distribution reliability.For the determination of weight factor, it need to be total to by supply and demand both sides With determination, in the case of the equalization of supply and demand both sides status, typically there is W=1/2.For supplier market, typically there is W>1/2;For , typically there is W in party in request market<1/2.
The reliability to electronic system is verified below.
According to formula (12), system dependability is:
Wherein, Rs (T) is the reliability function of electronic system.
As can be seen here, by formula (13), formula (12) is it was determined that the Reliability Distribution scheme described in the embodiment of the present invention can To ensure to meet electronic system reliability index.
For the ease of understanding methods described of the embodiment of the present invention, this hair is illustrated below in conjunction with certain communication payload system The scheme that bright embodiment is proposed.
The hardware of the communication payload system is constituted as shown in Fig. 2 including radio-frequency front-end, A types digital receiver (rear abbreviation number Word receiver A), Type B digital receiver (rear abbreviation digital receiver B), control machine, intermediate frequency switching switch, and mark frequency source.Its In, radio-frequency front-end, digital receiver A, the task time of control machine are 3 years (i.e. 26280 hours), digital receiver B task Time is 2 years (i.e. 17520 hours), and the task time of intermediate frequency switching switch is 1 year (i.e. 8780 hours).
According to the application flow in Fig. 1, first by the clear and definite Reliability Index requirement of party in request, it is set to:
RS(26280h)=0.80 (14)
That is three year end Reliability Indexes 0.80.
According to the step 2 in Fig. 1, by supply and demand, both sides determine evaluation factor.In present case, evaluation factor includes:Importance, Complexity, maturity, working environment, task time.
According to the step 103 in Fig. 1, supplier is based on its point system and carries out scoring.If supplier is carried out by 7 experts Reliability factor scores, and wherein digital receiver A appraisal result is as shown in table 3.
Appraisal result of the supplier expert of table 3 to digital receiver A
With table 3 similarly, comprehensive grading of the supplier to each unit is obtained, as shown in table 4.
Comprehensive grading of the supplier of table 4 to each unit
Unit title Comprehensive grading Ssi
Radio-frequency front-end 2329.25
Digital receiver A 4144.91
Digital receiver B 3121.26
Control machine 3578.68
Intermediate frequency switching switch 1225.35
Mark frequency source 2256.75
According to the step 104 in Fig. 1, that is, carry out the Reliability Distribution based on reliability factor appraisal result.Based in table 4 Result, supplier is 16666.2, the comprehensive grading factor such as table of the supplier to each unit to the comprehensive grading of whole system Shown in 5.
The comprehensive grading factor of the supplier of table 5 to each unit
Unit title Comprehensive grading Ssi
Radio-frequency front-end 0.1404
Digital receiver A 0.2487
Digital receiver B 0.1873
Control machine 0.2147
Intermediate frequency switching switch 0.0735
Mark frequency source 0.1354
According to formula (6), supplier is as shown in table 6 to the distribution reliability and distribution crash rate of each unit of system.
The comprehensive grading factor of the supplier of table 6 to each unit
It is that party in request is based on the development scoring of its point system according to the step 105 in Fig. 1.If party in request is entered by 6 experts Row reliability factor scores, and wherein digital receiver A appraisal result is as shown in table 7.
Appraisal result of the party in request expert of table 7 to digital receiver A
With table 7 similarly, comprehensive grading of the supplier to each unit is obtained, as shown in table 8.
Comprehensive grading of the party in request of table 8 to each unit
Unit title Comprehensive grading Sci
Radio-frequency front-end 780.25
Digital receiver A 1560.15
Digital receiver B 2516.25
Control machine 1680.75
Intermediate frequency switching switch 2225.25
Mark frequency source 525.80
According to the step 106 in Fig. 1, that is, carry out the Reliability Distribution based on reliability factor appraisal result.Based in table 8 Result, supplier be to the comprehensive grading of whole system the comprehensive grading factor of each unit in terms of 9288.45, supplier such as Shown in table 9.
The comprehensive grading factor of the party in request of table 9 to each unit
