CN103985939B - 一种基于石墨烯的新型隔离器 - Google Patents

一种基于石墨烯的新型隔离器 Download PDF

Info

Publication number
CN103985939B
CN103985939B CN201310063100.4A CN201310063100A CN103985939B CN 103985939 B CN103985939 B CN 103985939B CN 201310063100 A CN201310063100 A CN 201310063100A CN 103985939 B CN103985939 B CN 103985939B
Authority
CN
China
Prior art keywords
isolator
graphene
wire
grid polarizer
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310063100.4A
Other languages
English (en)
Other versions
CN103985939A (zh
Inventor
肖丙刚
谢治毅
孙润亮
章东平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201310063100.4A priority Critical patent/CN103985939B/zh
Publication of CN103985939A publication Critical patent/CN103985939A/zh
Application granted granted Critical
Publication of CN103985939B publication Critical patent/CN103985939B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种基于石墨烯的新型隔离器,该隔离器由线栅偏振器(21)、(22)和三组自由站立的单层石墨烯(3)组成;其中线栅偏振器(2)由等间距的金属柱(4)平行排列而成,单层石墨烯(3)平行于线栅偏振器(21)、(22)放置,偏置磁场垂直通过单层石墨烯(3),由信号输入/输出端口(1)输入的TE波能通过该隔离器,由信号输入/输出端口(5)输入的TE波不能通过该隔离器;在工作频段内,该隔离器的具有良好的隔离特性,并且有功率容量大、结构紧凑和散热快等优点。

Description

一种基于石墨烯的新型隔离器
技术领域
本发明涉及一种应用于3G通信领域的基于石墨烯的新型隔离器,特别涉及石墨烯材料的应用。
背景技术
隔离器的主要作用是将输入、输出和工作电源三者相互隔离,它广泛地应用在移动通信和测量等系统中。在基站和移动台系统中,隔离器用来实现收、发信机天线的共用(双工器或多工器);在发射和接收系统中,隔离器用来隔离开关放大器、功率放大器的输入和输出信号;在测量系统中隔离器用来去除仪表和设备之间信号的互相干扰。常用的隔离器有法拉第旋转隔离器、场移式隔离器、谐振式隔离器、边导膜隔离器这几种,其中法拉第旋转式隔离器是最为常用于波导系统中,是利用电磁波在纵向磁化的铁氧体棒中传播时极化面产生旋转制成的隔离器,但是该隔离器的工作频带窄,结构较复杂,且功率容量低。
石墨烯由一层密集的、包裹在蜂巢晶体点阵上的碳原子组成,具有二维蜂窝状晶格结构,是目前发现的唯一存在的二维自由态原子晶体,它不仅具有独特的载流子特性和优良的电学性能,还是一种良好导热材料,也是目前所知最硬的二维材料。自2004年Geim和Novoselov等以石墨为原料成功剥离出石墨烯以来,石墨烯便以其优良的特性,成为了学术界研究的热点之一。近年来,D.L.Sounas和C.Caloz理论上证明了磁场偏置下石墨烯的法拉第法拉第旋转效应和非互易性,即石墨烯在磁场偏置的情况下,其电导率可认为是各向异性的,在微波信号入射时,透射波相对于入射波偏振方向将会发生一定角度的旋转。I.Crassee和J.Levallois对此进行了实验证明。这些研究向我们展示了石墨烯的优良特性以及石墨烯在微波器件领域大范围替代传统铁磁性材料和金属材料的潜力。
描述的应用于3G通信领域的基于石墨烯的新型隔离器主要由两个线栅偏振器和三组自由站立的单层石墨烯组成,在外加磁场作用下,由于石墨烯的法拉第旋转效应,具有单向传输的特性。在1.8-2.2GHz(3G通信)的工作频段内,该隔离器的隔离度均在-70dB以下,在中心频率2GHz处,隔离度接近-72dB,具有良好的隔离特性,由于使用了石墨烯和金属材料,该隔离器具有功率容量大、结构紧凑和散热快等优点。
发明内容
本发明目的是提供一种应用于3G通信领域的基于石墨烯的新型隔离器,所述的隔离器对TE偏振的平面波具有单向传输的特性,具有隔离特性良好、功率容量大、结构紧凑和散热快等优点。
实现本发明的技术解决方案是:
一种应用于3G通信领域的基于石墨烯的新型隔离器,该隔离器由两个线栅偏振器和三组自由站立的单层石墨烯组成,具有单向传输特性,其中线栅偏振器由等间距的金属柱平行排列而成,两个线栅偏振器呈45°夹角放置,石墨烯平行于线栅偏振器放置,偏置磁场垂直通过三组自由站立的单层石墨烯。
所述的单层石墨烯能使TE偏振的平面波近似无损耗地通过,所述的线栅偏振器能使电场方向垂直其金属柱的TE偏振的平面波近似无损耗地通过,使电场方向平行其金属柱的TE偏振的平面波被全反射。
利用三组单层石墨烯在磁场偏置下的法拉第旋转效应和非互异性,使经由不同端口入射的TE偏振的平面波的电场方向均发生总计45°的旋转,进而使线栅偏振器对不同端口入射的TE偏振的平面波形成不同的透射和反射效应,从而实现单向隔离。
本发明与现有技术相比,具体具有如下优点:
1)结构紧凑:整个隔离器由层状介质组成,因此隔离器尺寸非常小;
2)功率容量大:隔离器由金属材料和石墨烯组成,这两种材料均具有耐高温的特性;
3)散热快:隔离器由金属材料和石墨烯组成,这两种材料均具有散热快的特性。
附图说明
图1为本发明基于石墨烯的新型隔离器的原理图,
图2磁场偏置下,TE偏振的平面波垂直入射石墨烯层,
图3磁场偏置下,单层石墨烯的法拉第旋转角度随频率的变化曲线
图4实例基于石墨烯的新型隔离器的隔离度随频率的变化曲线
以上图片中含有:
1:信号输入/输出端口;21:线栅偏振器;22:线栅偏振器;3:单层石墨烯;4:金属柱;5:信号输入/输出端口。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐明本发明。
一种应用于3G通信领域的基于石墨烯的新型隔离器,该隔离器由两个线栅偏振器21、22和三组自由站立的单层石墨烯3组成,其中线栅偏振器2由等间距的金属柱4平行排列而成,两个线栅偏振器呈45°夹角放置,单层石墨烯3平行于线栅偏振器2放置,偏置磁场垂直通过单层石墨烯3。
本发明采用如下方法实现信号隔离:
当金属柱4的半径和金属柱4之间的间距均远小于入射波长时,线栅偏振器2能使电场方向垂直其金属柱4的TE偏振的平面波近似无损耗地通过,使电场方向平行其金属柱4的TE偏振的平面波被全反射。
在磁场偏置下,石墨烯的法拉第旋转效应具体表现为:TE偏振的平面波沿-z方向垂直透射单层石墨烯3(如图2所示)后,其电场方向会发生偏转。当μc≥hω且μc≥kBT时,偏转角θ为:
其中μc为化学势,为约化的普朗克常量,ωc为回旋加速频率,kB为波茨曼常数,T为温度,ωc为回旋加速频率τ为散射时间σ0为无偏置磁场下石墨烯的电导率ω为入射波频率,ns为载流子浓度,B0为磁场偏置,VF为费米速率,e为电子电量,μ为迁移率。
在磁场偏置下,石墨烯的非互易性具体表现为:由式(1)得,当TE偏振的平面波沿+z方向垂直透射单层石墨烯3后,其电场的偏转角度仍为θ。
图3为所述的,磁场偏置下的单层石墨烯3的法拉第旋转效应随频率的变化曲线,这里取B0=0.39T,μ=10000cm2/Vs,ns=1013cm-2,T=300K,μc=0.15eV。由图可见在1-3GHz频段内,偏转角θ都近似为15°。所以垂直入射三组自由站立的单层石墨烯3石墨烯的TE偏振的平面波的电场将发生45°的偏转。
由此,当TE偏振的平面波由信号输入/输出端口1入射时,其电场方向垂直线栅偏振器21,如图1所示,平面波可以顺利通过线栅偏振器21;经过三组自由站立的单层石墨烯3后,该平面波的电场偏振方向将顺时针旋转45°,入射到线栅偏振器22时,由于该平面波的电场方向垂直线栅偏振器22,该平面波顺利通过线栅偏振器22。
当TE偏振的平面波由信号输入/输出端口2入射时,其电场方向垂直线栅偏振器22,如图1所示,平面波可以顺利通过线栅偏振器22;经过三组自由站立的单层石墨烯3后,该平面波的电场偏振方向将顺时针旋转45°,入射到线栅偏振器21时,由于平面波的电场方向平行于线栅偏振器21,该平面波被全部反射,从而起到了单向隔离的作用。
基于石墨烯的隔离器尺寸设计如下:金属线栅和三组单层石墨烯之间的间距均取四分之一中心波长,即37.5mm,线栅偏振器的金属柱直径为6mm,金属柱间距为8.75mm;偏置磁场为B0=3.9T;石墨烯的各项参数为μ=10000cm2/Vs,ns=1013cm-2,T=300K,μc=0.15eV。实例基于石墨烯的隔离器在工作频率1.8-2.2GHz的隔离特性,如图10所示。从图4中可以看出,在1.8-2.2GHz频段内,隔离度均小于-70dB,在中心频率2GHz处,隔离度接近-72dB,此隔离器具有良好的隔离特性。

Claims (1)

1.一种基于石墨烯的新型隔离器,其特征在于,该隔离器由线栅偏振器(2)和三组自由站立的单层石墨烯(3)组成;其中线栅偏振器(2)由等间距的金属柱(4)平行排列而成,单层石墨烯(3)平行于线栅偏振器(2)放置,偏置磁场垂直通过单层石墨烯(3);线栅偏振器(2)和三组单层石墨烯(3)之间的间距均取四分之一中心波长,即37.5mm,线栅偏振器(2)的金属柱(4)直径为6mm,金属柱(4)间距为8.75mm;偏置磁场为B0=3.9T;单层石墨烯(3)的各项参数为μ=10000cm2/Vs,ns=1013cm-2,T=300K,μc=0.15eV。
CN201310063100.4A 2013-02-07 2013-02-07 一种基于石墨烯的新型隔离器 Expired - Fee Related CN103985939B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310063100.4A CN103985939B (zh) 2013-02-07 2013-02-07 一种基于石墨烯的新型隔离器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310063100.4A CN103985939B (zh) 2013-02-07 2013-02-07 一种基于石墨烯的新型隔离器

Publications (2)

Publication Number Publication Date
CN103985939A CN103985939A (zh) 2014-08-13
CN103985939B true CN103985939B (zh) 2017-03-22

Family

ID=51277829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310063100.4A Expired - Fee Related CN103985939B (zh) 2013-02-07 2013-02-07 一种基于石墨烯的新型隔离器

Country Status (1)

Country Link
CN (1) CN103985939B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1020250A (ja) * 1996-07-02 1998-01-23 Shin Etsu Chem Co Ltd 多段式光アイソレータ
CN102439802A (zh) * 2009-04-13 2012-05-02 新加坡国立大学 基于石墨烯的可饱和吸收体器件和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101028803B1 (ko) * 2009-12-30 2011-04-12 한국과학기술연구원 그래핀을 포함하는 모드 로커 및 이를 포함하는 레이저 펄스 장치
US20120103660A1 (en) * 2010-11-02 2012-05-03 Cambrios Technologies Corporation Grid and nanostructure transparent conductor for low sheet resistance applications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1020250A (ja) * 1996-07-02 1998-01-23 Shin Etsu Chem Co Ltd 多段式光アイソレータ
CN102439802A (zh) * 2009-04-13 2012-05-02 新加坡国立大学 基于石墨烯的可饱和吸收体器件和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Non-Reciprocal Faraday Rotation in Graphene:Just a Unique Phenomenon or Even More?;Dimitrios L. Sounas and Christophe Caloz;《Radio and Wireless Symposium(RWS),2013 IEEE》;20130123;第352-354页,附图6 *

Also Published As

Publication number Publication date
CN103985939A (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
Shi et al. Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial
Shabbir et al. Long range intrinsic ferromagnetism in two dimensional materials and dissipationless future technologies
Shi et al. Dual-band polarization angle independent 90 polarization rotator using twisted electric-field-coupled resonators
Wang et al. Strain-induced isostructural and magnetic phase transitions in monolayer MoN2
CN105161857B (zh) 一种左旋圆偏振转换的超材料薄膜
Chen et al. Nanostructured graphene metasurface for tunable terahertz cloaking
Wu et al. Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz
Sui et al. Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces
Bhattacharyya et al. Graphene oxide-ferrite hybrid framework as enhanced broadband absorption in gigahertz frequencies
Guo et al. Electric toroidal metamaterial for resonant transparency and circular cross-polarization conversion
Shi et al. Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial
Lin et al. Unidirectional surface plasmons in nonreciprocal graphene
He et al. Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh
Xie et al. Interfacial synthesis of polypyrrole microparticles for effective dissipation of electromagnetic waves
Wang et al. Ultraviolet dielectric hyperlens with layered graphene and boron nitride
Jiao et al. 2D magnetic Janus semiconductors with exotic structural and quantum-phase transitions
Du et al. Band split in multiband all-dielectric left-handed metamaterials
Han et al. Ultra-broadband electromagnetically induced transparency using tunable self-asymmetric planar metamaterials
Zhang et al. Absorption of surface acoustic waves by graphene
Xu et al. A novel tunable absorber based on vertical graphene strips
Feng Ma et al. Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide
Shin et al. Highly omnidirectional and frequency controllable carbon/polyaniline-based 2D and 3D monopole antenna
Li et al. Tunable topological state, high hole-carrier mobility, and prominent sunlight absorbance in monolayered calcium triarsenide
Chen et al. Metamaterial with randomized patterns for negative refraction of electromagnetic waves
CN103985940B (zh) 一种基于石墨烯磁电双可调的新型隔离器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170322

Termination date: 20180207