CN103994774A - 一种棱镜式激光陀螺双纵模自偏频检测系统及检测方法 - Google Patents

一种棱镜式激光陀螺双纵模自偏频检测系统及检测方法 Download PDF

Info

Publication number
CN103994774A
CN103994774A CN201310689306.8A CN201310689306A CN103994774A CN 103994774 A CN103994774 A CN 103994774A CN 201310689306 A CN201310689306 A CN 201310689306A CN 103994774 A CN103994774 A CN 103994774A
Authority
CN
China
Prior art keywords
prism
type laser
resonator cavity
lens type
gyro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310689306.8A
Other languages
English (en)
Inventor
马家君
刘健宁
张娟
刘卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XI'AN BEIFANG JIERUI OPTOELECTRONICS TECHNOLOGY Co Ltd
Original Assignee
XI'AN BEIFANG JIERUI OPTOELECTRONICS TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XI'AN BEIFANG JIERUI OPTOELECTRONICS TECHNOLOGY Co Ltd filed Critical XI'AN BEIFANG JIERUI OPTOELECTRONICS TECHNOLOGY Co Ltd
Priority to CN201310689306.8A priority Critical patent/CN103994774A/zh
Publication of CN103994774A publication Critical patent/CN103994774A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/66Ring laser gyrometers
    • G01C19/68Lock-in prevention

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Gyroscopes (AREA)

Abstract

本发明公开了一种棱镜式激光陀螺双纵模自偏频检测系统及检测方法,包括分别和高频振荡器、引燃变压器相连棱镜式激光器棱镜式谐振腔,该谐振腔出射光束经分光镜投射到光电探测器a和焦球面扫频干涉仪中;光电探测器a分别连接至示波器a和谐振腔模态控制伺服系统,谐振腔模态控制伺服系统与棱镜式激光器相连构成回路;焦球面扫频干涉仪分别与锯齿波控制盒和光电探测器b相连,光电探测器b连接至示波器b。在谐振腔模态控制伺服系统上改变加热丝电压从而改变谐振器光学腔长;对光电流信号放大,整形成方波,在FPGA中进行鉴相解调,输出棱镜式激光陀螺在自偏频下的脉冲数和陀螺光强信息至上位机进行自偏频点计算,从而提高了棱镜式激光陀螺的性能。

Description

一种棱镜式激光陀螺双纵模自偏频检测系统及检测方法
技术领域
本发明涉及激光陀螺偏频技术领域,特别涉及一种棱镜激光陀螺双纵模自偏频检测系统。 
背景技术
目前,棱镜式激光陀螺陀螺均采用机械抖动方式进行偏频,以消除静态锁区对棱镜式激光陀螺性能的影响,该方法需要机械抖动装置,增加了陀螺的重量及体积,同时为消除机械抖动偏频产生的动态锁区,额外引入了随机噪声,限制了棱镜式激光陀螺精度的进一步提高,因此亟需提出一种新的棱镜式激光陀螺双纵模稳频方法,弥补上述不足。在棱镜式激光陀螺中,理论计算和实验测试表明,在双纵模工作条件下,通过调节工作点,谐振器中的双纵模会出现自偏频现象,在自偏频条件下,棱镜式激光陀螺锁区消失,从而可以去除机械抖动装置,设计出完全固态的棱镜式激光陀螺,自偏频检测系统能测试自偏频工作点。 
发明内容
本发明的目的在于提供一种棱镜式激光陀螺双纵模自偏频检测系统及检测方法,为实现双全固态双纵模激光陀螺创造了必要条件。本套系统能够通过数字控制对棱镜式激光陀螺双纵模自偏频工作点进行高精度检测,以作为棱镜式双纵模自偏频激光陀螺稳频的依据。利用数字控制技术使棱镜式激光陀螺工作在双纵模条件下,通过改变工作点,使棱镜式激光陀螺中产生双纵模自偏频效应,并根据谐振器纵模间隔进行公式换算,以确定棱镜式激光陀螺双纵模自偏频工作点。 
为达到上述目的,本发明采用了以下技术方案: 
一种棱镜式激光陀螺双纵模自偏频检测系统,包括一棱镜式激光器,所述棱镜式激光器棱镜式谐振腔设在数字调试基座上,并分别和高频振荡器、引燃 变压器相连,棱镜式激光器棱镜式谐振腔出射的激光束通过四个全反射镜反射后经分光镜投射到光电探测器a和焦球面扫频干涉仪中;所述光电探测器a分别连接至示波器a和谐振腔模态控制伺服系统,谐振腔模态控制伺服系统与棱镜式激光器相连构成回路;所述焦球面扫频干涉仪分别与锯齿波控制盒和光电探测器b相连,光电探测器b连接至示波器b。 
进一步地,所述光电探测器a通过稳光强伺服系统与高频振荡器相连。 
进一步地,所述棱镜式激光器棱镜式谐振腔出射的激光束通过四个全反射镜反射后经分光镜投射到光电探测器a,光电探测器a置于开伺服基座上,开伺服基座分别连接至示波器和计算机,开伺服基座并与棱镜式激光器相连。 
进一步地,所述棱镜式激光器上设有谐振腔模态伺服控制器,所述谐振腔模态伺服控制器包括一微晶玻璃保护罩,微晶玻璃保护罩上设有合金加热丝。 
进一步地,所述谐振腔模态伺服控制器上微晶玻璃保护罩下设有橡胶密封圈。 
相应地,本发明进而给出了一种棱镜式激光陀螺双纵模自偏频检测方法,包括下述步骤: 
由棱镜式激光器的棱镜式谐振腔出射的激光束光投射到光电探测器a上,在谐振腔模态控制伺服系统谐振腔模态伺服控制器上改变合金加热丝电压从而改变谐振器光学腔长,由此产生棱镜式激光陀螺工作模的弱模和强模,弱模对强模产生相当于机械抖动的调制作用,从而消除棱镜式激光陀螺的静态锁区;由光电探测器a采集的光强信号通过谐振腔模态伺服控制器中的前置放大器对光电流小信号进行放大,通过整形电路将放大后的正弦信号整形成方波,并送入FPGA可编程门阵列,在FPGA可编程门阵列中进行鉴相解调,输出棱镜式激光陀螺在自偏频下的脉冲数,将脉冲数,陀螺光强信息通过串口送到计算机,进行自偏频点计算。 
进一步地,利用谐振腔模态控制伺服机构中的合金加热丝、微晶玻璃保护罩,橡胶密封圈作为谐振腔模态控制伺服机构的主要部件,通过升高、降低合 金加热丝上的电压,控制环形棱镜式激光器光路中一段空气的密度状况,从而控制棱镜式激光器谐振腔光学腔长,实现激光器工作模式状态的实时控制。 
进一步地,所述加热丝电压在±12V之间变化。 
进一步地,所述环形激光器光路中一段空气密度1.5±0.5kg/m3。 
进一步地,所述棱镜式谐振腔采用几何腔长为0.45m。 
本发明的有益效果在于: 
1)双纵模自偏频激光陀螺将基于0.45m腔长棱镜式谐振器来实现。为了要长时间保证激光器双纵模工作状态,将通过合理控制激励源,调节增益气体比例,充气压强,进而调节增益曲线线型,包括调整曲线宽窄、损耗线位置等,达到控制增益曲线线型的目的,为稳频伺服机构的工作提供良好的线型依据。 
2)采用数字稳频控制保证激光器双纵模工作状态,通过调节稳频工作点及激励源电压,使双纵模在棱镜式谐振器中产生自偏频效应。数字稳频控制通过FPGA实现,具体方式为,用高精度AD对稳频控制反馈信号进行采集,在FPGA中对采集的信号进行相敏解调,再通过数字PID控制器对加热丝电压进行控制,保证激光器双纵模工作状态。 
本发明所述双纵模自偏频技术利用谐振器中工作两个纵模的非线性作用,由强模作为棱镜式激光陀螺的工作模,弱模对强模产生类似机械抖动的调制作用,从而消除棱镜式激光陀螺的静态锁区。 
本发明具有以下优点:本发明技术采用光学方式消除棱镜式激光陀螺的静态锁区,去除棱镜式激光陀螺抖动部件,减小棱镜式激光陀螺重量和体积,提高棱镜式激光陀螺的性能。 
附图说明
图1为本发明检测系统结构示意图。 
图2为本发明谐振腔模间增损比检测系统的结构示意图。 
图3是本发明谐振腔模态控制伺服器结构示意图。 
图4(a)和图4(b)是本发明在增益曲线的对称位置出现了的自偏频现象。 
具体实施方式
下面结合附图对本发明做进一步详细描述。 
请参阅图1所示,棱镜式激光陀螺双纵模自偏频检测系统,包括一棱镜式激光器1,棱镜式激光器1棱镜式谐振腔设在数字调试基座上,并分别和高频振荡器6、引燃变压器7相连,棱镜式激光器1棱镜式谐振腔出射的激光束通过四个全反射镜反射后经分光镜2投射到光电探测器a3和焦球面扫频干涉仪9中;光电探测器a3分别连接至示波器a4和谐振腔模态控制伺服系统5,谐振腔模态控制伺服系统5与棱镜式激光器1相连构成回路;焦球面扫频干涉仪9分别与锯齿波控制盒10和光电探测器b11相连,光电探测器b11连接至示波器b12。 
其中,光电探测器a3通过稳光强伺服系统8与高频振荡器6相连。 
如图2所示,棱镜式激光器1棱镜式谐振腔出射的激光束通过四个全反射镜反射后经分光镜2投射到光电探测器a3,光电探测器a3置于开伺服基座3-1上,开伺服基座3-2分别连接至示波器4和计算机3-2,开伺服基座3-1并与棱镜式激光器1相连。棱镜式激光器1上设有谐振腔模态伺服控制器1-1。 
如图3所示,谐振腔模态伺服控制器1-1包括一微晶玻璃保护罩1-103,微晶玻璃保护罩1-103上设有合金加热丝1-101。谐振腔模态伺服控制器1-1上微晶玻璃保护罩1-103下设有橡胶密封圈1-102。 
本发明的棱镜式激光陀螺双纵模自偏频检测方法,包括下述步骤: 
由棱镜式激光器1的棱镜式谐振腔出射的激光束光投射到光电探测器a3上,在谐振腔模态控制伺服系统5谐振腔模态伺服控制器1-1上改变合金加热丝1-101电压从而改变谐振器光学腔长,由此产生棱镜式激光陀螺工作模的弱模和强模,弱模对强模产生类似机械抖动的调制作用,从而消除棱镜式激光陀螺的静态锁区;由光电探测器a3采集的光强信号通过谐振腔模态伺服控制器1-1中的前置放大器对光电流小信号进行放大,通过整形电路将放大后的正弦信号整形成方波,并送入FPGA(可编程门阵列),在FPGA(可编程门阵列)中 进行鉴相解调,输出棱镜式激光陀螺在自偏频下的脉冲数,将脉冲数,陀螺光强信息通过串口送到计算机,进行自偏频点计算。 
利用谐振腔模态控制伺服机构中的合金加热丝、微晶玻璃保护罩,橡胶密封圈作为谐振腔模态控制伺服机构的主要部件,通过升高、降低合金加热丝上的电压在±12V之间变化,控制环形棱镜式激光器光路中一段空气的密度为1.5±0.5kg/m3,从而控制棱镜式激光器谐振腔光学腔长0.45m,实现激光器工作模式状态的实时控制。 
本实施例如下:全反射棱镜式谐振腔整体安装在专用数字调试基座上,并和高频振荡器、引燃变压器相连。谐振腔的一段通道与谐振腔模态控制器相连。待引燃谐振腔后,发出光经反光镜分光分为两路:其中一路经光电探测器接收,再信号分作两路:其中一路反馈控制谐振腔模态控制伺服系统;另一路在示波器上显示实时光强。由分光镜分光的另一路光束入射至共焦球面扫频干涉仪中,焦球面扫频干涉仪受锯齿波发生器信号的实时控制。由焦球面扫频干涉仪投射出光透入光电探测器中,并在示波器上实时显示扫描获得的模态状态。 
图4是本发明在增益曲线的对称位置出现了的自偏频现象。图4(a)为在抖动偏频条件下光强随加热器电压的变化曲线,图4(b)为在不加机械抖动的条件下光强随加热丝电压的变化由此产生的弱模对强模类似机械抖动曲线。 
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单的推演或替换,都应当视为属于本发明由所提交的权利要求书确定专利保护范围。 