Unit title Comprehensive grading Sci
Radio-frequency front-end 0.0840
Digital receiver A 0.1680
Digital receiver B 0.2709
Control machine 0.1810
Intermediate frequency switching switch 0.2396
Mark frequency source 0.0565
According to formula (11), party in request is as shown in table 10 to the distribution reliability and distribution crash rate of each unit of system.
The comprehensive grading factor of the party in request of table 10 to each unit
Final Reliability Distribution result is determined according to the step 5 in Fig. 1, i.e. weighting.In this example, if weight W=1/2.Root According to formula (12), you can the system that obtains respectively constitutes the final Reliability Distribution result of unit, as shown in table 11.
The system of table 11 respectively constitutes the final Reliability Distribution result of unit
Sequence number Final distribution crash rate λif(10-6/h)
Radio-frequency front-end 0.9524
Digital receiver A 1.7696
Digital receiver B 2.9155
Control machine 1.6807
Intermediate frequency switching switch 3.9899
Mark frequency source 0.8149
Fig. 3 gives the digital receiver A reliability functions based on supplier, party in request's Reliability Distribution result, returns The reliability function based on final allocation result is gone out.
Lower combination accompanying drawing 4 is connect described device of the embodiment of the present invention is described in detail.
As shown in figure 4, Fig. 4 is the structural representation of described device of the embodiment of the present invention, it can specifically include:
Index determining module, for clear and definite electronic system reliability index requirements;
Above-mentioned electronic system reliability index requirements are determined using following form:
RS(T)=r
Wherein, RS() is reliability models or reliability function, and T is the system task time, and r is Department of Electronics System reliability index.
Score processing module, for each unit for system, receives supply and demand both sides respectively according to predetermined scoring Factor carries out the appraisal result of Reliability Distribution scoring;
First reliability processing module, the appraisal result for being based respectively on supply and demand both sides is handled, and is obtained for being somebody's turn to do The respective Reliability Distribution result of supply and demand both sides of unit;
Second reliability processing module, for being weighted processing based on the respective Reliability Distribution result of supply and demand both sides, Obtain the final Reliability Distribution result for the unit.
Wherein, the first reliability processing module specifically for, receive scoring of the supply and demand both sides to the evaluation factor of each unit, It is handled as follows respectively for supply and demand both sides:
Calculate each evaluation factor average of each unit;According to the evaluation score of each evaluation factor of the unit, calculate Obtain the comprehensive grading of the unit;According to the comprehensive grading of the unit, the comprehensive grading for obtaining whole system is calculated;According to the list The comprehensive grading of machine and the comprehensive grading of whole system, calculate the comprehensive grading factor for obtaining the unit;According to the unit The comprehensive grading factor and electronic system reliability index, calculate the Reliability Distribution result obtained for the unit.
For the specific calculating process of above-mentioned modules, due to having been illustrated in previous methods, therefore herein not Repeat again.
In summary, the electronic system Reliability Distribution side that supply and demand both sides require is balanced the embodiments of the invention provide a kind of Method and device, inventive embodiments methods described and device are combined on the premise of ensuring to meet system global reliability index The different considerations of supply and demand both sides, have weighed unit and have developed realizability and unit efficiency, the relation of benefit, improved electronic system Produced efficiency.
The foregoing is only a preferred embodiment of the present invention, but protection scope of the present invention be not limited thereto, Any one skilled in the art the invention discloses technical scope in, the change or replacement that can be readily occurred in, It should all be included within the scope of the present invention.Therefore, protection scope of the present invention should be with the protection model of claims Enclose and be defined.

Claims (2)

1. a kind of balance the electronic system reliability allocation methods that supply and demand both sides require, it is characterised in that including:
Specify electronic system reliability index requirements;Electronic system reliability index requirements are the inputs of Reliability Distribution work, Reliability Distribution be with reference to system unit composition and its feature by electronic system reliability index, this general requirement is reasonable It is allocated to each composition unit;
For each unit of system, receive supply and demand both sides and Reliability Distribution scoring is carried out according to predetermined evaluation factor respectively Appraisal result, and each appraisal result carries out reliability respectively based on electronic system reliability index requirements and supply and demand both sides Distribution, obtains the respective Reliability Distribution result of supply and demand both sides for the unit;
Processing is weighted based on the respective Reliability Distribution result of supply and demand both sides, the final reliability for the unit is obtained Allocation result;For the determination of weight factor, determined jointly by supply and demand both sides, in the case of the equalization of supply and demand both sides status, W= 1/2;For supplier market, W>1/2;For party in request market, W<1/2;
Above-mentioned electronic system reliability index requirements are determined using following form:
RS(T)=r
Wherein, RS() is reliability models or reliability function, and T is the system task time, and r is that electronic system can By property index;
Supply and demand both sides are based on scoring and carry out Reliability Distribution respectively, obtain the supply and demand both sides respective reliability point for the unit Process with result is specifically included:
Scoring of the supply and demand both sides to the evaluation factor of each unit is received, is handled as follows respectively for supply and demand both sides:
Calculate each evaluation factor average of each unit;
According to the evaluation score of each evaluation factor of the unit, the comprehensive grading for obtaining the unit is calculated;
According to the comprehensive grading of the unit, the comprehensive grading for obtaining whole system is calculated;
According to the comprehensive grading of the unit and the comprehensive grading of whole system, the comprehensive grading factor for obtaining the unit is calculated;
According to the comprehensive grading factor and electronic system reliability index of the unit, the reliability obtained for the unit is calculated Allocation result;
Supply and demand both sides include multiple in following factor for the evaluation factor of each unit:
Prominence score, complexity scoring, maturity scoring, working environment scoring, task time scoring;
If system is made up of n platform units, there are above-mentioned 5 evaluation factors, the evaluation factor of each unit is entered by L supplier experts Row scoring;If in terms of supplier, j-th of expert is S to unit i prominence scoresij1, complexity scoring is Ssij2, maturity Score as Ssij3, working environment scoring Ssij4, task time scoring is Ssij5, then the average score of k-th of evaluation factor of unit i For:
<mrow> <msub> <mi>S</mi> <mrow> <mi>s</mi> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>L</mi> </munderover> <msub> <mi>S</mi> <mrow> <mi>s</mi> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> </msub> </mrow>
The comprehensive grading of i-th unit is:
<mrow> <msub> <mi>S</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Pi;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>5</mn> </munderover> <msub> <mi>S</mi> <mrow> <mi>s</mi> <mi>i</mi> <mi>k</mi> </mrow> </msub> </mrow>
The comprehensive grading of whole system is:
<mrow> <msub> <mi>S</mi> <mi>s</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>S</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> </mrow>
Then the comprehensive grading factor of i-th unit is:
<mrow> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>S</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>S</mi> <mi>s</mi> </msub> </mfrac> </mrow>
According to the comprehensive grading factor of i-th unit, its distribution reliability isThus have:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>i</mi> </msub> <msub> <mi>t</mi> <mi>i</mi> </msub> </mrow> </msup> <mo>=</mo> <msup> <mi>r</mi> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;DoubleRightArrow;</mo> <msub> <mi>&amp;lambda;</mi> <mi>i</mi> </msub> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>&amp;DoubleRightArrow;</mo> <msub> <mi>&amp;lambda;</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>/</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, Ri() is unit i reliability function, λi、tiRespectively unit i distribution crash rate and task time, λSFor System failure rate;
If system is made up of n platform units, there are above-mentioned 5 evaluation factors, the evaluation factor of each unit is entered by Q party in request experts Row scoring;If in terms of party in request, j-th of expert is S to unit i prominence scorecij1, complexity scoring is Scij2, maturity Score as Scij3, working environment scoring Scij4, task time scoring is Scij5, then the average score of k-th of evaluation factor of unit i For:
<mrow> <msub> <mi>S</mi> <mrow> <mi>c</mi> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>Q</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>Q</mi> </munderover> <msub> <mi>S</mi> <mrow> <mi>c</mi> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> </msub> </mrow>
The comprehensive grading of i-th unit is:
<mrow> <msub> <mi>S</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Pi;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>5</mn> </munderover> <msub> <mi>S</mi> <mrow> <mi>c</mi> <mi>i</mi> <mi>k</mi> </mrow> </msub> </mrow>
The comprehensive grading of whole system is:
<mrow> <msub> <mi>S</mi> <mi>c</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>S</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> </mrow>
Then the comprehensive grading factor of i-th unit is:
<mrow> <msub> <mi>C</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>S</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>S</mi> <mi>c</mi> </msub> </mfrac> </mrow>
According to the comprehensive grading factor of i-th unit, its distribution reliability isThus have:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msup> <msub> <mi>&amp;lambda;</mi> <mi>i</mi> </msub> <mo>&amp;prime;</mo> </msup> <msub> <mi>t</mi> <mi>i</mi> </msub> </mrow> </msup> <mo>=</mo> <msup> <mi>r</mi> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;DoubleRightArrow;</mo> <msup> <msub> <mi>&amp;lambda;</mi> <mi>i</mi> </msub> <mo>&amp;prime;</mo> </msup> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>C</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>&amp;DoubleRightArrow;</mo> <msup> <msub> <mi>&amp;lambda;</mi> <mi>i</mi> </msub> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <msub> <mi>C</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>/</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, Ri() is unit i reliability function, λi′、tiRespectively unit i distribution crash rate and task time, λSFor System failure rate;
Based on the respective Reliability Distribution result λ of supply and demand both sidesiAnd λi' and predetermined weight factor W be weighted processing, and It is common by both party to confirm, obtain the final Reliability Distribution result for the unit;The span of the weight factor W is 0≤W≤1;
Processing is weighted based on the respective Reliability Distribution result of supply and demand both sides, the final reliability for the unit is obtained The process of allocation result is specifically included:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>r</mi> <mrow> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mi>W</mi> </mrow> </msup> <mo>&amp;CenterDot;</mo> <msup> <mi>r</mi> <mrow> <msub> <mi>C</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;DoubleRightArrow;</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </msub> <msub> <mi>t</mi> <mi>i</mi> </msub> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mi>W</mi> </mrow> </msup> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <msub> <mi>C</mi> <mrow> <mi>C</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mo>&amp;lsqb;</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>W&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>&amp;rsqb;</mo> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;DoubleRightArrow;</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>W&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>/</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>/</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>=</mo> <mo>&amp;lsqb;</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mi>W</mi> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>/</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>W</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;lambda;</mi> <mi>i</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> <msup> <msub> <mi>&amp;lambda;</mi> <mi>i</mi> </msub> <mo>&amp;prime;</mo> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> 2
Wherein, Ri(ti) the distribution reliabilitys of unit i finally are represented,Supply and demand side's distribution reliability is represented,Represent party in request Reliability is distributed, T represents system task time, λifFor unit i final Reliability Distribution result;
Methods described also includes verifying the reliability of electronic system:
System dependability is
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </msub> <msub> <mi>t</mi> <mi>i</mi> </msub> </mrow> </msup> <mo>=</mo> <munderover> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>W&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <munderover> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>W&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>&amp;CenterDot;</mo> <munderover> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <munderover> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>)</mo> </mrow> <mi>W</mi> </msup> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <munderover> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>&amp;CenterDot;</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> </mrow> </msup> <mo>)</mo> </mrow> <mi>W</mi> </msup> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>&amp;CenterDot;</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>)</mo> </mrow> <mi>W</mi> </msup> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>=</mo> <mi>r</mi> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, Rs (T) is the reliability function of electronic system, and the reliability allocation methods can meet electronic system reliability and refer to Mark is required.
2. a kind of balance the electronic system Reliability Distribution device that supply and demand both sides require, it is characterised in that including:
Index determining module, for clear and definite electronic system reliability index requirements;Electronic system reliability index requirements are reliable Property the input that shares out the work, Reliability Distribution is unit composition and its feature with reference to system by electronic system reliability index This general requirement classifying rationally gives each composition unit;
Score processing module, for each unit for system, receives supply and demand both sides respectively according to predetermined evaluation factor Carry out the appraisal result of Reliability Distribution scoring;
First reliability processing module, the appraisal result for being based respectively on supply and demand both sides is handled, and obtains being directed to the unit The respective Reliability Distribution result of supply and demand both sides;
Second reliability processing module, for being weighted processing based on the respective Reliability Distribution result of supply and demand both sides, is obtained For the final Reliability Distribution result of the unit;For the determination of weight factor, determined jointly by supply and demand both sides, in supply and demand In the case that both sides status is impartial, W=1/2;For supplier market, W>1/2;For party in request market, W<1/2;
Above-mentioned electronic system reliability index requirements are determined using following form:
RS(T)=r
Wherein, RS() is reliability models or reliability function, and T is the system task time, and r is that electronic system can By property index;
The first reliability processing module is specifically for receiving scoring of the supply and demand both sides to the evaluation factor of each unit, respectively For supply and demand, both sides are handled as follows:
Calculate each evaluation factor average of each unit;According to the evaluation score of each evaluation factor of the unit, calculating is obtained The comprehensive grading of the unit;According to the comprehensive grading of the unit, the comprehensive grading for obtaining whole system is calculated;According to the unit The comprehensive grading of comprehensive grading and whole system, calculates the comprehensive grading factor for obtaining the unit;According to the synthesis of the unit The factor that scores and electronic system reliability index, calculate the Reliability Distribution result obtained for the unit;
Supply and demand both sides include multiple in following factor for the evaluation factor of each unit:
Prominence score, complexity scoring, maturity scoring, working environment scoring, task time scoring;
If system is made up of n platform units, there are above-mentioned 5 evaluation factors, the evaluation factor of each unit is entered by L supplier experts Row scoring;If in terms of supplier, j-th of expert is S to unit i prominence scoresij1, complexity scoring is Ssij2, maturity Score as Ssij3, working environment scoring Ssij4, task time scoring is Ssij5, then the average score of k-th of evaluation factor of unit i For:
<mrow> <msub> <mi>S</mi> <mrow> <mi>s</mi> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>L</mi> </munderover> <msub> <mi>S</mi> <mrow> <mi>s</mi> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> </msub> </mrow>
The comprehensive grading of i-th unit is:
<mrow> <msub> <mi>S</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Pi;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>5</mn> </munderover> <msub> <mi>S</mi> <mrow> <mi>s</mi> <mi>i</mi> <mi>k</mi> </mrow> </msub> </mrow>
The comprehensive grading of whole system is:
<mrow> <msub> <mi>S</mi> <mi>s</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>S</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> </mrow>
Then the comprehensive grading factor of i-th unit is:
<mrow> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>S</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>S</mi> <mi>s</mi> </msub> </mfrac> </mrow>
According to the comprehensive grading factor of i-th unit, its distribution reliability isThus have:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>i</mi> </msub> <msub> <mi>t</mi> <mi>i</mi> </msub> </mrow> </msup> <mo>=</mo> <msup> <mi>r</mi> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;DoubleRightArrow;</mo> <msub> <mi>&amp;lambda;</mi> <mi>i</mi> </msub> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>&amp;DoubleRightArrow;</mo> <msub> <mi>&amp;lambda;</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>/</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, Ri() is unit i reliability function, λi、tiRespectively unit i distribution crash rate and task time, λSFor System failure rate;
If system is made up of n platform units, there are above-mentioned 5 evaluation factors, the evaluation factor of each unit is entered by Q party in request experts Row scoring;If in terms of party in request, j-th of expert is S to unit i prominence scorecij1, complexity scoring is Scij2, maturity Score as Scij3, working environment scoring Scij4, task time scoring is Scij5, then the average score of k-th of evaluation factor of unit i For:
<mrow> <msub> <mi>S</mi> <mrow> <mi>c</mi> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>Q</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>Q</mi> </munderover> <msub> <mi>S</mi> <mrow> <mi>c</mi> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> </msub> </mrow>
The comprehensive grading of i-th unit is:
<mrow> <msub> <mi>S</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Pi;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>5</mn> </munderover> <msub> <mi>S</mi> <mrow> <mi>c</mi> <mi>i</mi> <mi>k</mi> </mrow> </msub> </mrow>
The comprehensive grading of whole system is:
<mrow> <msub> <mi>S</mi> <mi>c</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>S</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> </mrow>
Then the comprehensive grading factor of i-th unit is:
<mrow> <msub> <mi>C</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>S</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>S</mi> <mi>c</mi> </msub> </mfrac> </mrow>
According to the comprehensive grading factor of i-th unit, its distribution reliability isThus have:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msup> <msub> <mi>&amp;lambda;</mi> <mi>i</mi> </msub> <mo>&amp;prime;</mo> </msup> <msub> <mi>t</mi> <mi>i</mi> </msub> </mrow> </msup> <mo>=</mo> <msup> <mi>r</mi> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;DoubleRightArrow;</mo> <msup> <msub> <mi>&amp;lambda;</mi> <mi>i</mi> </msub> <mo>&amp;prime;</mo> </msup> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>C</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>&amp;DoubleRightArrow;</mo> <msup> <msub> <mi>&amp;lambda;</mi> <mi>i</mi> </msub> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <msub> <mi>C</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>/</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, Ri() is unit i reliability function, λi′、tiRespectively unit i distribution crash rate and task time, λSFor System failure rate;
Based on the respective Reliability Distribution result λ of supply and demand both sidesiAnd λi' and predetermined weight factor W be weighted processing, and It is common by both party to confirm, obtain the final Reliability Distribution result for the unit;The span of the weight factor W is 0≤W≤1;
Processing is weighted based on the respective Reliability Distribution result of supply and demand both sides, the final reliability for the unit is obtained The process of allocation result is specifically included:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>r</mi> <mrow> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mi>W</mi> </mrow> </msup> <mo>&amp;CenterDot;</mo> <msup> <mi>r</mi> <mrow> <msub> <mi>C</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;DoubleRightArrow;</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </msub> <msub> <mi>t</mi> <mi>i</mi> </msub> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mi>W</mi> </mrow> </msup> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <msub> <mi>C</mi> <mrow> <mi>C</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mo>&amp;lsqb;</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>W&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>&amp;rsqb;</mo> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;DoubleRightArrow;</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>W&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>/</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>/</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>=</mo> <mo>&amp;lsqb;</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mi>W</mi> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>/</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>W</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;lambda;</mi> <mi>i</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> <msup> <msub> <mi>&amp;lambda;</mi> <mi>i</mi> </msub> <mo>&amp;prime;</mo> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, Ri(ti) the distribution reliabilitys of unit i finally are represented,Supply and demand side's distribution reliability is represented,Represent party in request Reliability is distributed, T represents system task time, λifFor unit i final Reliability Distribution result;
Described device can also be verified to the reliability of electronic system:
System dependability is
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </msub> <msub> <mi>t</mi> <mi>i</mi> </msub> </mrow> </msup> <mo>=</mo> <munderover> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>W&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>c</mi> <mi>i</mi> </mrow> </msub> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <munderover> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>W&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>&amp;CenterDot;</mo> <munderover> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <munderover> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>)</mo> </mrow> <mi>W</mi> </msup> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <munderover> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>&amp;CenterDot;</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> </mrow> </msup> <mo>)</mo> </mrow> <mi>W</mi> </msup> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> <mo>&amp;CenterDot;</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>)</mo> </mrow> <mi>W</mi> </msup> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>W</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>S</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>=</mo> <mi>r</mi> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, Rs (T) is the reliability function of electronic system, and the reliability allocation methods can meet electronic system reliability and refer to Mark is required.
CN201410253338.8A 2014-06-09 2014-06-09 Balance electronic system reliability allocation methods and device that supply and demand both sides require Active CN103996103B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410253338.8A CN103996103B (en) 2014-06-09 2014-06-09 Balance electronic system reliability allocation methods and device that supply and demand both sides require

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410253338.8A CN103996103B (en) 2014-06-09 2014-06-09 Balance electronic system reliability allocation methods and device that supply and demand both sides require

Publications (2)

Publication Number Publication Date
CN103996103A CN103996103A (en) 2014-08-20
CN103996103B true CN103996103B (en) 2017-10-17

Family

ID=51310262

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410253338.8A Active CN103996103B (en) 2014-06-09 2014-06-09 Balance electronic system reliability allocation methods and device that supply and demand both sides require

Country Status (1)

Country Link
CN (1) CN103996103B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107316088B (en) * 2017-07-13 2021-03-09 中国航空工业集团公司西安飞机设计研究所 Fault detection rate distribution method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103722A (en) * 2011-03-18 2011-06-22 北京航空航天大学 Warship reliability quantitative requirement demonstration method
CN103676854A (en) * 2013-12-02 2014-03-26 北京航空航天大学 Method for allocating mission reliability of avionic system in consideration of airborne network features

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7376478B2 (en) * 2006-03-21 2008-05-20 Siemens Medical Solutions Usa, Inc. Achieving perceived reliability for repairable systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103722A (en) * 2011-03-18 2011-06-22 北京航空航天大学 Warship reliability quantitative requirement demonstration method
CN103676854A (en) * 2013-12-02 2014-03-26 北京航空航天大学 Method for allocating mission reliability of avionic system in consideration of airborne network features

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
一种面向设计寿命全过程的电子系统可靠性分配法;尤明懿;《电子产品可靠性与环境试验》;20120229;第30卷(第1期);全文 *
航空发动机可靠性评分分配法;张琳等;《质量与可靠性》;20090415(第2期);第49-52页及表8-11 *

Also Published As

Publication number Publication date
CN103996103A (en) 2014-08-20

Similar Documents

Publication Publication Date Title
CN103326353B (en) Environmental economic power generation dispatching calculation method based on improved multi-objective particle swarm optimization algorithm
CN103279640B (en) Satellite borne electronic system FMECA method based on rough set theory and reliability prediction
CN102629364A (en) Quantitative scoring method of power equipment state
CN105913323A (en) PullRequest reviewer recommend method of GitHub open source community
CN106228403A (en) A kind of user based on step analysis algorithm is worth methods of marking and system
CN104468728B (en) A kind of method for service selection based on comentropy and variance
CN106919373A (en) A kind of program code method for evaluating quality
CN107122887A (en) Multidimensional industrial enterprise Credit Evaluation System method
CN112149949B (en) Satellite communication system efficiency evaluation method based on hesitation blurring and analytic hierarchy process
CN107656978A (en) A kind of diversity data restorative procedure based on functional dependence
CN110826890A (en) Benefit distribution method and device of virtual power plant considering risks
CN109242316A (en) Hydraulic system energy efficiency evaluating method based on Fuzzy AHP
CN112215460A (en) Method and device for evaluating power grid investment data
CN103996103B (en) Balance electronic system reliability allocation methods and device that supply and demand both sides require
CN111898842A (en) Black start scheme evaluation method based on fuzzy entropy weight
CN102375937A (en) Method for quantitatively evaluating reliability of simulation model
CN103366090B (en) Index weight assessment method based on section rating of experts
CN108446563A (en) A kind of ICS Method of Information Security Evaluation based on Fuzzy AHP
CN106708624A (en) Adaptive adjustment method for calculation resources in multiple working areas
Vermillion et al. Irrigation management transfer in Colombia: A pilot experiment and its consequences
CN103164531B (en) Based on the two-stage instance layer data integrating method of Fuzzy priority level
CN104933258A (en) Design method for improving reliability of horizontal machining centre
Chiu et al. Government debt and fiscal execution efficiency
CN112348309A (en) Method and device for determining quality grade of indexes of island micro-grid
CN105635255A (en) Skyline-based Web service selection method under data origin credibility constraint

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant