CN103984849A - Aircraft tire floor print calculation method - Google Patents
Aircraft tire floor print calculation method Download PDFInfo
- Publication number
- CN103984849A CN103984849A CN201410156275.4A CN201410156275A CN103984849A CN 103984849 A CN103984849 A CN 103984849A CN 201410156275 A CN201410156275 A CN 201410156275A CN 103984849 A CN103984849 A CN 103984849A
- Authority
- CN
- China
- Prior art keywords
- tire
- centerdot
- aircraft
- delta
- semi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004364 calculation method Methods 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000009530 blood pressure measurement Methods 0.000 claims description 2
- 238000005303 weighing Methods 0.000 claims description 2
- 238000012360 testing method Methods 0.000 abstract description 11
- 238000007689 inspection Methods 0.000 abstract description 3
- 230000003068 static effect Effects 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 230000006835 compression Effects 0.000 abstract 1
- 238000007906 compression Methods 0.000 abstract 1
- 238000010276 construction Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
Landscapes
- Tires In General (AREA)
Abstract
The invention belongs to the technical field of aviation and particularly relates to an aircraft tire floor print shape and area calculation method. The method is characterized by comprising the following steps: after obtaining the rated sizes (namely the diameter D and width B after expansion of a tire) of an aircraft tire standard storage rack product and the initial inflation pressure P of the tire, determining the compression amount delta of the aircraft tire according to the aircraft load F borne by an aircraft wheel, and furthermore determining the tire print area A, tire print elliptical semimajor axis a and semiminor axis b of the tire. The algorithm is simple and convenient in application; the geometrical and physical significance are clear; the aircraft tire floor print calculation method can be widely popularized and applied to military and civil airport ground service or airport construction design. The aircraft tire floor print calculation method has the beneficial effects that an engineering simple and convenient algorithm with sufficient precision degree, static pressure test is not needed to be performed on tires one by one in a laboratory; the area and geometrical outline dimensions of aircraft tire ground prints of airport outfield and aircraft stationing field without inspection and test equipment can be rapidly given out.
Description
Technical field
The invention belongs to aeronautical technology field, be specifically related to shape and the area computation method of aero tyre ground trace.
Background technology
The standard aircraft tyre of military aircraft, aircarrier aircraft equipment, at the ground trace that takes off, lands, parks under carrying compressive state, that runway pavement strength is paved in airport calculating, and the important former accurate input parameter that calculates of tire self life-span, wearing quality, pressure suitability, be also the key characterization parameter of evaluating takeoff and landing quality.Therefore, set up the computing method of aero tyre ground trace, have very important practical significance.
According to the computing method in existing standard, specification and open source literature, the computing method of aero tyre ground trace need to relate to a large amount of experimental test parameters, and the historical experience data of the classical model of accumulation, carry out polynomial approximate matching in conjunction with these with reference to coefficient, and require weight, the configuration of different aircrafts to have certain analogy, referentiability.This method is not suitable for lacking testing laboratory by tire static pressure test condition, and lacks the outfield, airport of inspection, testing apparatus and the operation situation that aircraft is stationed ground.Outfield engineering technical personnel often cannot provide area and the geometric shape size of aero tyre ground trace quickly and accurately, therefore need the general-purpose algorithm that a kind of calculation procedure is easy, parameters relationship is distinct, accurate degree is enough badly.
Summary of the invention
The standard aircraft tyre that the present invention mainly equips towards military aircraft, aircarrier aircraft, in the operation field and the operation present situation that lack test figure and testing apparatus, provide a kind of method: after knowing the norminal size of aircraft tyre standard pallet product (diameter D and width B after being tire inflation) and tire initial inflation process pressure P, the aircraft carrying F that just can share according to wheel, determine aero tyre decrement δ, and then semi-major axis a, the semi-minor axis b of the rat area A of definite tire, rat ellipse.The present invention innovates the formula algorithm providing, and can solve puzzlement outfield engineering technical personnel's tire ground trace computational problem.
Technical scheme of the present invention is: a kind of aero tyre ground trace computing method, it is characterized in that, and comprise the steps:
The first, decrement is calculated: be M at Aircraft Quality, determine decrement δ when tire is carried as F, its computing formula is:
In formula, F is the ground vertical load that tire bears, the kg of unit; P is the initial inflation process pressure of tire, the kg/cm of unit
2(in the time that tire label pressure is MPa, note the conversion between unit, 1MPa=10.2kg/cm
2); D is diameter of tyres, and B is tyre width, and the two unit all uses cm; The unit of the tire decrement result of calculation δ of output is also cm; ξ is for reducing contact coefficient, dimensionless, span: ξ=0.75~0.85;
The second, area calculates: calculate in the time that tire decrement is δ, and the area A of tire ground trace, its computing formula is:
In formula, δ is tire decrement, and D is diameter of tyres, and B is tyre width, and three unit all uses cm; The result of calculation unit of the area A of output is cm
2; ξ is for reducing contact coefficient, dimensionless, span: ξ=0.75~0.85;
The 3rd, shape is calculated: the shape of tire ground trace is calculated, and is regarded as the ellipse that ratio of semi-minor axis length is λ.When ellipse area is A, its semi-major axis is a, semi-minor axis while being b, exists following relational expression to set up:
The computing formula that draws semi-major axis a and semi-minor axis b of solution system of equations is above:
In formula, δ is tire decrement, and D is diameter of tyres, and B is tyre width, and three unit all uses cm; The oval semi-major axis a of output and the result of calculation unit of semi-minor axis b are also cm; λ is the ratio of semi-minor axis length of rat ellipse, dimensionless, span: λ=1.5~2.0; ξ is for reducing contact coefficient, dimensionless, span: ξ=0.75~0.85;
Each parameter that in the present invention's (aero tyre ground trace computing method), formula relates to, tire carrying is obtained by dynamometry (or weighing) equipment, tire pressure is obtained by pressure measurement reading, wheel diameter, wheel width state clearly in trimmed size book, and there is the size mark of diameter and width on the sidewall of aircraft tyre.
Advantage of the present invention is:
1) only need four input parameters: diameter of tyres D, tyre width B, tire pressure P, tire carrying F, can calculate all required output parameter results.Apply easyly, physics, geometric meaning are distinct, and applicability is strong;
2) be applicable to lack testing laboratory by tire static pressure test condition, and lack the outfield, airport of inspection, testing apparatus and the operation situation that aircraft is stationed ground.Solve puzzlement outfield engineering technical personnel's tire ground trace computational problem.
Brief description of the drawings
Fig. 1 is the oval trace figure of tire
Fig. 2 is the long and short axis scale schematic diagram of the oval trace of tire
Fig. 3 is the schematic diagram that is related to of tire print and airfield pavement stress
Embodiment
Below by specific embodiment, also the present invention is described in further detail by reference to the accompanying drawings.
The aircraft tyre of the Military Aircraft that certain type quality is M=33000kg, diameter of tyres D=103cm(nominal value), tyre width B=35cm(nominal value) and, charge pressure P=12.5kg/cm
2(measured value), tire carrying F=16600kg(measured value).
1. decrement is calculated:
The decrement of embodiment tire is:
In formula, F is the ground vertical load that tire bears, the kg of unit; P is the initial inflation process pressure of tire, the kg/cm of unit
2; D is diameter of tyres, and B is tyre width, and the two unit all uses cm; The unit of the tire decrement result of calculation δ of output is also cm like this; ξ is for reducing contact coefficient, dimensionless, value ξ=0.8;
2. area calculates:
The rat area of embodiment tire is:
In formula, δ is tire decrement, and D is diameter of tyres, and B is tyre width, and three unit all uses cm; The result of calculation unit of the area A of output is cm like this
2; ξ is for reducing contact coefficient, dimensionless, value ξ=0.8;
3. shape is calculated:
The oval semi-major axis a of rat of embodiment tire is:
The oval semi-minor axis b of rat of embodiment tire is:
In formula, δ is tire decrement, and D is diameter of tyres, and B is tyre width, and three unit all uses cm; The semi-major axis a of output and the result of calculation unit of semi-minor axis b are also cm; λ is the ratio of semi-minor axis length of rat ellipse, dimensionless, value λ=1.667; ξ is for reducing contact coefficient, dimensionless, span: ξ=0.8.
Claims (2)
1. aero tyre ground trace computing method, is characterized in that, comprise the steps:
The first, decrement is calculated: be M at Aircraft Quality, determine decrement δ when tire is carried as F, its computing formula is:
In formula, F is the ground vertical load that tire bears; P is the initial inflation process pressure of tire; D is diameter of tyres, and B is tyre width; ξ is for reducing contact coefficient;
The second, area calculates: calculate in the time that tire decrement is δ, and the area A of tire ground trace, its computing formula is:
In formula, δ is tire decrement, and D is diameter of tyres, and B is tyre width; ξ is for reducing contact coefficient;
The 3rd, shape is calculated: the shape of tire ground trace is calculated, and is regarded as the ellipse that ratio of semi-minor axis length is λ.When ellipse area is A, its semi-major axis is a, semi-minor axis while being b, exists following relational expression to set up:
Solution system of equations above, show that the computing formula of semi-major axis a and semi-minor axis b is:
In formula, δ is tire decrement, and D is diameter of tyres, and B is tyre width; A is oval semi-major axis, and b is oval semi-minor axis, and λ is ratio of semi-minor axis length; ξ is for reducing contact coefficient;
Each parameter that in the present invention's (aero tyre ground trace computing method), formula relates to, tire carrying is obtained by dynamometry (or weighing) equipment, tire pressure is obtained by pressure measurement reading, wheel diameter, wheel width state clearly in trimmed size book, and there is the size mark of diameter and width on the sidewall of aircraft tyre.
2. a kind of aero tyre according to claim 1 ground trace computing method, it is characterized in that: after knowing the norminal size of aircraft tyre standard pallet product (diameter D and width B after being tire inflation) and tire initial inflation process pressure P, the aircraft carrying F that just can share according to wheel, determine aero tyre decrement δ, and then semi-major axis a, the semi-minor axis b of the rat area A of definite tire, rat ellipse.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410156275.4A CN103984849A (en) | 2014-04-17 | 2014-04-17 | Aircraft tire floor print calculation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410156275.4A CN103984849A (en) | 2014-04-17 | 2014-04-17 | Aircraft tire floor print calculation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103984849A true CN103984849A (en) | 2014-08-13 |
Family
ID=51276817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410156275.4A Pending CN103984849A (en) | 2014-04-17 | 2014-04-17 | Aircraft tire floor print calculation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103984849A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110346151A (en) * | 2018-04-03 | 2019-10-18 | 通用汽车环球科技运作有限责任公司 | Quantify tread rib marginal position |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0887211B1 (en) * | 1997-06-23 | 2003-01-02 | COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN - MICHELIN & CIE | Tire monitoring system |
CN102445352A (en) * | 2010-12-20 | 2012-05-09 | 双钱集团(如皋)轮胎有限公司 | Analytical measuring method for tire marks |
CN203132847U (en) * | 2012-12-31 | 2013-08-14 | 双钱集团(如皋)轮胎有限公司 | Ground pressure-based imprinting test switching apparatus |
-
2014
- 2014-04-17 CN CN201410156275.4A patent/CN103984849A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0887211B1 (en) * | 1997-06-23 | 2003-01-02 | COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN - MICHELIN & CIE | Tire monitoring system |
CN102445352A (en) * | 2010-12-20 | 2012-05-09 | 双钱集团(如皋)轮胎有限公司 | Analytical measuring method for tire marks |
CN203132847U (en) * | 2012-12-31 | 2013-08-14 | 双钱集团(如皋)轮胎有限公司 | Ground pressure-based imprinting test switching apparatus |
Non-Patent Citations (2)
Title |
---|
李亚光: "《计算轮胎印迹面积的经验公式》", 《世界橡胶工业》 * |
韦竞秋 等;: "《汽车工程应用力学》", 30 April 2013 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110346151A (en) * | 2018-04-03 | 2019-10-18 | 通用汽车环球科技运作有限责任公司 | Quantify tread rib marginal position |
US10997708B2 (en) | 2018-04-03 | 2021-05-04 | GM Global Technology Operations LLC | Quantifying tread rib edge locations |
CN110346151B (en) * | 2018-04-03 | 2022-01-11 | 通用汽车环球科技运作有限责任公司 | Apparatus and computer-implemented method for determining the mass of a tire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhu et al. | Effects of surface texture deterioration and wet surface conditions on asphalt runway skid resistance | |
CN104792633B (en) | A kind of airframe crack expansion life span predication method | |
CN101470016B (en) | A device for measuring volume by built-in method | |
CN104020045B (en) | A kind of Step Stress Acceleration test method measuring aircraft/helicopter dynamic component high cycle fatigue characteristic | |
CN103258105A (en) | Calculation method for service life consumption of undercarriage | |
Anupam et al. | Finite element framework for the computation of runway friction of aircraft tires | |
US9285293B2 (en) | Tire performance prediction method and method of designing tire | |
CN103984849A (en) | Aircraft tire floor print calculation method | |
Hernandez et al. | Airfield pavement response caused by heavy aircraft takeoff: Advanced modeling for consideration of wheel interaction | |
CN104390794A (en) | Method of predicating flat-pavement mechanical properties of tyre based on test data of rotary drum test bed | |
Yang et al. | Numerical analysis concerning the skid resistance of rubber-contaminated runway grooves | |
CN105628515B (en) | A kind of lower asphalt pavement high-temperature anti-shear characteristic evaluation method of aircraft multiple-wheel load effect | |
Yang et al. | Numerical analysis of hydroplaning and veer-off risk of dual-tyre on a wet runway | |
Baimukhametov et al. | Review and Improvement of Runway Friction and Aircraft Skid Resistance Regulation, Assessment and Management | |
CN105300568B (en) | Novel tire vertical pressure distribution function, algorithm and testing system | |
Fwa et al. | Analytical evaluation of skid resistance performance of trapezoidal runway grooving | |
De Luca et al. | Touchdown remaining lift on the wings and dynamic vertical force transmitted to the runway | |
Soal et al. | Taxi vibration testing: a new and time efficient procedure for the identification of modal parameters on aircrafts | |
Józwik et al. | Dynamic analysis of aircraft landing gear wheel | |
Kuruppu et al. | Case study on aircraft tyre wear in Y12 aircraft tyres | |
LI et al. | Hydroplaning behavior of aircraft wheel group and additional resistance due to accumulated water on pavement | |
CN110874516A (en) | A method for establishing tire loading model of airport pavement based on finite element software | |
CAI et al. | Aircraft tire-water film-pavement interaction on wet pavement in landing | |
Chaleewong et al. | Pavement evaluation of airport taxiway and effect of increasing ACN to pavement remaining life | |
Pytka et al. | GARFIELD information system–old problems and new perspectives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140813 |
|
RJ01 | Rejection of invention patent application after publication |