CN103984746A - Semi-supervised classification and regional distance measurement based SAR (Synthetic Aperture Radar) image identification method - Google Patents

Semi-supervised classification and regional distance measurement based SAR (Synthetic Aperture Radar) image identification method Download PDF

Info

Publication number
CN103984746A
CN103984746A CN201410224797.3A CN201410224797A CN103984746A CN 103984746 A CN103984746 A CN 103984746A CN 201410224797 A CN201410224797 A CN 201410224797A CN 103984746 A CN103984746 A CN 103984746A
Authority
CN
China
Prior art keywords
image block
image
query
sar
query image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410224797.3A
Other languages
Chinese (zh)
Other versions
CN103984746B (en
Inventor
焦李成
唐旭
马文萍
侯小瑾
侯彪
王爽
马晶晶
杨淑媛
刘静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201410224797.3A priority Critical patent/CN103984746B/en
Publication of CN103984746A publication Critical patent/CN103984746A/en
Application granted granted Critical
Publication of CN103984746B publication Critical patent/CN103984746B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/58Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Library & Information Science (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于半监督分类与区域距离测度的SAR图像识别方法。其实现步骤为:通过切分原始SAR图像建立图像库,从图像库中挑选目标单一的SAR图像块;提取图库内图像块的特征向量;将挑选出的SAR图像块分成若干类,并用对应的特征向量作为训练样本,训练半监督分类器,并用此分类器对图像库分类;对用户输入的查询图像块,用已训练的分类器得到其类别;根据混淆矩阵求取查询图像块的类别集合,计算查询图像块与图像库中属于该集合的图像块之间的区域相似距离,并依照该距离从小到大的顺序返回用户需要数量的图像块。本发明具有分类错误可纠正,信息识别精度高的优点,可用于对多幅SAR图像同时进行解译。

The invention discloses a SAR image recognition method based on semi-supervised classification and region distance measure. The implementation steps are: establish an image library by segmenting the original SAR image, select a single target SAR image block from the image library; extract the feature vector of the image block in the library; divide the selected SAR image blocks into several categories, and use the corresponding The feature vector is used as a training sample to train a semi-supervised classifier, and use this classifier to classify the image library; for the query image block input by the user, use the trained classifier to obtain its category; obtain the category set of the query image block according to the confusion matrix , calculate the area similarity distance between the query image block and the image blocks belonging to the set in the image database, and return the number of image blocks required by the user in the order of the distance from small to large. The invention has the advantages of correctable classification errors and high information recognition accuracy, and can be used to simultaneously interpret multiple SAR images.

Description

基于半监督分类与区域距离测度的SAR图像识别方法SAR image recognition method based on semi-supervised classification and region distance measure

技术领域technical field

本发明属于图像处理技术领域,涉及一种SAR图像的识别方法,可应用于对多幅SAR图像同时进行解译。The invention belongs to the technical field of image processing, and relates to a method for recognizing SAR images, which can be applied to simultaneous interpretation of multiple SAR images.

背景技术Background technique

SAR图像因为具有全天时、全天候的探测能力,尤其是相对光学图像对天气因素完全不依赖的特点,其应用领域正在逐步的扩大,包括军事,农业,导航,地理监视等。SAR图像的分割,去噪,变化检测等都是研究热点领域,而这些研究领域的一个重要基础就是SAR图像识别。一些传统的识别技术主要针对识别精度的问题,而且大多应用于单张SAR图像的小范围区域识别问题。但这些技术明显已不符合当下SAR图像数量海量增长的应用环境。为了克服上述技术缺点,本发明结合图论半监督学习方法和改进的区域距离测度在基于内容的图像检索技术的框架下提出了一种SAR图像识别技术。该技术实现简单,既保证识别精度又可满足大量SAR图像同时进行识别的应用场景。Because of the all-day and all-weather detection capability of SAR images, especially the fact that relative optical images are completely independent of weather factors, its application fields are gradually expanding, including military, agriculture, navigation, geographic surveillance, etc. The segmentation, denoising, and change detection of SAR images are all research hotspots, and an important basis of these research fields is SAR image recognition. Some traditional recognition technologies are mainly aimed at the problem of recognition accuracy, and most of them are applied to the small-scale area recognition problem of a single SAR image. However, these technologies are obviously not suitable for the current application environment where the number of SAR images is increasing massively. In order to overcome the above-mentioned technical shortcomings, the present invention proposes a SAR image recognition technology under the framework of content-based image retrieval technology in combination with graph theory semi-supervised learning method and improved region distance measure. The technology is simple to implement, which not only ensures the recognition accuracy but also meets the application scenario of simultaneous recognition of a large number of SAR images.

实际问题中,易获得的有标签数据往往比无标签数据少得多。为了解决此类问题,半监督学习方法应运而生。半监督学习方法是介于有监督学习和无监督学习的一类学习方法,该方法同时利用有标签样本和无标签样本,利用整体几何结构完成类标传播。近些年在半监督学习领域中,基于图论的半监督学习方法是最活跃的研究方向。最著名并且应用广泛的基于图论的半监督学习方法包括:最小切方法,高斯随机场方法等,分别参见A.Blum and S.Chawla.Learning from labeled and unlabeled data using graph mincuts.In Prnceedings of the18th International Conference on Machine Learning.Morgan Kaufmann,San Francisco,CA,2001.19-26;Zhu,Xiaojin,Zoubin Ghahramani,and John Lafferty."Semi-supervised learning using gaussian fields and harmonic functions."ICML.Vol.3.2003。这些方法将有标签和无标签数据作为图的顶点,数据间的相似度作为连接顶点的边及权值,并利用图的几何特性完成类标从有标签的数据到无标签的数据的传播,从而达到分类的目的。由于高斯随机场方法计算复杂度低的特点,考虑到识别系统的时效性,本发明采用此方法。In practical problems, easily available labeled data are often much less than unlabeled data. In order to solve such problems, semi-supervised learning methods came into being. The semi-supervised learning method is a kind of learning method between supervised learning and unsupervised learning. This method uses both labeled samples and unlabeled samples, and uses the overall geometric structure to complete the class label propagation. In the field of semi-supervised learning in recent years, the semi-supervised learning method based on graph theory is the most active research direction. The most famous and widely used semi-supervised learning methods based on graph theory include: minimum cut method, Gaussian random field method, etc., see A.Blum and S.Chawla.Learning from labeled and unlabeled data using graph mincuts.In Prnceedings of the18th International Conference on Machine Learning. Morgan Kaufmann, San Francisco, CA, 2001.19-26; Zhu, Xiaojin, Zoubin Ghahramani, and John Lafferty."Semi-supervised learning using gaussian fields and harmonic functions."ICML.Vol.3.2003. These methods use labeled and unlabeled data as the vertices of the graph, and the similarity between the data as the edges and weights connecting the vertices, and use the geometric characteristics of the graph to complete the propagation of class labels from labeled data to unlabeled data. So as to achieve the purpose of classification. Due to the low computational complexity of the Gaussian random field method, the present invention adopts this method in consideration of the timeliness of the identification system.

基于内容的图像检索CBIR,是基于图像低层次的视觉特征完成在图像数据库中检索与查询图像在内容上一致或相似的图像集合过程。该技术包含一系列的图像处理方法,包括特征提取、相似性度量、用户反馈等。截至目前,已有很多成熟、著名的检索系统被提出,如SIMPLIcity检索系统,参见James Z.Wang,Jia Li,Gio Wiederhold.SIMPLIcity:Semantics-Sensitive Integrated Matching for Picture Llbraries.IEEE Trans.onPattern Analysis and Machine Intelligence,2001,23(9):947-963,该SIMPLIcity检索系统已成功的应用于海量的自然图像检索问题,但由于技术限制及SAR图像自身特点,将其直接应用在SAR图像识别中效果不并理想。又如2009年提出的结合高斯混合模型分类的SAR图像检索系统,即GMM检索系统,参见Hou,B.,Tang,X.,Jiao,L.,&Wang,S.(2009,October).SAR image retrieval based on Gaussian Mixture Model classification.In SyntheticAperture Radar,2009.APSAR2009.2nd Asian-Pacific Conference on(pp.796-799).IEEE,该方法面向SAR图像,在检索过程中有效的运用了纹理特征,但由于利用有监督分类方法使得其在现实问题中的推广化能力较低,同时因为该方法的相似度匹配技术并没有考虑SAR图像的特点,使得检索效果并不理想。虽然该文章中给出了出色的实验结果,但这些结果依赖于有重叠的切割原始SAR图像建立图库,这种策略得到的图像块具有高度的集群特性,即同一类内的样本间距很小,不同类的样本间距很大,这样的数据分布与实际应用中的数据分布往往差异大,得到的实验结果不能充分的验证其方法的有效性。Content-based image retrieval (CBIR) is based on the low-level visual features of the image to complete the process of retrieving images in the image database that are consistent or similar in content to the query image. This technology includes a series of image processing methods, including feature extraction, similarity measurement, user feedback, etc. So far, many mature and well-known retrieval systems have been proposed, such as SIMPLIcity retrieval system, see James Z.Wang, Jia Li, Gio Wiederhold.SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture Llbraries.IEEE Trans.onPattern Analysis and Machine Intelligence, 2001, 23(9): 947-963, the SIMPLIcity retrieval system has been successfully applied to massive natural image retrieval problems, but due to technical limitations and the characteristics of SAR images, it is not effective to directly apply it to SAR image recognition. And ideally. Another example is the SAR image retrieval system combined with Gaussian mixture model classification proposed in 2009, that is, the GMM retrieval system, see Hou, B., Tang, X., Jiao, L., & Wang, S. (2009, October). SAR image retrieval based on Gaussian Mixture Model classification.In SyntheticAperture Radar,2009.APSAR2009.2nd Asian-Pacific Conference on(pp.796-799).IEEE, this method is oriented to SAR images and effectively uses texture features in the retrieval process, but Due to the use of supervised classification methods, its generalization ability in real problems is low, and because the similarity matching technology of this method does not consider the characteristics of SAR images, the retrieval effect is not ideal. Although the excellent experimental results are given in this article, these results rely on overlapping cutting original SAR images to build a gallery. The image blocks obtained by this strategy have a high degree of clustering characteristics, that is, the distance between samples in the same class is small, The distance between samples of different classes is very large, such data distribution is often quite different from the data distribution in practical applications, and the obtained experimental results cannot fully verify the effectiveness of the method.