Claims (10)

1.一种棱镜式激光陀螺双纵模自偏频检测系统,包括一棱镜式激光器(1),其特征在于,所述棱镜式激光器(1)棱镜式谐振腔设在数字调试基座上,并分别和高频振荡器(6)、引燃变压器(7)相连,棱镜式激光器(1)棱镜式谐振腔出射的激光束通过四个全反射镜反射后经分光镜(2)投射到光电探测器a(3)和焦球面扫频干涉仪(9)中;所述光电探测器a(3)分别连接至示波器a(4)和谐振腔模态控制伺服系统(5),谐振腔模态控制伺服系统(5)与棱镜式激光器(1)相连构成回路;所述焦球面扫频干涉仪(9)分别与锯齿波控制盒(10)和光电探测器b(11)相连,光电探测器b(11)连接至示波器b(12)。
2.如权利要求1所述的棱镜式激光陀螺双纵模自偏频检测系统,其特征在于,所述光电探测器a(3)通过稳光强伺服系统(8)与高频振荡器(6)相连。
3.如权利要求1所述的棱镜式激光陀螺双纵模自偏频检测系统,其特征在于,所述棱镜式激光器(1)棱镜式谐振腔出射的激光束通过四个全反射镜反射后经分光镜(2)投射到光电探测器a(3),光电探测器a(3)置于开伺服基座(3-1)上,开伺服基座(3-1)分别连接至示波器(4)和计算机(3-2),开伺服基座(3-1)并与棱镜式激光器(1)相连。
4.如权利要求3所述棱镜式激光陀螺双纵模自偏频检测系统,其特征在于,所述棱镜式激光器(1)上设有谐振腔模态伺服控制器(1-1),所述谐振腔模态伺服控制器(1-1)包括一微晶玻璃保护罩(1-103),微晶玻璃保护罩(1-103)上设有合金加热丝(1-101)。
5.如权利要求4所述棱镜式激光陀螺双纵模自偏频检测系统,其特征在于,所述谐振腔模态伺服控制器(1-1)上微晶玻璃保护罩(1-103)下设有橡胶密封圈(1-102)。
6.一种棱镜式激光陀螺双纵模自偏频检测方法,其特征在于,包括下述步骤:
由棱镜式激光器(1)的棱镜式谐振腔出射的激光束光投射到光电探测器a(3)上,在谐振腔模态控制伺服系统(5)谐振腔模态伺服控制器(1-1)上改变合金加热丝(1-101)电压从而改变谐振器光学腔长,由此产生棱镜式激光陀螺工作模的弱模和强模,弱模对强模产生相当于机械抖动的调制作用,从而消除棱镜式激光陀螺的静态锁区;由光电探测器a(3)采集的光强信号通过谐振腔模态伺服控制器(1-1)中的前置放大器对光电流小信号进行放大,通过整形电路将放大后的正弦信号整形成方波,并送入FPGA可编程门阵列,在FPGA可编程门阵列中进行鉴相解调,输出棱镜式激光陀螺在自偏频下的脉冲数,将脉冲数,陀螺光强信息通过串口送到计算机,进行自偏频点计算。
7.如权利要求6所述棱镜式激光陀螺双纵模自偏频检测方法,其特征在于:利用谐振腔模态控制伺服机构中的合金加热丝、微晶玻璃保护罩,橡胶密封圈作为谐振腔模态控制伺服机构的主要部件,通过升高、降低合金加热丝上的电压,控制环形棱镜式激光器光路中一段空气的密度状况,从而控制棱镜式激光器谐振腔光学腔长,实现激光器工作模式状态的实时控制。
8.如权利要求7所述棱镜式激光陀螺双纵模自偏频检测方法,其特征在于:所述加热丝电压在±12V之间。
9.如权利要求7所述棱镜式激光陀螺双纵模自偏频检测方法,其特征在于:所述环形激光器光路中一段空气密度1.5±0.5kg/m3
10.如权利要求7所述棱镜式激光陀螺双纵模自偏频检测方法,其特征在于:所述棱镜式谐振腔采用几何腔长为0.45m。
CN201310689306.8A 2013-12-16 2013-12-16 一种棱镜式激光陀螺双纵模自偏频检测系统及检测方法 Pending CN103994774A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310689306.8A CN103994774A (zh) 2013-12-16 2013-12-16 一种棱镜式激光陀螺双纵模自偏频检测系统及检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310689306.8A CN103994774A (zh) 2013-12-16 2013-12-16 一种棱镜式激光陀螺双纵模自偏频检测系统及检测方法

Publications (1)

Publication Number Publication Date
CN103994774A true CN103994774A (zh) 2014-08-20

Family

ID=51309006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310689306.8A Pending CN103994774A (zh) 2013-12-16 2013-12-16 一种棱镜式激光陀螺双纵模自偏频检测系统及检测方法

Country Status (1)

Country Link
CN (1) CN103994774A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105652335A (zh) * 2014-11-17 2016-06-08 中国航空工业第六八研究所 一种基于微晶玻璃腔体的重力测量装置及测量方法
CN108072367A (zh) * 2017-12-27 2018-05-25 华中光电技术研究所(中国船舶重工集团公司第七七研究所) 一种准确锁定激光陀螺工作模式的方法
CN108288815A (zh) * 2018-01-05 2018-07-17 西安理工大学 一种环形激光谐振腔光阑装调系统及其装调方法
CN108303119A (zh) * 2018-01-05 2018-07-20 西安理工大学 双纵模激光陀螺频率可调谐闭锁阈值检测系统及检测方法
CN109084744A (zh) * 2018-09-07 2018-12-25 中国人民解放军国防科技大学 一种激光陀螺动态锁区的处理方法
CN109489651A (zh) * 2018-10-31 2019-03-19 中国人民解放军国防科技大学 四频差动激光陀螺法拉第磁光玻璃安装方法
CN110174058A (zh) * 2019-06-06 2019-08-27 浙江理工大学 动态偏频锁定式正弦频率扫描干涉绝对测距装置和方法
CN114396928A (zh) * 2021-11-26 2022-04-26 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 一种激光陀螺稳频方法及系统
CN114485603A (zh) * 2022-01-07 2022-05-13 西安理工大学 一种双纵模自偏频激光陀螺及其装配方法
CN115290124A (zh) * 2022-10-10 2022-11-04 天津集智航宇科技有限公司 一种激光陀螺无转动出光真空老练装置及方法
CN115326110A (zh) * 2022-10-13 2022-11-11 四川图林科技有限责任公司 一种检测激光陀螺腔体谐振光路装置及检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937578A (en) * 1974-02-11 1976-02-10 Raytheon Company Laser gyroscope
US4807999A (en) * 1986-03-13 1989-02-28 Rockwell International Corporation Two source passive ring laser gyroscope
CN101975574A (zh) * 2010-10-01 2011-02-16 中国人民解放军国防科学技术大学 四频激光陀螺的小抖动稳频方法
CN102506846A (zh) * 2011-09-29 2012-06-20 中国航空工业第六一八研究所 塞曼激光陀螺色散控制方法
CN202471079U (zh) * 2011-12-21 2012-10-03 西安北方捷瑞光电科技有限公司 棱镜式数字激光陀螺供电电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937578A (en) * 1974-02-11 1976-02-10 Raytheon Company Laser gyroscope
US4807999A (en) * 1986-03-13 1989-02-28 Rockwell International Corporation Two source passive ring laser gyroscope
CN101975574A (zh) * 2010-10-01 2011-02-16 中国人民解放军国防科学技术大学 四频激光陀螺的小抖动稳频方法
CN102506846A (zh) * 2011-09-29 2012-06-20 中国航空工业第六一八研究所 塞曼激光陀螺色散控制方法
CN202471079U (zh) * 2011-12-21 2012-10-03 西安北方捷瑞光电科技有限公司 棱镜式数字激光陀螺供电电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘健宁: "全反射棱镜式激光陀螺稳频技术研究", 《HTTP://D.WANFANGDATA.COM.CN/THESIS/Y1669232》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105652335B (zh) * 2014-11-17 2018-12-14 中国航空工业第六一八研究所 一种基于微晶玻璃腔体的重力测量装置及测量方法
CN105652335A (zh) * 2014-11-17 2016-06-08 中国航空工业第六八研究所 一种基于微晶玻璃腔体的重力测量装置及测量方法
CN108072367A (zh) * 2017-12-27 2018-05-25 华中光电技术研究所(中国船舶重工集团公司第七七研究所) 一种准确锁定激光陀螺工作模式的方法
CN108072367B (zh) * 2017-12-27 2021-02-23 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 一种准确锁定激光陀螺工作模式的方法
CN108288815B (zh) * 2018-01-05 2020-03-27 西安理工大学 一种环形激光谐振腔光阑装调系统及其装调方法
CN108288815A (zh) * 2018-01-05 2018-07-17 西安理工大学 一种环形激光谐振腔光阑装调系统及其装调方法
CN108303119B (zh) * 2018-01-05 2021-09-10 西安理工大学 双纵模激光陀螺频率可调谐闭锁阈值检测系统及检测方法
CN108303119A (zh) * 2018-01-05 2018-07-20 西安理工大学 双纵模激光陀螺频率可调谐闭锁阈值检测系统及检测方法
CN109084744B (zh) * 2018-09-07 2020-08-14 中国人民解放军国防科技大学 一种激光陀螺动态锁区的处理方法
CN109084744A (zh) * 2018-09-07 2018-12-25 中国人民解放军国防科技大学 一种激光陀螺动态锁区的处理方法
CN109489651A (zh) * 2018-10-31 2019-03-19 中国人民解放军国防科技大学 四频差动激光陀螺法拉第磁光玻璃安装方法
CN110174058A (zh) * 2019-06-06 2019-08-27 浙江理工大学 动态偏频锁定式正弦频率扫描干涉绝对测距装置和方法
CN110174058B (zh) * 2019-06-06 2020-06-23 浙江理工大学 动态偏频锁定式正弦频率扫描干涉绝对测距装置和方法
CN114396928A (zh) * 2021-11-26 2022-04-26 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 一种激光陀螺稳频方法及系统
CN114485603A (zh) * 2022-01-07 2022-05-13 西安理工大学 一种双纵模自偏频激光陀螺及其装配方法
CN115290124A (zh) * 2022-10-10 2022-11-04 天津集智航宇科技有限公司 一种激光陀螺无转动出光真空老练装置及方法
CN115290124B (zh) * 2022-10-10 2022-12-13 天津集智航宇科技有限公司 一种激光陀螺无转动出光真空老练装置及方法
CN115326110A (zh) * 2022-10-13 2022-11-11 四川图林科技有限责任公司 一种检测激光陀螺腔体谐振光路装置及检测方法
CN115326110B (zh) * 2022-10-13 2022-12-16 四川图林科技有限责任公司 一种检测激光陀螺腔体谐振光路装置及检测方法

Similar Documents

Publication Publication Date Title
CN103994774A (zh) 一种棱镜式激光陀螺双纵模自偏频检测系统及检测方法
CN103499820B (zh) 一种全光纤直接探测测风激光雷达的闭环控制方法
CN103913299B (zh) 基于光腔衰荡法的光学谐振腔模式及损耗测量装置和方法
CN103792541A (zh) 一种基于可调谐光源的差分吸收激光雷达装置
CN108288815B (zh) 一种环形激光谐振腔光阑装调系统及其装调方法
CN103852435B (zh) 一种基于双拉曼管光源的差分吸收激光雷达臭氧时空分布昼夜自动探测装置
CN108205124A (zh) 一种基于微机电振镜的光学装置和激光雷达系统
CN106848823A (zh) 一种基于模式选择耦合器的8字腔锁模柱矢量光纤激光器
CN103869462B (zh) 一种利用光腔衰荡技术进行拼接镜共相位控制的装置
CN105182674B (zh) 激光投影机专用激光光源
CN105469837A (zh) 激光聚变背向散射光束模拟装置
CN109256658A (zh) 一种可调谐中红外双频激光系统
CN104898109A (zh) 一种结构紧凑型收发一体式云信息测量系统
CN102177412A (zh) 具有固态放大介质和光学环形腔的激光陀螺仪
CN108462023A (zh) 具备高模式不稳定阈值的大功率光纤激光放大器系统
CN104811244A (zh) 基于激光章动的空间光到单模光纤的耦合系统
CN105958316A (zh) 基于铯原子饱和吸收谱的半导体自动稳频激光器
CN203250024U (zh) 手持式双激光测距仪
CN103675796B (zh) 一种扫描腔长时进行光学频率补偿的Fabry-Perot标准具标定系统和方法
KR102550052B1 (ko) 2축 조향거울을 이용한 레이저 빔 조향방식의 풍속 측정용 라이다
CN208401248U (zh) 具备高模式不稳定阈值的大功率光纤激光放大器系统
CN104238124A (zh) 双光栅单色仪
CN103674484A (zh) 一种棱镜式谐振腔模间增损比检测系统及检测方法
CN111045216A (zh) 具有可见光辅助光路的激光发射系统及其光源调整方法
CN105259667A (zh) 柱面展宽器光栅对的调节方法

Legal Events

Date Code Title Description
DD01 Delivery of document by public notice

Addressee: Xi'an Beifang Jierui Optoelectronics Technology Co., Ltd.

Document name: Notification to Make Rectification

Addressee: Xi'an Beifang Jierui Optoelectronics Technology Co., Ltd.

Document name: Notice of non patent agency

DD01 Delivery of document by public notice

Addressee: Xi'an Beifang Jierui Optoelectronics Technology Co., Ltd.

Document name: Notification of Passing Examination on Formalities

C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140820