发明内容Contents of the invention

本发明目的在于针对上述已有技术存在的缺陷,根据SAR图像的特殊成像特点,在传统基于内容的图像检索的框架下,提出一种基于半监督分类与改进区域距离测度的SAR图像识别方法,以减小实验数据与实际应用中数据分布的差异,提高实际应用中的信息识别精度。The purpose of the present invention is to address the defects in the above-mentioned prior art, according to the special imaging characteristics of SAR images, under the framework of traditional content-based image retrieval, propose a SAR image recognition method based on semi-supervised classification and improved region distance measurement, In order to reduce the difference between the experimental data and the data distribution in the actual application, and improve the information recognition accuracy in the actual application.

实现本发明目的的技术方案是:使用离散小波,解析SAR图像中的纹理信息,使用纹理信息,利用高斯随机场半监督学习方法完成SAR图像库的分类工作,并采用改进的区域综合特征相似匹配算法完成SAR图像的相似度匹配。其具体实现步骤包括如下:The technical solution for realizing the object of the present invention is: using discrete wavelets, analyzing the texture information in the SAR image, using the texture information, utilizing the Gaussian random field semi-supervised learning method to complete the classification work of the SAR image library, and using the improved regional comprehensive feature similarity matching The algorithm completes the similarity matching of SAR images. Its specific implementation steps include the following:

1)对原始SAR图像进行无重叠切分,以建立SAR图像库{p1,p2,…,pN},从该图像库中按照目标单一原则挑选图像块{p1,p2,…,pl},其中l<<N,N表示图库中的SAR图像块个数,l表示挑选出的SAR图像块个数,所述目标单一原则是指图像块中某目标占图像总面积的一半以上;1) Segment the original SAR image without overlapping to establish a SAR image library {p 1 ,p 2 ,…,p N }, and select image blocks {p 1 ,p 2 ,… , p l }, where l<<N, N represents the number of SAR image blocks in the gallery, l represents the number of selected SAR image blocks, and the principle of single target refers to the percentage of the total image area occupied by a certain target in the image block more than half;

2)提取所有图像块的离散小波三层变换的子带能量,作为图像块的特征向量 { f 1 , f 2 , &CenterDot; &CenterDot; &CenterDot; , f n &OverBar; } , 其中, n &OverBar; = 10 ; 2) Extract the subband energy of the discrete wavelet three-layer transform of all image blocks as the feature vector of the image block { f 1 , f 2 , &Center Dot; &Center Dot; &Center Dot; , f no &OverBar; } , in, no &OverBar; = 10 ;

3)将挑选出的SAR图像块{p1,p2,…,pl}按照语义内容分成{ci,1≤i≤k}类,其中k表示语义类别的个数,并用对应的特征向量作为训练样本,训练高斯随机场半监督分类器,利用该分类器对整个SAR图像库{p1,p2,…,pN}分类,得到具有类标的SAR图像库;3) Divide the selected SAR image blocks {p 1 ,p 2 ,…,p l } into { ci ,1≤i≤k} categories according to the semantic content, where k represents the number of semantic categories, and use the corresponding feature The vector is used as a training sample to train a Gaussian random field semi-supervised classifier, and use the classifier to classify the entire SAR image library {p 1 ,p 2 ,…,p N } to obtain a SAR image library with class labels;

4)对用户输入的查询图像块p′,采用与步骤2)相同的方法提取其特征向量f′,并用与步骤3)相同的训练样本及训练好的高斯随机场半监督分类器,得到查询图像块的类别数ci4) For the query image block p' input by the user, use the same method as step 2) to extract its feature vector f', and use the same training samples as step 3) and the trained Gaussian random field semi-supervised classifier to obtain the query The category number c i of the image block;

5)根据步骤4)得到的类别数ci及经验混淆矩阵,计算查询图像块的类别集合{c}:5) According to the number of categories c i and the empirical confusion matrix obtained in step 4), calculate the category set {c} of the query image block:

5a)在已分类的SAR图像库中,挑选出每一类的前K幅图像块,组成新的图像样本集,从此样本集中随机挑选训练样本训练高斯随机场半监督分类器,用该分类器进行100次随机分类试验,得到经验混淆矩阵Con∈Rk×k,混淆矩阵Con是方阵,其中第i行第j列Con(i,j)表示属于ci类的样本被分为cj类的个数,1≤i≤k,1≤j≤k;5a) In the classified SAR image library, select the first K image blocks of each category to form a new image sample set, randomly select training samples from this sample set to train a Gaussian random field semi-supervised classifier, use the classifier Conduct 100 random classification experiments, and get the empirical confusion matrix Con∈R k×k , the confusion matrix Con is a square matrix, where row i and column j Con(i,j) indicates that samples belonging to class c i are divided into c j The number of classes, 1≤i≤k, 1≤j≤k;

5b)对经验混淆矩阵进行列归一化,即将一列中的每个元素除以该列元素的总和,得到经验的后验概率矩阵ConP∈Rk×k5b) Carrying out column normalization to the empirical confusion matrix, that is, dividing each element in a column by the sum of the elements in the column to obtain the empirical posterior probability matrix ConP∈R k×k ;

5c)设置阈值T,将后验概率矩阵中的第i行第j列ConP(i,j)与阈值T进行比较,当ConP(i,j)≤T时,将ConP(i,j)设置为0,反之ConP(i,j)保持不变,阈值T的大小根据期望的每一列的非零元素个数设定;5c) Set the threshold T, compare ConP(i,j) in the i-th row and column j in the posterior probability matrix with the threshold T, and when ConP(i,j)≤T, set ConP(i,j) is 0, otherwise ConP(i,j) remains unchanged, and the size of the threshold T is set according to the expected number of non-zero elements in each column;

5d)根据查询图像块的类别数ci,在后验概率矩阵ConP中的第i列中查找非零元素的位置,最终得到类别集合{c};5d) According to the category number c i of the query image block, find the position of the non-zero element in the i-th column in the posterior probability matrix ConP, and finally obtain the category set {c};

6)计算查询图像块p′与图库中属于类别集合{c}中所有图像块的区域距离;6) Calculate the area distance between the query image block p' and all image blocks belonging to the category set {c} in the gallery;

7)按照步骤6)得到的区域距离,以从小到大的顺序返回用户需要数量的图像,完成图像识别。7) According to the area distance obtained in step 6), the number of images required by the user is returned in order from small to large, and image recognition is completed.

本发明与现有的技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:

1、本发明由于用无重叠的切分方法创建SAR图像库,使测试样本与实际数据的差距减小,增加了识别结果的可信度;1. Since the present invention creates a SAR image database with a non-overlapping segmentation method, the gap between the test sample and the actual data is reduced, and the credibility of the recognition result is increased;

2、本发明由于采用高斯随机场半监督学习方法对图库进行分类,减少了人工挑选训练样本的工作量,降低了人为主观因素对分类结果的影响;2. The present invention classifies the gallery by using the Gaussian random field semi-supervised learning method, which reduces the workload of manual selection of training samples and reduces the influence of human subjective factors on the classification results;

3、本发明由于采用纠正分类错误的策略,有效的减少了分类错误对相似度匹配的影响;3. The present invention effectively reduces the impact of classification errors on similarity matching due to the adoption of the strategy of correcting classification errors;

4、本发明针对SAR图像特殊性,改进了区域综合特征的相似度量,使得SAR图像相似度匹配结果更准确,提高了识别精度。4. Aiming at the particularity of the SAR image, the present invention improves the similarity measure of the comprehensive feature of the region, makes the matching result of the similarity of the SAR image more accurate, and improves the recognition accuracy.

附图说明Description of drawings

图1是本发明的实现流程示意图;Fig. 1 is the realization flow schematic diagram of the present invention;

图2是本发明中用于建立SAR图像库的原始SAR图像;Fig. 2 is used to set up the original SAR image of SAR image storehouse among the present invention;

图3是本发明在SAR图库中挑选出的SAR图像块样例图;Fig. 3 is the SAR image block sample figure that the present invention selects in SAR gallery;

图4是本发明与GMM检索系统整体性能比较图;Fig. 4 is the overall performance comparison figure of the present invention and GMM retrieval system;

图5是本发明与GMM检索系统在各语义类别中的性能比较图。Fig. 5 is a performance comparison diagram between the present invention and the GMM retrieval system in each semantic category.

具体实施方式Detailed ways

参照图1,本发明的具体实现步骤如下:With reference to Fig. 1, the concrete realization steps of the present invention are as follows:

步骤1,建立SAR图像库{p1,p2,…,pN},并按照目标单一原则挑选SAR图像块。Step 1. Establish the SAR image library {p 1 ,p 2 ,…,p N }, and select SAR image blocks according to the principle of single target.

该步骤的具体实现如下:The specific implementation of this step is as follows:

1a)选用像素大小依次为19035×7330、7082×7327的2幅大尺寸SAR图像,作为建立图库的原始SAR图像,分别如图2(a),图2(b)所示;1a) Select two large-scale SAR images with pixel sizes of 19035×7330 and 7082×7327 as the original SAR images for building the library, as shown in Figure 2(a) and Figure 2(b) respectively;

1b)对所选用的2幅原始SAR图像进行无重叠的切分,切分后得到大小均为256×256的2828幅SAR图像块,用此建立SAR图像库{p1,p2,…,pN},其中N=2828;1b) Segment the two selected original SAR images without overlapping, and obtain 2828 SAR image blocks with a size of 256×256 after segmentation, and use this to build a SAR image library {p 1 ,p 2 ,…, p N }, where N=2828;

1c)在图像库中按照目标单一原则挑选SAR图像块{p1,p2,…,pl},其中l<<N,N表示图像库中的SAR图像块个数,l表示挑选出的SAR图像块个数,所述目标单一原则是指图像块中某目标占图像总面积的一半以上。本发明在挑选时,共挑选了28幅SAR图像块,即l=28。1c) Select SAR image blocks {p 1 , p 2 ,...,p l } in the image library according to the principle of single target, where l<<N, N represents the number of SAR image blocks in the image library, and l represents the selected The number of SAR image blocks, the single target principle means that a target in an image block accounts for more than half of the total area of the image. When the present invention is selected, a total of 28 SAR image blocks are selected, namely l=28.

步骤2,对图库中所有图像块进行特征提取。Step 2, perform feature extraction on all image blocks in the gallery.

选用离散小波三层变换的子带能量ξ作为图像块的特征向量其中,表示特征向量的维数,本实例选用但不限于10。对某一子带,能量定义为:The subband energy ξ of discrete wavelet three-layer transform is selected as the feature vector of the image block in, Indicates the dimension of the feature vector, this example chooses But not limited to 10. For a subband, the energy is defined as:

&xi;&xi; == (( &Sigma;&Sigma; nno 11 == 11 mm 11 &Sigma;&Sigma; nno 22 == 11 mm 22 bb (( nno 11 ,, nno 22 )) 22 )) 11 22 // (( mm 11 &times;&times; mm 22 )) -- -- -- << 11 >>

其中,m1×m2为子带大小,(n1,n2)表示该子带系数的索引,b(n1,n2)表示该子带中第n1行第n2列的系数值,其余9个子带的能量按照<1>式计算。Among them, m 1 ×m 2 is the size of the subband, (n 1 ,n 2 ) indicates the index of the subband coefficient, b(n 1 ,n 2 ) indicates the coefficient of the n 1th row and n 2th column in the subband value, and the energies of the remaining 9 subbands are calculated according to formula <1>.

步骤3,对整个SAR图像库{p1,p2,…,pN}分类,得到具有类标的SAR图像库。Step 3, classify the entire SAR image library {p 1 , p 2 ,...,p N } to obtain a SAR image library with class labels.

该步骤的具体实现如下:The specific implementation of this step is as follows:

3a)在已挑选出的l幅SAR图像块中进行人工语义分类,本实例采用面积百分比的策略来判定图像类别,即若一副图像块p中,ci类目标物的总面积大小超过该图像总面积的50%,就规定该像块p为ci类,最终将l幅SAR图像块人为分成山地、海洋、城区、郊区共4类,每一类7幅图像块。样图如图3所示,其中图3(a)是山地,图3(b)是海洋,图3(c)是城区,图3(d)郊区;3a) Artificial semantic classification is performed in the selected l SAR image blocks. In this example, the strategy of area percentage is used to determine the image category. 50% of the total area of the image, it is stipulated that the image block p is classified as c i , and finally the l SAR image block is artificially divided into four types: mountain, ocean, urban area, and suburban area, with 7 image blocks in each type. The sample map is shown in Figure 3, where Figure 3(a) is a mountainous area, Figure 3(b) is an ocean, Figure 3(c) is an urban area, and Figure 3(d) is a suburb;

3b)根据每一类图像块,对应一组离散小波三层变换的子带能量特征,得到4组特征向量,并将该4组特征向量作为训练样本,利用高斯随机场半监督学习分类器进行SAR图像库的分类:3b) According to each type of image block, corresponding to a set of sub-band energy features of discrete wavelet three-layer transform, 4 sets of feature vectors are obtained, and these 4 sets of feature vectors are used as training samples, and the Gaussian random field semi-supervised learning classifier is used. Classification of SAR image library:

3b1)用步骤1挑选出的28幅图像块的能量特征作为有标签样本{(x1,y1),…(xl,yl)},用SAR图像库中剩余2800幅SAR图像块的能量特征作为无标签样本{xl+1,…xl+u},用有标签样本和无标签样本建立图G=(V,E),其中l<<u,u表示无标签样本的个数,l+u=N,N表示总样本的个数,V表示图G的顶点,E表示图G的边,且l=28,u=2800,N=2828;3b1) Use the energy features of the 28 image blocks selected in step 1 as labeled samples {(x 1 ,y 1 ),…(x l ,y l )}, and use the remaining 2800 SAR image blocks in the SAR image library Energy features are used as unlabeled samples {x l+1 ,…x l+u }, and graph G=(V,E) is established with labeled samples and unlabeled samples, where l<<u, u represents the number of unlabeled samples Number, l+u=N, N represents the number of total samples, V represents the vertices of graph G, E represents the edge of graph G, and l=28, u=2800, N=2828;

3b2)按照公式<2>求得图G的相似矩阵W,3b2) Obtain the similarity matrix W of the graph G according to the formula <2>,

WW == (( &omega;&omega; ~~ ii ~~ ,, jj ~~ )) NN &times;&times; NN ,, &omega;&omega; ~~ ii ~~ ,, jj ~~ == expexp (( -- &Sigma;&Sigma; dd ~~ == 11 nno &OverBar;&OverBar; (( xx ii ~~ dd ~~ -- xx jj ~~ dd ~~ )) 22 &sigma;&sigma; dd ~~ 22 )) -- -- -- << 22 >>

其中,表示相似矩阵W第行第列的元素,表示图像块特征向量的维数,表示样本的第维分量,表示样本的第维分量,是第维的超参数, 1 &le; i ~ &le; N , 1 &le; j ~ &le; N , 1 &le; d ~ &le; n &OverBar; , n &OverBar; = 10 ; in, Represents the similarity matrix Wth row number elements of the column, Indicates the dimensionality of the image block feature vector, Indicates the sample First dimension component, Indicates the sample First dimension component, is the first dimension hyperparameters, 1 &le; i ~ &le; N , 1 &le; j ~ &le; N , 1 &le; d ~ &le; no &OverBar; , no &OverBar; = 10 ;

3b3)按照公式<3>构造图G的能量函数:3b3) Construct the energy function of graph G according to the formula <3>:

EE. (( ff sthe s )) == &infin;&infin; &Sigma;&Sigma; ii ~~ (( ff sthe s (( ii ~~ )) -- ythe y ii ~~ )) 22 ++ 11 22 &Sigma;&Sigma; ii ~~ ,, jj ~~ &omega;&omega; ~~ ii ~~ ,, jj ~~ (( ff sthe s (( ii ~~ )) -- ff sthe s (( jj ~~ )) )) 22 -- -- -- << 33 >>

其中,E(fs)表示图G的能量函数,表示有标签样本在图G上的实函数,表示无标签样本在图G上的实函数,表示的函数值,表示图G的相似矩阵W第行第列的元素, 1 &le; i ~ &le; N , 1 &le; j ~ &le; N ; Among them, E(f s ) represents the energy function of graph G, Represents the real function of labeled samples on the graph G, Represents the real function of unlabeled samples on the graph G, express function value, Represents the similarity matrix W of the graph G row number elements of the column, 1 &le; i ~ &le; N , 1 &le; j ~ &le; N ;

3b4)求解能量函数E(fs)的最优解argminE(fs),得到分类结果,即图像库中2828幅图像块的最终分类结果依次是山地1143幅,海洋748幅,城区344幅,郊区593幅,共计2828幅SAR图像块,这一步骤的目标是将SAR图像库变为有类标的SAR图像库,以减少相似度匹配的工作量,提高识别速度。3b4) Solve the optimal solution argminE(f s ) of the energy function E(f s ), and obtain the classification results, that is, the final classification results of the 2828 image blocks in the image library are 1143 mountain images, 748 ocean images, and 344 urban images. There are 593 suburban images, with a total of 2828 SAR image blocks. The goal of this step is to change the SAR image library into a SAR image library with class labels, so as to reduce the workload of similarity matching and improve the recognition speed.

步骤4,对用户输入的查询图像块p′进行分类。Step 4, classify the query image block p' input by the user.

该步骤的具体实现如下:The specific implementation of this step is as follows:

4a)采用与步骤2相同的方法提取查询图像块p′的特征向量f′;4a) using the same method as step 2 to extract the feature vector f' of the query image block p';

4b)用与步骤3相同的训练样本及高斯随机场半监督分类器,得到查询图像块p′的类别数ci4b) Using the same training samples and Gaussian random field semi-supervised classifier as in step 3, obtain the category number c i of the query image block p′.

步骤5,为了降低分类错误对识别结果的影响,根据步骤4得到的类别数ci及经验混淆矩阵,计算查询图像块p′的类别集合{c}。Step 5, in order to reduce the impact of classification errors on the recognition results, calculate the category set {c} of the query image block p′ according to the number of categories c i and the empirical confusion matrix obtained in step 4.

该步骤的具体实现如下:The specific implementation of this step is as follows:

5a)在已分类的SAR图像库中,挑选出每一类的前100幅图像块,组成新的图像样本集,从此样本集中随机挑选训练样本训练高斯随机场半监督分类器,用该分类器进行100次随机分类试验,其中训练样本与测试样本的比例是1:99,从而得到经验混淆矩阵Con∈Rk×k,混淆矩阵Con是方阵,其中第i行第j列Con(i,j)表示属于ci类的样本被分为cj类的个数,1≤i≤k,1≤j≤k,k表示语义类别个数,R表示实数域,表1给出了经验混淆矩阵Con∈Rk×k的样例,其中语义类别个数k=4,分别为山地、海洋、城区、郊区,各数值表示属于ci类的样本被分为cj类的个数,例如Con(1,1)表示属于山地的样本被分为山地的个数是41;5a) From the classified SAR image library, select the first 100 image blocks of each category to form a new image sample set, randomly select training samples from this sample set to train a Gaussian random field semi-supervised classifier, use the classifier Carry out 100 random classification experiments, in which the ratio of training samples to test samples is 1:99, so as to obtain the empirical confusion matrix Con∈R k×k , the confusion matrix Con is a square matrix, where row i and column j Con(i, j) represents the number of samples belonging to class c i divided into class c j , 1≤i≤k, 1≤j≤k, k represents the number of semantic categories, R represents the real number field, Table 1 gives the empirical confusion An example of the matrix Con∈R k×k , where the number of semantic categories k=4, which are mountainous, oceanic, urban, and suburban respectively, and each value represents the number of samples belonging to class c i divided into class c j , for example Con(1,1) indicates that the number of samples belonging to mountainous areas is divided into 41;

表1 100次随机分类试验得到的混淆矩阵Table 1 Confusion matrix obtained from 100 random classification experiments

Con∈Rk×k Con∈R k×k 山地mountains 海洋ocean 城区urban area 郊区suburbs 山地mountains 4141 2020 00 3838 海洋ocean 66 9393 00 00 城区urban area 00 00 9797 22 郊区suburbs 2626 00 1313 6060

5b)对经验混淆矩阵Con∈Rk×k进行列归一化,即将其中一列的每个元素除以该列元素的总和,得到经验的后验概率矩阵ConP∈Rk×k。表2给出了后验概率矩阵ConP∈Rk×k的样例,其中语义类别个数k=4,分别为山地、海洋、城区、郊区,各数值是对表1给出的经验混淆矩阵Con∈Rk×k进行列归一化得到的;5b) Perform column normalization on the empirical confusion matrix Con∈R k×k , that is, divide each element of one column by the sum of the elements in this column to obtain the empirical posterior probability matrix ConP∈R k×k . Table 2 gives an example of the posterior probability matrix ConP∈R k×k , where the number of semantic categories k=4, which are mountainous, oceanic, urban, and suburban respectively, and each value is the empirical confusion matrix given in Table 1 Con∈R k×k is obtained by column normalization;

表2 经验的后验概率矩阵Table 2 Posterior probability matrix of experience

ConP∈Rk×k ConP∈Rk ×k 山地mountains 海洋ocean 城区urban area 郊区suburbs 山地mountains 0.56160.5616 0.17700.1770 00 0.38000.3800 海洋ocean 0.08220.0822 0.82300.8230 00 00 城区urban area 00 00 0.88180.8818 0.02000.0200 郊区suburbs 0.35620.3562 00 0.11820.1182 0.60000.6000

5c)设置阈值T,将后验概率矩阵ConP∈Rk×k中的第i行第j列ConP(i,j)与阈值T进行比较,当ConP(i,j)≤T时,将ConP(i,j)设置为0,反之ConP(i,j)保持不变,阈值T的大小根据期望的每一列的非零元素个数设定,本实例设T=0.1,表3给出了阈值处理后的后验概率矩阵ConP∈Rk×k的样例,其中语义类别个数k=4,分别为山地、海洋、城区、郊区,各数值是对表2给出的后验概率矩阵ConP∈Rk×k进行阈值处理得到的;5c) Set the threshold T, compare the i-th row ConP(i,j) in the j-th row ConP(i,j) in the posterior probability matrix ConP∈R k×k with the threshold T, when ConP(i,j)≤T, set ConP (i,j) is set to 0, otherwise ConP(i,j) remains unchanged, the size of the threshold T is set according to the expected number of non-zero elements in each column, this example sets T=0.1, Table 3 gives An example of the posterior probability matrix ConP∈R k×k after threshold processing, where the number of semantic categories k=4, which are mountainous, oceanic, urban, and suburban respectively, and each value is the posterior probability matrix given in Table 2 ConP∈R k×k is obtained by thresholding;

表3 阈值处理后的后验概率矩阵Table 3 Posterior probability matrix after thresholding

ConP∈Rk×k ConP∈Rk ×k 山地mountains 海洋ocean 城区urban area 郊区suburbs 山地mountains 0.56160.5616 0.17700.1770 00 0.38000.3800 海洋ocean 00 0.82300.8230 00 00 城区urban area 00 00 0.88180.8818 00 郊区suburbs 0.35620.3562 00 0.11820.1182 0.60000.6000

5d)根据查询图像块的类别数ci,在后验概率矩阵ConP中的第i列中查找非零元素的位置,最终得到类别集合{c}。5d) According to the number of categories c i of the query image block, find the position of the non-zero element in the i-th column of the posterior probability matrix ConP, and finally obtain the category set {c}.

步骤6,计算查询图像块p′与图库中属于类别集合{c}中所有图像块的区域距离。Step 6, calculate the area distance between the query image block p' and all image blocks belonging to the category set {c} in the gallery.

该步骤的具体实现如下:The specific implementation of this step is as follows:

6a)对于图像块p与查询图像块p′,分别以4×4区域大小为单位,计算离散小波一层变换的高频子带能量和灰度特征并用作为分割特征,利用自适应的k-means算法对分割特征进行聚类,得到图像块p的纹理区域集R1={r1,r2,…,rh,…rm}及查询图像块p′的纹理区域集R2={r′1,r′2,…,r′o,…r′n},rh、r′o分别表示图像块p与查询图像块p′利用纹理特征分割后的各区域,其中1≤h≤m,1≤o≤n,m表示图像块p的纹理区域的个数,n表示查询图像块p′的纹理区域的个数;6a) For the image block p and the query image block p′, calculate the high-frequency sub-band energy of the discrete wavelet one-layer transform with a 4×4 area size as the unit and grayscale features and use As the segmentation features, the adaptive k-means algorithm is used to cluster the segmentation features to obtain the texture region set R1={r 1 ,r 2 ,…,r h ,…r m } of the image block p and the query image block p ′ texture region set R 2 ={r′ 1 ,r′ 2 ,…,r′ o ,…r′ n }, r h , r′ o respectively denote image block p and query image block p′ using texture feature segmentation After each region, wherein 1≤h≤m, 1≤o≤n, m represents the number of texture regions of the image block p, n represents the number of texture regions of the query image block p';

为了使k-means算法自适应的工作,本实例采用如下两种策略完成自适应的k-means分割:In order to make the k-means algorithm work adaptively, this example uses the following two strategies to complete the adaptive k-means segmentation:

6a1)对散度D(num)设定阈值Tnum=0.035,其中D(num)定义如下:6a1) Set a threshold T num =0.035 for the divergence D(num), where D(num) is defined as follows:

DD. (( numnum )) == &Sigma;&Sigma; ii &OverBar;&OverBar; == 11 LL minmin 11 &le;&le; jj &OverBar;&OverBar; &le;&le; numnum (( Xx ii &OverBar;&OverBar; -- Xx ^^ jj &OverBar;&OverBar; )) 22 ,, 11 &le;&le; ii &OverBar;&OverBar; &le;&le; LL ,, 11 &le;&le; jj &OverBar;&OverBar; &le;&le; numnum -- -- -- << 44 >>

式中,num表示聚类个数,L表示分割特征个数,表示某一分割特征向量,表示某一类的聚类中心,num的值从2开始递增,当D(num)<Tnum时,num停止递增,聚类个数num确定,反之num的值增加1;In the formula, num represents the number of clusters, L represents the number of segmentation features, Represents a segmentation feature vector, Indicates the clustering center of a certain class. The value of num increases from 2. When D(num)<T num , num stops increasing, and the number of clusters num is determined. Otherwise, the value of num increases by 1;

6a2)对聚类个数num设置上限nummax=5,当num>nummax时,num停止递增,聚类个数num确定,反之num的值增加1;6a2) Set the upper limit num max =5 for the number of clusters num, when num>num max , num stops increasing, and the number of clusters num is determined, otherwise the value of num increases by 1;

6b)按照公式<5>计算图像块p与查询图像块p′纹理区域之间的距离d(rh,r′o),6b) Calculate the distance d(r h , r′ o ) between the image block p and the texture area of the query image block p′ according to the formula <5>,

其中,为图像块p中纹理区域rh的平均特征向量,为查询图像块p′中纹理区域r′o的平均特征向量,为各向量的权重系数,其中 in, is the average feature vector of the texture region r h in the image block p, is the average feature vector of the texture region r' o in the query image patch p', is the weight coefficient of each vector, where and

6c)对于图像块p与查询图像块p′,利用Prewitt算子及二值分割法得到图像块p的边缘区域集RE1={rev}及查询图像块p′的边缘区域集RE2={re′z},rev、re′z分别表示图像块p与查询图像块p′利用边缘特征分割后的各区域,其中1≤v≤2,1≤z≤2;6c) For the image block p and the query image block p', use the Prewitt operator and the binary segmentation method to obtain the edge region set RE 1 ={re v } of the image block p and the edge region set RE 2 = of the query image block p'{re' z }, rev and re' z represent the regions of image block p and query image block p' segmented by edge features respectively, where 1≤v≤2, 1≤z≤2;

6c1)设定Prewitt算子:6c1) Set the Prewitt operator:

其中λ=4,gy表示垂直方向的边缘检测算子,gx分别表示水平方向的边缘检测算子;Wherein λ=4, g y represents the edge detection operator in the vertical direction, and g x represents the edge detection operator in the horizontal direction respectively;

6c2)根据Prewitt算子,分别计算图像块p垂直方向的边缘信息与水平方向的边缘信息:6c2) According to the Prewitt operator, calculate the edge information in the vertical direction and the edge information in the horizontal direction of the image block p respectively:

GG ythe y == pp &CircleTimes;&CircleTimes; gg ythe y ,, GG xx == pp &CircleTimes;&CircleTimes; gg xx -- -- -- << 77 >>

其中,Gy表示图像块p垂直方向的边缘信息,Gx表示图像块p水平方向的边缘信息,表示线性卷积;Among them, G y represents the edge information in the vertical direction of the image block p, G x represents the edge information in the horizontal direction of the image block p, Represents linear convolution;

6c3)根据图像块p垂直方向的边缘信息Gy与水平方向的边缘信息Gx,计算图像块p的边缘特征fE6c3) Calculate the edge feature f E of the image block p according to the edge information G y in the vertical direction and the edge information G x in the horizontal direction of the image block p:

ff EE. == (( GG ythe y )) 22 ++ (( GG xx )) 22 -- -- -- << 88 >>

利用二值分割法对边缘特征fE进行分割得到边缘区域集;Using the binary segmentation method to segment the edge feature f E to obtain the edge region set;

6d)按照公式<9>计算图像块p与查询图像块p′边缘区域间的距离d(rev,re′z):6d) Calculate the distance d(re v , re' z ) between the image block p and the edge area of the query image block p' according to the formula <9>:

dd (( rere vv ,, rere zz &prime;&prime; )) == &Sigma;&Sigma; kkkk == 11 22 &omega;e&omega;e kkkk (( fefe kkkk -- fefe kkkk &prime;&prime; )) 22 -- -- -- << 99 >>

其中,kk=1,2,当kk=1时,fekk为图像块p中边缘区域rev的均值特征,fe′kk为查询图像块p′中边缘区域re′z的均值特征;当kk=2时,fekk为图像块p中边缘区域rev的方差特征,fe′kk为查询图像块p′中边缘区域re′z的方差特征,ωekk为各向量的权重系数,且 &Sigma; kk = 1 2 &omega;e kk = 1 ; Among them, kk=1,2, when kk=1, fe kk is the mean value feature of the edge region rev in the image block p, fe′ kk is the mean value feature of the edge region re′ z in the query image block p′; when kk = 2, fe kk is the variance feature of the edge region rev in the image block p, fe'kk is the variance feature of the edge region re'z in the query image block p', ωe kk is the weight coefficient of each vector, and &Sigma; kk = 1 2 &omega;e kk = 1 ;

6e)按照公式<10>计算图像块p与查询图像块p′各纹理区域之间匹配的显著性因子sh,o6e) According to the formula <10>, calculate the significance factor s h,o matching between the texture regions of the image block p and the query image block p′,

&Sigma;&Sigma; oo == 11 nno sthe s hh ,, oo == PP hh ,, hh == 11 ,, &CenterDot;&CenterDot; &CenterDot;&CenterDot; &CenterDot;&CenterDot; ,, mm &Sigma;&Sigma; hh == 11 mm sthe s hh ,, oo == PP oo &prime;&prime; ,, oo == 11 ,, &CenterDot;&CenterDot; &CenterDot;&CenterDot; &CenterDot;&CenterDot; ,, nno -- -- -- << 1010 >>

其中,Ph为图像块p中纹理区域rh占图像块的面积百分比,P′o为查询图像块p′中纹理区域r′o占查询图像块的面积百分比,m表示图像块p的纹理区域的个数,n表示查询图像块p′的纹理区域的个数;Among them, P h is the percentage of the texture area r h in the image block p to the area of the image block, P' o is the percentage of the texture area r' o in the query image block p' to the area of the query image block, and m represents the texture of the image block p The number of regions, n represents the number of texture regions of the query image block p';

6f)按照公式<11>计算图像块p与查询图像块p′各边缘区域之间匹配的显著性因子sv,z6f) According to the formula <11>, calculate the significance factor s v,z matching between the edge regions of the image block p and the query image block p′,

&Sigma;&Sigma; zz == 11 22 sthe s vv ,, zz == PP vv ,, vv == 11 ,, 22 &Sigma;&Sigma; vv == 11 22 sthe s vv ,, zz == PP zz &prime;&prime; ,, zz == 11 ,, 22 -- -- -- << 1111 >>

其中,Pv为图像块p中边缘区域rev占图像块的面积百分比,P′z为查询图像块p′中边缘区域re′z占查询图像块的面积百分比;Among them, P v is the area percentage of the edge region rev in the image block p, and P' z is the area percentage of the edge region re' z in the query image block p' to the query image block;

6g)根据纹理区域之间匹配的显著性因子sh,o,边缘区域之间匹配的显著性因子sv,z,纹理区域之间的距离d(rh,r′o),边缘区域间的距离d(rev,re′z),按照公式<12>得到查询图像块p′与图像块p的区域距离d,6g) According to the significance factor s h,o of matching between texture regions, the significance factor s v,z of matching between edge regions, the distance d(r h ,r′ o ) between texture regions, the distance between edge regions The distance d(re v , re′ z ), according to the formula <12>, the distance d between the query image block p′ and the image block p is obtained,

d=ω1×dT(R1,R2)+ω2×dE(RE1,RE2),ω12=1   <12>d=ω 1 ×dT(R 1 ,R 2 )+ω 2 ×dE(RE 1 ,RE 2 ),ω 12 =1 <12>

其中,表示图像块p与查询图像块p′基于纹理区域的距离,1≤h≤m,1≤o≤n;表示图像块p与查询图像块p′基于边缘区域的距离,1≤v≤2,1≤z≤2;ω1表示dT(R1,R2)的权值,ω2表示dE(RE1,RE2)的权值;in, Indicates the distance between the image block p and the query image block p′ based on the texture area, 1≤h≤m, 1≤o≤n; Indicates the distance between image block p and query image block p′ based on the edge region, 1≤v≤2, 1≤z≤2; ω 1 represents the weight of dT(R 1 , R 2 ), ω 2 represents dE(RE 1 , RE 2 ) weights;

6h)按步骤6a)至6g)的方法,计算出查询图像块p′与图库中属于类别集合{c}中所有图像块的区域距离。6h) According to the method of steps 6a) to 6g), calculate the area distance between the query image block p' and all image blocks belonging to the category set {c} in the gallery.

步骤7,按照步骤6得到的区域距离,以从小到大的顺序返回用户需要数量的图像,完成图像识别。In step 7, according to the area distance obtained in step 6, the number of images required by the user is returned in ascending order to complete the image recognition.

本发明的效果可通过以下仿真进一步说明:Effect of the present invention can be further illustrated by following simulation:

1.仿真条件1. Simulation conditions

本实例仿真条件如下:CORE i5 3.2GHz PC Windows 7操作系统,Matlab2012运行平台。The simulation conditions of this example are as follows: CORE i5 3.2GHz PC Windows 7 operating system, Matlab2012 operating platform.

2.仿真内容及结果2. Simulation content and results

仿真1.从图像库中随机选取100幅SAR图像块,用本发明和GMM检索系统分别对选取的SAR图像块进行识别仿真,计算仿真结果的整体平均查准率,结果如图4所示。其中,查准率precision的定义如下:Simulation 1. Randomly select 100 SAR image blocks from the image library, use the present invention and the GMM retrieval system to carry out recognition simulation on the selected SAR image blocks respectively, and calculate the overall average precision of the simulation results, the results are as shown in Figure 4. Among them, the definition of precision is as follows:

precision=nc/ns   <13>precision=n c /n s <13>

式中,nc表示系统返回的图像块中满足条件的图像块数目,ns表示系统返回的图像块数目。图4中横轴表示方法返回的图像块数量,纵轴表示平均查准率。In the formula, n c represents the number of image blocks that meet the conditions among the image blocks returned by the system, and n s represents the number of image blocks returned by the system. In Figure 4, the horizontal axis represents the number of image blocks returned by the method, and the vertical axis represents the average precision rate.

从图4中可以看出,本发明的整体平均识别精度要优与GMM检索系统。It can be seen from FIG. 4 that the overall average recognition accuracy of the present invention is better than that of the GMM retrieval system.

仿真2.从图像库中随机选取100幅SAR图像块,用本发明和GMM检索系统分别对选取的SAR图像块进行识别仿真,计算仿真结果中每一种语义类别的查准率,结果如图5所示,其中要求返回图像块数量为35。横轴表示各语义类别,纵轴表示查准率。Simulation 2. Randomly select 100 SAR image blocks from the image library, use the present invention and the GMM retrieval system to carry out recognition simulation on the selected SAR image blocks respectively, and calculate the precision rate of each semantic category in the simulation results, the results are as shown in the figure 5, where the number of returned image blocks is required to be 35. The horizontal axis represents each semantic category, and the vertical axis represents the precision rate.

从图5中可以看出,每种语义类别,本发明的识别精度要优与GMM检索系统。It can be seen from FIG. 5 that for each semantic category, the recognition accuracy of the present invention is better than that of the GMM retrieval system.

由以上的实验可以说明,在针对SAR图像识别问题上,本发明不论是整体查准率还是各语义类别的查准率,均优于现有的GMM检索系统。It can be shown from the above experiments that the present invention is superior to the existing GMM retrieval system in terms of the overall precision rate and the precision rate of each semantic category in terms of SAR image recognition.

Claims (6)

1.一种基于半监督分类与区域距离测度的SAR图像识别方法,包括如下步骤:1. A SAR image recognition method based on semi-supervised classification and regional distance measure, comprising the steps: 1)对原始SAR图像进行无重叠切分,以建立SAR图像库{p1,p2,…,pN},从该图像库中按照目标单一原则挑选图像块{p1,p2,…,pl},其中l<<N,N表示图库中的SAR图像块个数,l表示挑选出的SAR图像块个数,所述目标单一原则是指图像块中某目标占图像总面积的一半以上;1) Segment the original SAR image without overlapping to establish a SAR image library {p 1 ,p 2 ,…,p N }, and select image blocks {p 1 ,p 2 ,… , p l }, where l<<N, N represents the number of SAR image blocks in the gallery, l represents the number of selected SAR image blocks, and the principle of single target refers to the percentage of the total image area occupied by a certain target in the image block more than half; 2)提取所有图像块的离散小波三层变换的子带能量,作为图像块的特征向量其中, n &OverBar; = 10 ; 2) Extract the subband energy of the discrete wavelet three-layer transform of all image blocks as the feature vector of the image block in, no &OverBar; = 10 ; 3)将挑选出的SAR图像块{p1,p2,…,pl}按照语义内容分成{ci,1≤i≤k}类,其中k表示语义类别的个数,并用对应的特征向量作为训练样本,训练高斯随机场半监督分类器,利用该分类器对整个SAR图像库{p1,p2,…,pN}分类,得到具有类标的SAR图像库;3) Divide the selected SAR image blocks {p 1 ,p 2 ,…,p l } into { ci ,1≤i≤k} categories according to the semantic content, where k represents the number of semantic categories, and use the corresponding feature The vector is used as a training sample to train a Gaussian random field semi-supervised classifier, and use the classifier to classify the entire SAR image library {p 1 ,p 2 ,…,p N } to obtain a SAR image library with class labels; 4)对用户输入的查询图像块p′,采用与步骤2)相同的方法提取其特征向量f′,并用与步骤3)相同的训练样本及训练好的高斯随机场半监督分类器,得到查询图像块的类别数ci4) For the query image block p' input by the user, use the same method as step 2) to extract its feature vector f', and use the same training samples as step 3) and the trained Gaussian random field semi-supervised classifier to obtain the query The category number c i of the image block; 5)根据步骤4)得到的类别数ci及经验混淆矩阵,计算查询图像块的类别集合{c}:5) According to the number of categories c i and the empirical confusion matrix obtained in step 4), calculate the category set {c} of the query image block: 5a)在已分类的SAR图像库中,挑选出每一类的前K幅图像块,组成新的图像样本集,从此样本集中随机挑选训练样本训练高斯随机场半监督分类器,用该分类器进行100次随机分类试验,得到经验混淆矩阵Con∈Rk×k,混淆矩阵Con是方阵,其中第i行第j列Con(i,j)表示属于ci类的样本被分为cj类的个数,1≤i≤k,1≤j≤k;5a) In the classified SAR image library, select the first K image blocks of each category to form a new image sample set, randomly select training samples from this sample set to train a Gaussian random field semi-supervised classifier, use the classifier Conduct 100 random classification experiments, and get the empirical confusion matrix Con∈R k×k , the confusion matrix Con is a square matrix, where row i and column j Con(i,j) indicates that samples belonging to class c i are divided into c j The number of classes, 1≤i≤k, 1≤j≤k; 5b)对经验混淆矩阵进行列归一化,即将一列中的每个元素除以该列元素的总和,得到经验的后验概率矩阵ConP∈Rk×k5b) Carrying out column normalization to the empirical confusion matrix, that is, dividing each element in a column by the sum of the elements in the column to obtain the empirical posterior probability matrix ConP∈R k×k ; 5c)设置阈值T,将后验概率矩阵中的第i行第j列ConP(i,j)与阈值T进行比较,当ConP(i,j)≤T时,将ConP(i,j)设置为0,反之ConP(i,j)保持不变,阈值T的大小根据期望的每一列的非零元素个数设定;5c) Set the threshold T, compare ConP(i,j) in the i-th row and column j in the posterior probability matrix with the threshold T, and when ConP(i,j)≤T, set ConP(i,j) is 0, otherwise ConP(i,j) remains unchanged, and the size of the threshold T is set according to the expected number of non-zero elements in each column; 5d)根据查询图像块的类别数ci,在后验概率矩阵ConP中的第i列中查找非零元素的位置,最终得到类别集合{c};5d) According to the category number c i of the query image block, find the position of the non-zero element in the i-th column in the posterior probability matrix ConP, and finally obtain the category set {c}; 6)计算查询图像块p′与图库中属于类别集合{c}中所有图像块的区域距离;6) Calculate the area distance between the query image block p' and all image blocks belonging to the category set {c} in the gallery; 7)按照步骤6)得到的区域距离,以从小到大的顺序返回用户需要数量的图像,完成图像识别。7) According to the area distance obtained in step 6), the number of images required by the user is returned in order from small to large, and image recognition is completed. 2.根据权利要求1所述的SAR图像识别方法,其中步骤6)所述的计算查询图像块p′与图库中属于类别集合{c}中所有图像块的区域距离,按如下步骤进行:2. The SAR image recognition method according to claim 1, wherein step 6) the described calculation query image block p ' and the regional distance belonging to all image blocks in the category collection {c} in the gallery are carried out as follows: 6a)对于图像块p与查询图像块p′,分别以4×4区域大小为单位,计算离散小波一层变换的高频子带能量和灰度特征并用作为分割特征,利用自适应的k-means算法对分割特征进行聚类,得到图像块p的纹理区域集R1={r1,r2,…,rh,…rm}及查询图像块p′的纹理区域集R2={r′1,r′2,…,r′o,…r′n},rh、r′o分别表示图像块p与查询图像块p′利用纹理特征分割后的各区域,其中1≤h≤m,1≤o≤n,m表示图像块p的纹理区域的个数,n表示查询图像块p′的纹理区域的个数;6a) For the image block p and the query image block p′, calculate the high-frequency sub-band energy of the discrete wavelet one-layer transform with a 4×4 area size as the unit and grayscale features and use As the segmentation features, the adaptive k-means algorithm is used to cluster the segmentation features to obtain the texture region set R 1 ={r 1 ,r 2 ,…,r h ,…r m } of the image block p and the query image block The texture region set R 2 of p′ ={r′ 1 ,r′ 2 ,…,r′ o ,…r′ n }, r h , r′ o represent image block p and query image block p′ using texture features Each region after segmentation, wherein 1≤h≤m, 1≤o≤n, m represents the number of texture regions of the image block p, and n represents the number of texture regions of the query image block p'; 6b)计算图像块p与查询图像块p′纹理区域之间的距离d(rh,r′o);6b) Calculate the distance d(r h ,r' o ) between the image block p and the texture area of the query image block p'; 6c)对于图像块p与查询图像块p′,利用Prewitt算子及二值分割法得到图像块p的边缘区域集RE1={rev}及查询图像块p′的边缘区域集RE2={re′z},rev、re′z分别表示图像块p与查询图像块p′利用边缘特征分割后的各区域,其中1≤v≤2,1≤z≤2;6c) For the image block p and the query image block p', use the Prewitt operator and the binary segmentation method to obtain the edge region set RE 1 ={re v } of the image block p and the edge region set RE 2 = of the query image block p'{re' z }, rev and re' z represent the regions of image block p and query image block p' segmented by edge features respectively, where 1≤v≤2, 1≤z≤2; 6d)计算图像块p与查询图像块p′边缘区域间的距离d(rev,re′z);6d) Calculate the distance d(re v ,re' z ) between the image block p and the edge area of the query image block p'; 6e)计算图像块p与查询图像块p′各纹理区域之间匹配的显著性因子sh,o,图像块p与查询图像块p′各边缘区域之间匹配的显著性因子sv,z6e) Calculate the significance factor s h,o of the matching between the image block p and the texture regions of the query image block p′, and the significance factor s v, z of the matching between the image block p and the edge regions of the query image block p′ ; 6f)根据纹理区域之间匹配的显著性因子sh,o,边缘区域之间匹配的显著性因子sv,z,纹理区域之间的距离d(rh,r′o),边缘区域间的距离d(rev,re′z),得到查询图像块p′与图像块p的区域距离d:6f) According to the significance factor s h,o of matching between texture regions, the significance factor s v,z of matching between edge regions, the distance d(r h ,r′ o ) between texture regions, the distance between edge regions The distance d(re v , re′ z ) of the query image block p′ and the image block p is the area distance d: d=ω1×dT(R1,R2)+ω2×dE(RE1,RE2),ω12=1,d=ω 1 ×dT(R 1 ,R 2 )+ω 2 ×dE(RE 1 ,RE 2 ), ω 12 =1, 其中,表示图像块p与查询图像块p′基于纹理区域的距离,1≤h≤m,1≤o≤n;表示图像块p与查询图像块p′基于边缘区域的距离,1≤v≤2,1≤z≤2;ω1表示dT(R1,R2)的权值,ω2表示dE(RE1,RE2)的权值;in, Indicates the distance between the image block p and the query image block p′ based on the texture area, 1≤h≤m, 1≤o≤n; Indicates the distance between image block p and query image block p′ based on the edge region, 1≤v≤2, 1≤z≤2; ω 1 represents the weight of dT(R 1 , R 2 ), ω 2 represents dE(RE 1 , RE 2 ) weights; 6g)按步骤6a)至6f)的方法,计算出查询图像块p′与图库中属于类别集合{c}中所有图像块的区域距离。6g) According to the method of steps 6a) to 6f), calculate the area distance between the query image block p' and all image blocks belonging to the category set {c} in the gallery. 3.根据权利要求2所述的SAR图像识别方法,其中所述步骤6b)中计算图像块p与查询图像块p′纹理区域之间的距离d(rh,r′o),通过如下公式计算:3. The SAR image recognition method according to claim 2, wherein the distance d(r h , r' o ) between the image block p and the query image block p' texture area is calculated in the step 6b), by the following formula calculate: 其中,为图像块p中纹理区域rh的平均特征向量,为查询图像块p′中纹理区域r′o的平均特征向量,为各向量的权重系数,其中 in, is the average feature vector of the texture region r h in the image block p, is the average feature vector of the texture region r' o in the query image patch p', is the weight coefficient of each vector, where and 4.根据权利要求2所述的SAR图像识别方法,其中所述步骤6d)中计算图像块p与查询图像块p′边缘区域间的距离d(rev,re′z),通过如下公式计算:4. The SAR image recognition method according to claim 2, wherein in said step 6d), the distance d(re v , re' z ) between the image block p and the query image block p' edge region is calculated by the following formula : dd (( rere vv ,, rere zz &prime;&prime; )) == &Sigma;&Sigma; kkkk == 11 22 &omega;e&omega;e kkkk (( fefe kkkk -- fefe kkkk &prime;&prime; )) 22 ,, 其中,kk=1,2,当kk=1时,fekk为图像块p中边缘区域rev的均值特征,fe′kk为查询图像块p′中边缘区域re′z的均值特征;当kk=2时,fekk为图像块p中边缘区域rev的方差特征,fe′kk为查询图像块p′中边缘区域re′z的方差特征,ωekk为各向量的权重系数,且 Among them, kk=1,2, when kk=1, fe kk is the mean value feature of the edge region rev in the image block p, fe′ kk is the mean value feature of the edge region re′ z in the query image block p′; when kk = 2, fe kk is the variance feature of the edge region rev in the image block p, fe'kk is the variance feature of the edge region re'z in the query image block p', ωe kk is the weight coefficient of each vector, and 5.根据权利要求2所述的SAR图像识别方法,其中所述步骤6e)中计算图像块p与查询图像块p′各纹理区域之间匹配的显著性因子sh,o,通过如下公式计算:5. The SAR image recognition method according to claim 2, wherein the step 6e) calculates the significance factor sh,o matching between the texture regions of the image block p and the query image block p', calculated by the following formula : &Sigma;&Sigma; oo == 11 nno sthe s hh ,, oo == PP hh ,, hh == 11 ,, &CenterDot;&Center Dot; &CenterDot;&CenterDot; &CenterDot;&CenterDot; ,, mm &Sigma;&Sigma; hh == 11 mm sthe s hh ,, oo == PP oo &prime;&prime; ,, oo == 11 ,, &CenterDot;&Center Dot; &CenterDot;&Center Dot; &CenterDot;&Center Dot; ,, nno ,, 其中,Ph为图像块p中纹理区域rh占图像块的面积百分比,P′o为查询图像块p′中纹理区域r′o占查询图像块的面积百分比,m表示图像块p的纹理区域的个数,n表示查询图像块p′的纹理区域的个数。Among them, P h is the percentage of the texture area r h in the image block p to the area of the image block, P' o is the percentage of the texture area r' o in the query image block p' to the area of the query image block, and m represents the texture of the image block p The number of regions, n represents the number of texture regions of the query image block p'. 6.根据权利要求2所述的SAR图像识别方法,其中所述步骤6e)中分别计算图像块p与查询图像块p′各边缘区域之间匹配的显著性因子sv,z,通过如下公式计算:6. The SAR image recognition method according to claim 2, wherein in the step 6e), the significance factor s v, z matching between the image block p and the query image block p' is calculated respectively, by the following formula calculate: &Sigma;&Sigma; zz == 11 22 sthe s vv ,, zz == PP vv ,, vv == 11 ,, 22 &Sigma;&Sigma; vv == 11 22 sthe s vv ,, zz == PP zz &prime;&prime; ,, zz == 11 ,, 22 ,, 其中,Pv为图像块p中边缘区域rev占图像块的面积百分比,P′z为查询图像块p′中边缘区域re′z占查询图像块的面积百分比。Among them, P v is the area percentage of the edge region rev in the image block p to the image block, and P' z is the area percentage of the edge region re' z in the query image block p' to the query image block.
CN201410224797.3A 2014-05-26 2014-05-26 Based on the SAR image recognition methodss that semisupervised classification and region distance are estimated Active CN103984746B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410224797.3A CN103984746B (en) 2014-05-26 2014-05-26 Based on the SAR image recognition methodss that semisupervised classification and region distance are estimated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410224797.3A CN103984746B (en) 2014-05-26 2014-05-26 Based on the SAR image recognition methodss that semisupervised classification and region distance are estimated

Publications (2)

Publication Number Publication Date
CN103984746A true CN103984746A (en) 2014-08-13
CN103984746B CN103984746B (en) 2017-03-29

Family

ID=51276719

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410224797.3A Active CN103984746B (en) 2014-05-26 2014-05-26 Based on the SAR image recognition methodss that semisupervised classification and region distance are estimated

Country Status (1)

Country Link
CN (1) CN103984746B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104217438A (en) * 2014-09-19 2014-12-17 西安电子科技大学 Image significance detection method based on semi-supervision
CN106021362A (en) * 2016-05-10 2016-10-12 百度在线网络技术(北京)有限公司 Query picture characteristic representation generation method and device, and picture search method and device
CN107169532A (en) * 2017-06-14 2017-09-15 北京航空航天大学 A kind of car networking fuel consumption data method for evaluating quality based on wavelet analysis and semi-supervised learning
CN109034853A (en) * 2017-06-09 2018-12-18 北京京东尚科信息技术有限公司 Similar users method, apparatus, medium and electronic equipment are found based on seed user
CN109740671A (en) * 2019-01-03 2019-05-10 北京妙医佳信息技术有限公司 An image recognition method and device
CN110874584A (en) * 2019-11-21 2020-03-10 河北工业大学 A Blade Fault Diagnosis Method Based on Improved Prototype Clustering
CN113963322A (en) * 2021-10-29 2022-01-21 北京百度网讯科技有限公司 Detection model training method and device and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299243A (en) * 2008-06-27 2008-11-05 西安电子科技大学 Method of image segmentation based on immune spectrum clustering
CN101515369A (en) * 2009-04-02 2009-08-26 西安电子科技大学 Multiscale SAR image segmentation method based on semi-supervised learning
CN103456019A (en) * 2013-09-08 2013-12-18 西安电子科技大学 Image segmentation method of semi-supervised kernel k-mean clustering based on constraint pairs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299243A (en) * 2008-06-27 2008-11-05 西安电子科技大学 Method of image segmentation based on immune spectrum clustering
CN101515369A (en) * 2009-04-02 2009-08-26 西安电子科技大学 Multiscale SAR image segmentation method based on semi-supervised learning
CN103456019A (en) * 2013-09-08 2013-12-18 西安电子科技大学 Image segmentation method of semi-supervised kernel k-mean clustering based on constraint pairs

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A.BLUM: "Learning from Labeled and Unlabeled Data using Graph Mincuts", 《PROCEEDINGS OF THE EIGHTEENTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING 》 *
BIAO HOU: "SAR Image Retrieval Based on Gaussian Mixture Model Classification", 《SYNTHETIC APERTURE RADER,2009.APSAR 2009.2ND ASIAN-PACIFIC CONFERENCE ON》 *
JAMES Z. WANG: "SIMPLIcity:Semantics-Sensitive integrated Matching for Picture LIbraries", 《IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE》 *
S.P.GOU: "An Analysis of the Eigenvalues Method for Polarimetric SAR Image Classification", 《GEOSCIENCE AND REMOTE SENSING SYMPOSIUM(IGARSS),2011 IEEE INTERNATIONAL》 *
XIAOJIN ZHU: "Semi-supervised learning using gaussian fields and harmonic functions", 《PROCEEDINGS OF THE TWENTIETH INTERNATIONAL CONFERENCE ON MACHINE LEARNING(ICML-2003)》 *
唐旭: "基于高斯混合模型分类的SAR图像检索", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104217438A (en) * 2014-09-19 2014-12-17 西安电子科技大学 Image significance detection method based on semi-supervision
CN104217438B (en) * 2014-09-19 2017-03-01 西安电子科技大学 Based on semi-supervised image significance detection method
CN106021362A (en) * 2016-05-10 2016-10-12 百度在线网络技术(北京)有限公司 Query picture characteristic representation generation method and device, and picture search method and device
CN106021362B (en) * 2016-05-10 2018-04-13 百度在线网络技术(北京)有限公司 Generation, image searching method and the device that the picture feature of query formulation represents
CN109034853A (en) * 2017-06-09 2018-12-18 北京京东尚科信息技术有限公司 Similar users method, apparatus, medium and electronic equipment are found based on seed user
CN107169532A (en) * 2017-06-14 2017-09-15 北京航空航天大学 A kind of car networking fuel consumption data method for evaluating quality based on wavelet analysis and semi-supervised learning
CN107169532B (en) * 2017-06-14 2020-07-03 北京航空航天大学 A method for evaluating fuel consumption data quality of Internet of Vehicles based on wavelet analysis and semi-supervised learning
CN109740671A (en) * 2019-01-03 2019-05-10 北京妙医佳信息技术有限公司 An image recognition method and device
CN109740671B (en) * 2019-01-03 2021-02-23 北京妙医佳信息技术有限公司 An image recognition method and device
CN110874584A (en) * 2019-11-21 2020-03-10 河北工业大学 A Blade Fault Diagnosis Method Based on Improved Prototype Clustering
CN113963322A (en) * 2021-10-29 2022-01-21 北京百度网讯科技有限公司 Detection model training method and device and electronic equipment
CN113963322B (en) * 2021-10-29 2023-08-25 北京百度网讯科技有限公司 Detection model training method and device and electronic equipment

Also Published As

Publication number Publication date
CN103984746B (en) 2017-03-29

Similar Documents

Publication Publication Date Title
CN103984746B (en) Based on the SAR image recognition methodss that semisupervised classification and region distance are estimated
CN102096825B (en) Graph-based semi-supervised high-spectral remote sensing image classification method
CN102496034B (en) High-spatial resolution remote-sensing image bag-of-word classification method based on linear words
CN103839261B (en) SAR image segmentation method based on decomposition evolution multi-objective optimization and FCM
CN108229550B (en) Cloud picture classification method based on multi-granularity cascade forest network
CN103810704B (en) Based on support vector machine and the SAR image change detection of discriminative random fields
CN105956612B (en) Hyperspectral image classification method based on Active Learning and semi-supervised learning
CN102800093B (en) Multi-target Remote Sensing Image Segmentation Method Based on Decomposition
CN104599275A (en) Understanding method of non-parametric RGB-D scene based on probabilistic graphical model
CN101551809A (en) Search method of SAR images classified based on Gauss hybrid model
CN109359661B (en) A Sentinel-1 Radar Image Classification Method Based on Convolutional Neural Networks
CN105069796B (en) SAR image segmentation method based on small echo both scatternets
CN103426175B (en) The polarization SAR image segmentation method of feature based value metric spectral clustering
CN105139395A (en) SAR image segmentation method based on wavelet pooling convolutional neural networks
Fadaeddini et al. A deep residual neural network for low altitude remote sensing image classification
CN112381144B (en) Heterogeneous deep network method for non-European and Euclidean domain space spectrum feature learning
CN109543546B (en) Gait age estimation method based on depth sequence distribution regression
CN104778476A (en) Image classification method
CN103136757A (en) SAR image segmentation method based on manifold distance two-stage clustering algorithm
CN106096658B (en) Aerial Images classification method based on unsupervised deep space feature coding
CN105913081A (en) Improved PCAnet-based SAR image classification method
CN110222767A (en) Three-dimensional point cloud classification method based on nested neural and grating map
CN102930294A (en) Chaotic characteristic parameter-based motion mode video segmentation and traffic condition identification method
CN102915451A (en) Dynamic texture identification method based on chaos invariant
CN105913090A (en) SAR image object classification method based on SDAE-SVM

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant