CN103968839A - Single-point gravity matching method for improving CKF on basis of bee colony algorithm - Google Patents

Single-point gravity matching method for improving CKF on basis of bee colony algorithm Download PDF

Info

Publication number
CN103968839A
CN103968839A CN201410216172.2A CN201410216172A CN103968839A CN 103968839 A CN103968839 A CN 103968839A CN 201410216172 A CN201410216172 A CN 201410216172A CN 103968839 A CN103968839 A CN 103968839A
Authority
CN
China
Prior art keywords
mrow
msub
value
solution
ckf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410216172.2A
Other languages
Chinese (zh)
Other versions
CN103968839B (en
Inventor
周广涛
赵博
张鹏
姜鑫
孙艳涛
郝勤顺
杨若雨
林萌萌
孙妍忞
张思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201410216172.2A priority Critical patent/CN103968839B/en
Publication of CN103968839A publication Critical patent/CN103968839A/en
Application granted granted Critical
Publication of CN103968839B publication Critical patent/CN103968839B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

The invention relates to a single-point gravity matching method for improving CKF on the basis of bee colony algorithm. The method comprises the steps: acquiring an initial value X0 of the quantity of state and an initial value P0 of a covariance matrix; updating the time by adopting a CKF method to obtain a state one-step prediction value Xk and a one-step predicted covariance matrix Pk, and obtaining corresponding intensity of gravity Fk in a gravity reference map according to longitude lambda k and latitude phi k of a carrier output by an initial navigation system; carrying out the iterative search on an indicated position of the initial navigation system by adopting a manual bee colony algorithm according to the intensity Fk of the gravity and the carrier speed Vk output by a Doppler, and thus obtaining optimal estimated values lambda k' and phi k' of the longitude and latitude; measuring and updating the state estimated covariance value Pk and an optimal estimated value Xk of a state vector by adopting the CKF method according to the optimized estimated value lambda k' and phi k'.

Description

Single-point gravity matching method for improving CKF (CKF) based on swarm algorithm
Technical Field
The invention relates to a single-point gravity matching method for improving CKF based on a swarm algorithm.
Background
Inertial Navigation Systems (INS) mainly based on inertial navigation devices (gyros and accelerometers) have become navigation systems widely applied in the current navigation field, and are widely applied in the fields of navigation, aerospace and aviation. The gravity-assisted navigation can effectively make up for the defects of inertial navigation, is not limited by time, can provide real-time gravity data, and can analyze gravity intensity data on a gravity reference map by combining with an inertial navigation system. At present, a CKF (cubature Kalman filtering) method adopted in navigation has the defects of inaccuracy in estimation and the like due to the fact that the CKF method is easily influenced by environmental interference and errors.
Disclosure of Invention
The invention aims to provide a single-point gravity matching method for improving CKF based on a swarm algorithm, which can effectively improve the stability and precision of the CKF and reduce the influence of environment and deviation.
The technical scheme for realizing the aim of the invention is as follows:
a single-point gravity matching method for improving CKF based on a swarm algorithm is characterized by comprising the following steps:
step 1: collecting gravity signal F measured by gravimeter to obtain longitude lambda and latitude of carrier position informationVelocity information VxAnd VyCarrier attitude informationAnd
step 2: by carrier position error informationSum δ λ, speed error information δ VxAnd δ VyCarrier attitude informationAndtaking the drift information of the gyroscope and the accelerometer as state quantity to obtain a state vector X; establishing a system state equation by taking external noise of a system as a system disturbance vector W;
and step 3: according to the information collected in the step 1, obtaining an initial value X of the state quantity0Initial value P of sum-covariance matrix0(ii) a Updating time by adopting a CKF method to obtain a state one-step predicted valueSum-step prediction covariance matrix
And 4, step 4: carrier longitude lambda from inertial navigation system outputkAnd latitudeObtaining corresponding gravity intensity F in the gravity reference diagramk(ii) a According to the strength of gravity FkAnd the carrier velocity V of the Doppler outputkIterative search is carried out at the indicated position of the inertial navigation system by adopting an artificial bee colony algorithm to obtain the optimal estimated value lambda of the longitude and the latitudek' and
and 5: according to longitude lambda output by inertial navigation system in real timekAnd latitudeObtaining the relevant gravity intensity from the gravity reference mapThe observation value of the gravity intensity is obtained by the measurement of a gravimeterThe difference between the two is used to obtain the system observation vector
Step 6: according to the optimal estimated value lambda of the longitude and the latitude obtained in the step 4k' andadopting CKF method to carry out measurement updating to obtain measurement predicted valueInnovation variance Pxz,kCovariance matrix Pzz,kFilter gain KkState estimation covariance matrix PkOptimal estimate of the state vector
And 7: and (6) repeating the steps 4 to 6, and estimating the state vector and the state covariance matrix in the next step.
In step 2, the state vector X is represented as follows:
wherein,is the system attitude angle; epsilondi(i ═ x, y, z) is tourbillonThe drift error of the screw instrument constant value and satisfiesεri(i ═ x, y, z) is the gyroscope first order Markov drift error, which satisfiesWhere T represents the time constant of the first order Markov process of the gyroscope, wri(i ═ x, y, z) is the first order noise of the gyroscope,for accelerometer zero order drift, satisfy a first order Markov process, anIn the formula TaTime constant, w, representing the first order Markov process of an accelerometeri(i ═ x, y) is accelerometer first order noise, [ … … { (i ═ x, y) } is accelerometer first order noise]TRepresents a transposition of the vector;
the perturbation vector W of the system is represented as follows:
W=[wgx wgy wgz wrx wry wrz wax way]T
wherein, wgiAnd i is white noise and satisfies wgi~N(0,σ2),i=x,y,z;
The state equation of the system is expressed as follows:
<math> <mrow> <mover> <mi>X</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mi>FX</mi> <mo>+</mo> <mi>GW</mi> </mrow> </math>
wherein, F is the system matrix, G is the system control matrix, obtains the formula discretization:
<math> <mrow> <msub> <mover> <mi>X</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msub> <mi>W</mi> <mi>k</mi> </msub> </mrow> </math>
wherein,
<math> <mrow> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>F</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mrow> </math>
<math> <mrow> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&Integral;</mo> <mi>k</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>.</mo> <mi>k</mi> </mrow> </msub> <mi>G</mi> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mi>d&tau;</mi> </mrow> </math>
in step 3, the initial value X of the state quantity0Initial value P of sum-covariance matrix0Expressed as:
P 0 = E [ ( x 0 - x ^ 0 ) ( x 0 - x ^ 0 ) T ] ( x ^ 0 = E ( x 0 ) )
when the time updating is carried out by adopting the CKF method, the nonlinear system state equation and the measurement equation with additive Gaussian noise are considered to have the following forms
xk=f(xk-1k-1)+ωk-1
zk=h(xkk)+νk
Wherein x isk∈RnIs the state of the system at time k,is an input of the system, zk∈RmIs a measure of the system, ωk-1V and vkIs uncorrelated zero-mean white Gaussian noise with covariance matrices of Qk-1And Rk
A weighted Gaussian score of (x) for any function f
<math> <mrow> <msub> <mi>I</mi> <mi>N</mi> </msub> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mo>&Integral;</mo> <msup> <mi>R</mi> <mi>n</mi> </msup> </msub> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>N</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>;</mo> <mi>&mu;</mi> <mo>,</mo> <mi>P</mi> <mo>)</mo> </mrow> <mi>dx</mi> <mo>&ap;</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <mi>&mu;</mi> <mo>+</mo> <msqrt> <mi>P</mi> </msqrt> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
Volume point set { ξ) with 2n elementsiIs as
n { 1 0 . . . 0 . . . 0 0 . . . 1 - 1 0 . . . 0 . . . 0 0 . . . - 1 }
Wherein, the volume point xiiIs an n-dimensional column vector, n being the state dimension;cholesky decomposition for covariance P and satisfiesUsing the volume rule, under the Bayesian estimation framework, the known posterior density function at the k-th time is assumed p ( x k - 1 ) = N ( x k - 1 ; x ^ k - 1 , P k - 1 ) ;
The time update by the CKF method is as follows:
(1) calculating volume points
<math> <mrow> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msqrt> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </msqrt> <msub> <mi>&xi;</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mn>2</mn> <mi>n</mi> </mrow> </math>
(2) Propagation of volume points
<math> <mrow> <msubsup> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&mu;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mn>2</mn> <mi>n</mi> </mrow> </math>
(3) State prediction valueSum-covariance matrix
<math> <mrow> <msub> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>P</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> <msup> <msubsup> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> <mi>T</mi> </msup> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <msup> <msub> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
Wherein Qk-1And (4) inputting a covariance matrix for the system.
In the step 4, the method specifically comprises the following steps:
step 4.1: initializing parameters; randomly generating n numbers of data points with respect to a given longitude λkLatitude and longitudeInitial solution X in the vicinity of velocity ViPosition ofIs given currentlyInitializing a solution group according to the following formula;
Xi=Xi0+rand*R
wherein, Xi(i ═ 1,2, … n) is a two-dimensional vector, Xi0Is composed ofThe initial solution obtained, rand, is [0,1 ]]Any number in between, R is the neighborhood radius;
step 4.2: searching a new position solution in the range of the current solution according to the following formula, and calculating the fitness of the new solution; when the fitness of the new solution is better, the position solution is updated to a new position, otherwise, the original solution is kept unchanged, and the number s of times of non-update is added with 1;
<math> <mrow> <msubsup> <mi>V</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mo>=</mo> <msubsup> <mi>X</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mo>+</mo> <msubsup> <mi>&phi;</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mo>-</mo> <msubsup> <mi>X</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </math>
wherein k is 1,2, … n, j is 1,2, and i is not equal to j;is [ -1,1 [ ]]Any number in between;
calculating the current fitness function value fitness:
fitness=1/(1+fi)
wherein,
wherein m is1,m2Is a factor, and satisfies m1+m2=1,λk-1|k-1Andrespectively representing the optimal estimated values of the longitude and the latitude after the filtration at the k-1 moment, wherein F is the measured value of the current gravitational field strength, and F is the measured value of the current gravitational field strengthkIs a current longitude lambda output according to an inertial navigation systemkAnd latitudeObtaining the strength of the gravitational field, V, in a gravity reference mapkThe carrier velocity as the doppler output;
step 4.3: the probability of each lead bee being selected is calculated as follows:
<math> <mrow> <msub> <mi>P</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>fithess</mi> <mo>/</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mi>fitness</mi> </mrow> </math>
Pithe fitness function value representing the proportion of the fitness function value of a specific solution to the sum of the fitness function values;
step 4.4: selecting a leading bee by the following bee in a roulette mode, namely following the updated solution in the step 4.2, updating the position information in the step 4.1, if the position is more optimal, updating to a new solution, and if the position is not more optimal, adding 1 to the number s of times of non-updating;
step 4.5: when the number of times of non-update is greater than a given value s in the vicinity of the i-th solutionmaxIf no solution more suitable than the current solution is found, leading the bees to abandon the current position solution, changing the solution into the detection bees, and initializing a new solution group according to the method of the step 4.1;
step 4.6: if the iteration times reach the maximum value, the algorithm iteration is ended, the optimal solution at the moment is output, and if not, the step 4.2 is returned to continue the circulation.
In step 6, the measurement update is performed by using the CKF method as follows:
(1) calculating volume points
<math> <mrow> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msqrt> <msub> <mover> <mi>P</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> </msqrt> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> </mrow> </math>
(2) Volumetric point propagation
Zj,k=h(Xj,kk),j=1,2,…2n.
(3) Estimating a measurement prediction value at time k
<math> <mrow> <msub> <mover> <mi>Z</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msub> <mi>Z</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mrow> </math>
(4) Estimating innovation variance
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>zz</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msub> <mi>Z</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msup> <msub> <mi>Z</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mi>T</mi> </msup> <mo>-</mo> <msub> <mover> <mi>Z</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <msup> <msub> <mover> <mi>Z</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>R</mi> <mi>k</mi> </msub> </mrow> </math>
(5) Estimating a covariance matrix
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>xz</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msubsup> <mi>Z</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> <mi>T</mi> </msubsup> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <msup> <msub> <mover> <mi>Z</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mi>T</mi> </msup> </mrow> </math>
(6) Estimating filter gain
Kk=Pxz,kPzz,k -1
(7) State estimation value at time k
<math> <mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mover> <mi>Z</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
(8) Covariance value of state estimation at time k
<math> <mrow> <msub> <mi>P</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>P</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>K</mi> <mi>x</mi> </msub> <msub> <mi>P</mi> <mrow> <mi>zz</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msup> <msub> <mi>K</mi> <mi>k</mi> </msub> <mi>T</mi> </msup> </mrow> </math>
The invention has the following beneficial effects:
aiming at the problem that the mathematical model is difficult to accurately establish due to the nonlinearity and noise interference of the system, the method adopts a single-point gravity matching mode, avoids the error caused by model approximation, and improves the accuracy of the matched filtering result.
Aiming at a single-point gravity matching mode, the invention adopts a CKF method and a Bayesian framework based on Gaussian assumption to resolve nonlinear filtering into an integral problem of a product of a nonlinear function and Gaussian probability density, and has the advantages of simple realization, high estimation precision, no need of calculating a Jacobian matrix like an EKF algorithm and no need of pre-assuming parameters like a UKF algorithm.
Aiming at the problem of filter performance reduction caused by inaccurate filter models, the invention adopts an artificial bee colony algorithm to improve the CKF. The artificial bee colony algorithm has the advantages of simple flow, strong robustness, clear division of labor of multiple roles in a colony, good cooperative work mechanism and easy combination with other algorithms. According to the invention, the artificial bee colony algorithm is adopted to carry out secondary matching on the CKF one-step prediction information, and the matched state quantity is used for the measurement updating process of the CKF, so that the stability and the precision of the CKF are improved, the influence of environment and deviation is reduced, and the precision of matching positioning is improved.
Drawings
FIG. 1 is a flow chart of a method of the present invention;
fig. 2 is a schematic block diagram of the single-point gravity matching method for improving CKF based on bee colony algorithm according to the present invention.
Detailed Description
As shown in fig. 1, the single-point gravity matching method for improving CKF based on bee colony algorithm of the present invention includes the following steps:
step 1: collecting gravity signal F measured by gravimeter, and obtaining carrier position information lambda and lambda output by inertial navigation systemVelocity information VxAnd VyCarrier attitude informationAnd
step 2: by carrier position error informationSum δ λ, speed error information δ VxAnd δ VyCarrier attitude informationAndtaking the drift information of the gyroscope and the accelerometer as state quantity to obtain a state vector X; and (3) taking the external noise of the system as a system disturbance vector W, and further establishing a system state equation.
In particular, using carrier position error informationSum δ λ, speed error information δ VxAnd δ VyCarrier attitude informationAndthe drift information of the gyroscope and the accelerometer is used as a state vector, and a system state vector is obtained through definition
Wherein,is the system attitude angle; epsilondi(i ═ x, y, z) is the gyro constant drift error and satisfiesεri(i ═ x, y, z) is the gyroscope first order Markov drift error, which satisfiesWhere T represents the time constant of the first order Markov process of the gyroscope, wri(i ═ x, y, z) is the first order noise of the gyroscope,for accelerometer zero order drift, satisfy a first order Markov process, anIn the formula TaTime constant, w, representing the first order Markov process of an accelerometeri(i ═ x, y) is accelerometer first order noise, [ … … { (i ═ x, y) } is accelerometer first order noise]TRepresenting the transpose of the vector. The perturbation vector of the system can be expressed as follows:
W=[wgx wgy wgz wrx wry wrz wax way]T
wherein, wgiAnd i is white noise and satisfies wgi~N(0,σ2) And i is x, y, z. The state equation of the system can be expressed as
<math> <mrow> <mover> <mi>X</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mi>FX</mi> <mo>+</mo> <mi>GW</mi> </mrow> </math>
Wherein, F is the system matrix, G is the system control matrix, obtains the formula discretization:
<math> <mrow> <msub> <mover> <mi>X</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msub> <mi>W</mi> <mi>k</mi> </msub> </mrow> </math>
wherein,
<math> <mrow> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>F</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mrow> </math>
<math> <mrow> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&Integral;</mo> <mi>k</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>.</mo> <mi>k</mi> </mrow> </msub> <mi>G</mi> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mi>d&tau;</mi> </mrow> </math>
and step 3: according to the information collected in the step 1, obtaining an initial value X of the state quantity0Initial value P of sum-covariance matrix0(ii) a Updating time by adopting a CKF method to obtain a state one-step predicted valueSum-step prediction covariance matrix
Initial value X of state quantity0Initial value P of sum-covariance matrix0Expressed as:
wherein,is the system attitude angle; epsilondi0(i ═ x, y, z) is the constant drift of the gyroscopeShift error and satisfyεri0(i ═ x, y, z) is the gyroscope first order Markov drift error, which satisfiesIn the above formula, T represents the time constant of the first-order Markov process of the gyroscope, wri(i ═ x, y, z) is the first order noise of the gyroscope;for accelerometer zero order drift, satisfy a first order Markov process, anIn the above formula, TaTime constant, w, representing the first order Markov process of an accelerometeri(i ═ x, y) is accelerometer first order noise, [ … … { (i ═ x, y) } is accelerometer first order noise]TRepresenting the transpose of the vector. Initial value of covariance matrix, i.e.
P 0 = E [ ( x 0 - x ^ 0 ) ( x 0 - x ^ 0 ) T ] ( x ^ 0 = E ( x 0 ) )
Specifically, the initial values of the state quantity and the covariance matrix are obtained as
P 0 = E [ ( x 0 - x ^ 0 ) ( x 0 - x ^ 0 ) T ] ( x ^ 0 = E ( x 0 ) )
CKF time updates are made. Consider a nonlinear system state equation with additive Gaussian noise and a metrology equation having the form
xk=f(xk-1k-1)+ωk-1
zk=h(xkk)+νk
Wherein x isk∈RnIs the state of the system at time k,is an input of the system, zk∈RmIs a measure of the system, ωk-1V and vkIs uncorrelated zero-mean white Gaussian noise with covariance matrices of Qk-1And Rk
The kernel problem of nonlinear Gaussian filtering is that the integral of the product of multivariable nonlinear function and Gaussian density function is solved, the weighted problem of Gaussian integral is replaced by the summation of 2n volume points by the third-order volume integral rule, and the weighted Gaussian score of any function f (x) is
<math> <mrow> <msub> <mi>I</mi> <mi>N</mi> </msub> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mo>&Integral;</mo> <msup> <mi>R</mi> <mi>n</mi> </msup> </msub> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>N</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>;</mo> <mi>&mu;</mi> <mo>,</mo> <mi>P</mi> <mo>)</mo> </mrow> <mi>dx</mi> <mo>&ap;</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <mi>&mu;</mi> <mo>+</mo> <msqrt> <mi>P</mi> </msqrt> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
Volume point set { ξ) with 2n elementsiIs as
n { 1 0 . . . 0 . . . 0 0 . . . 1 - 1 0 . . . 0 . . . 0 0 . . . - 1 }
Wherein, the volume point xiiIs an n-dimensional column vector, n being the state dimension;cholesky decomposition for covariance P and satisfiesUsing the volume rule, under the Bayesian estimation framework, the known posterior density function at the k-th time is assumed p ( x k - 1 ) = N ( x k - 1 ; x ^ k - 1 , P k - 1 ) .
The CKF time updates are as follows:
(1) calculating volume points
<math> <mrow> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msqrt> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </msqrt> <msub> <mi>&xi;</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mn>2</mn> <mi>n</mi> </mrow> </math>
(2) Propagation of volume points
<math> <mrow> <msubsup> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&mu;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mn>2</mn> <mi>n</mi> </mrow> </math>
(3) State prediction values and covariance matrices
<math> <mrow> <msub> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>P</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> <msup> <msubsup> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> <mi>T</mi> </msup> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <msup> <msub> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
Wherein Q isk-1And (4) inputting a covariance matrix for the system.
And 4, step 4: from longitude λ output by inertial navigation systemkAnd latitudeObtaining the strength F of the gravity field in the gravity reference diagramk. Doppler output carrier velocity of Vk. Adopting artificial bee colony algorithm to carry out iterative search at the indicated position of the inertial navigation system, continuously updating longitude and latitude information and defining a cost function fi
Wherein m is1,m2Is a factor, and satisfies m1+m2=1,λk-1|k-1Andrespectively representing the optimal estimated values of the longitude and the latitude after filtering at the moment k-1, F is a measured value of the gravity field strength output by the gravimeter,representing the square of the two norms. VkThe carrier velocity of the doppler output. Due to the cost function fi>0, further defining a fitness function fitness
fitness=1/(1+fi)
After initial values and iteration times are given, optimal estimated values lambda of longitude and latitude can be obtainedk' and
specifically, the current longitude λ is output according to the inertial navigation systemkAnd latitudeObtaining the strength F of the gravity field in the gravity reference diagramkDoppler output carrier velocity of Vk. Adopting an artificial bee colony algorithm to carry out iterative operation, and specifically comprising the following steps:
step 4.1: initializing parameters: randomly generating n numbers of data points with respect to a given longitude λkLatitude and longitudeInitial solution X in the vicinity of velocity ViInitial positionIs given currentlyInitializing a solution group according to the following formula;
Xi=Xi0+rand*R
wherein, Xi(i ═ 1,2, … n) is a two-dimensional vector, Xi0Is composed ofThe initial solution obtained. rand is [0,1 ]]Any number in between, R is the neighborhood radius。
Step 4.2: according to the following formula, a new position solution is searched in the range of the current solution, and the fitness of the new solution is calculated. When the fitness of the new solution is better, the position solution is updated to a new position, otherwise, the original solution is kept unchanged, and the number s of times of non-update is added with 1;
<math> <mrow> <msubsup> <mi>V</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mo>=</mo> <msubsup> <mi>X</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mo>+</mo> <msubsup> <mi>&phi;</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mo>-</mo> <msubsup> <mi>X</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </math>
wherein k is 1,2, … n, j is 1,2, and i is not equal to j;is [ -1,1 [ ]]Any number therebetween.
Calculating the current cost function value fi
Wherein m is1,m2Is a factor, and satisfies m1+m2=1,λk-1|k-1Andrespectively representing the optimal estimated values of the longitude and the latitude after the filtration at the k-1 moment, wherein F is the measured value of the current gravitational field strength, and F is the measured value of the current gravitational field strengthkIs based on the current output of the inertial navigation systemLongitude λkAnd latitudeThe gravitational field strength from the gravity reference map. Due to the cost function fi>0, further defining a fitness function fitness
fitness=1/(1+fi)
And calculating the current fitness function value fitness.
Step 4.3: the probability of each lead bee being selected is calculated as follows:
<math> <mrow> <msub> <mi>P</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>fitness</mi> <mo>/</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mi>fitness</mi> </mrow> </math>
wherein, PiThe fitness function value representing the ratio of the fitness function value for a particular solution to the sum of the fitness function values.
Step 4.4: selecting a leading bee by the following bee in a roulette mode, namely the updated solution in the step 4.2 for following, updating the position information in the step 4.1, if the position is more optimal, updating to a new solution, and if the position is not more optimal, adding 1 to the number s of times of non-updating;
step 4.5: when the number of times of non-update is greater than a given value s in the vicinity of the i-th solutionmaxIf no solution more suitable than the current solution is found, leading the bee to abandon the current position solution, changing the solution into a scout bee, and searching a new solution according to the method in the step 4.2;
step 4.6: if the iteration times reach the maximum value, the algorithm iteration is ended, the optimal solution at the moment is output, and if not, the step 4.2 is returned to continue the circulation.
And 5: navigation by inertiaLongitude information lambda output by system in real timekAnd latitude informationObtaining the relevant gravity strength value according to the gravity reference mapThe observed value of the gravity intensity is obtained by the measurement of a gravimeterThe difference between the two is used to obtain the system observation vector
Specifically, the longitude information lambda is output in real time according to the inertial navigation systemkAnd latitude informationObtaining the relevant gravity strength value according to the gravity reference mapThe observation value of the gravity intensity is obtained by the measurement of a gravimeterThe difference between the two is used to obtain the system observation vector
Wherein,δgmin order to be a reference map error,δgggmeasuring errors for a gravimeter;
step 6: longitude lambda of the optimal estimate obtained in step 4k' and latitudeCarrier attitude information output by inertial navigation systemAndadopting CKF to carry out measurement updating to obtain a measurement predicted valueInnovation variance Pxz,kCovariance matrix Pzz,kFilter gain KkState estimation mean square error value PkOptimal estimate of the state vector
Specifically, the longitude λ of the optimal estimation obtained in step 4 is appliedk' and latitudeAnd Doppler output carrier velocity VkThe measurement update is performed on the CKF, which specifically includes the following steps:
(1) calculating volume points
<math> <mrow> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msqrt> <msub> <mover> <mi>P</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> </msqrt> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> </mrow> </math>
(2) Volumetric point propagation
Zj,k=h(Xj,kk),j=1,2,…2n.
(3) Estimating a measurement prediction value at time k
<math> <mrow> <msub> <mover> <mi>Z</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msub> <mi>Z</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mrow> </math>
(4) Estimating innovation variance
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>zz</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msub> <mi>Z</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msup> <msub> <mi>Z</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mi>T</mi> </msup> <mo>-</mo> <msub> <mover> <mi>Z</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <msup> <msub> <mover> <mi>Z</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>R</mi> <mi>k</mi> </msub> </mrow> </math>
(5) Estimating a covariance matrix
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>xz</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msubsup> <mi>Z</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> <mi>T</mi> </msubsup> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <msup> <msub> <mover> <mi>Z</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mi>T</mi> </msup> </mrow> </math>
(6) Estimating filter gain
Kk=Pxz,kPzz,k -1
(7) State estimation value at time k
<math> <mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mover> <mi>Z</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
(8) Covariance value of state estimation at time k
<math> <mrow> <msub> <mi>P</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>P</mi> <mo>&OverBar;</mo> </mover> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>K</mi> <mi>x</mi> </msub> <msub> <mi>P</mi> <mrow> <mi>zz</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msup> <msub> <mi>K</mi> <mi>k</mi> </msub> <mi>T</mi> </msup> </mrow> </math>
And 7: using new initial values and variances obtained by CKF filtering, optimal estimated values of longitude and latitude and velocity VkAnd (6) repeating the steps 4 to 6, and carrying out the next filtering and the processing of the artificial bee colony algorithm. As can be seen from the above embodiments, for single-point gravity matching, compared with the existing matching method, the single-point gravity matching method for improving the CKF based on the artificial bee colony algorithm provided by the invention solves the problem of a susceptible loop in the CKF filtering processAnd the estimation is inaccurate due to environmental interference and error influence. The bee colony algorithm has the advantages of clear multi-role division work in the colony, good cooperative work mechanism and easy combination with other algorithms. And performing secondary matching on the CKF one-step prediction information by adopting an artificial bee colony algorithm, and using the matched state quantity in the measurement updating process of the CKF filtering, so that the stability and the precision of the CKF filtering are improved, the influence of the environment and the deviation is reduced, and the matching positioning precision is improved.

Claims (5)

1. A single-point gravity matching method for improving CKF based on bee colony algorithm is characterized in that: the method comprises the following steps:
step 1: collecting gravity signal F measured by gravimeter to obtain longitude lambda and latitude of carrier position informationVelocity information VxAnd VyCarrier attitude informationAnd
step 2: by carrier position error informationSum δ λ, speed error information δ VxAnd δ VyCarrier attitude informationAndtaking the drift information of the gyroscope and the accelerometer as state quantity to obtain a state vector X; establishing a system state equation by taking external noise of a system as a system disturbance vector W;
and step 3: according to the information collected in the step 1, obtaining an initial value X of the state quantity0Initial value P of sum-covariance matrix0(ii) a Updating time by adopting a CKF method to obtain a state one-step predicted valueSum-step prediction covariance matrix
And 4, step 4: carrier longitude lambda from inertial navigation system outputkAnd latitudeObtaining corresponding gravity intensity F in the gravity reference diagramk(ii) a According to the strength of gravity FkAnd the carrier velocity V of the Doppler outputkIterative search is carried out at the indicated position of the inertial navigation system by adopting an artificial bee colony algorithm to obtain the optimal estimated value lambda of the longitude and the latitudek' and
and 5: according to longitude lambda output by inertial navigation system in real timekAnd latitudeObtaining the relevant gravity intensity from the gravity reference mapThe observation value of the gravity intensity is obtained by the measurement of a gravimeterThe difference between the two is used to obtain the system observation vector
Step 6: according to the optimal estimated value lambda of the longitude and the latitude obtained in the step 4k' andadopting CKF method to perform measurement update to obtain the measurement prediction valueInnovation variance Pxz,kCovariance matrix Pzz,kFilter gain KkState estimation covariance matrix PkOptimal estimate of the state vector
And 7: and (6) repeating the steps 4 to 6, and estimating the state vector and the state covariance matrix in the next step.
2. The bee colony algorithm-based single point gravity matching method for improving CKF according to claim 1, wherein:
in step 2, the state vector X is represented as follows:
wherein,is the system attitude angle; epsilondi(i ═ x, y, z) is the gyro constant drift error and satisfiesεri(i ═ x, y, z) is the gyroscope first order Markov drift error, which satisfiesWhere T represents the time constant of the first order Markov process of the gyroscope, wri(i ═ x, y, z) is the first order noise of the gyroscope,for accelerometer zero order drift, satisfy a first order Markov process, anIn the formula TaTime constant, w, representing the first order Markov process of an accelerometeri(i ═ x, y) is accelerometer first order noise, [ … … { (i ═ x, y) } is accelerometer first order noise]TRepresents a transposition of the vector;
the perturbation vector W of the system is represented as follows:
W=[wgx wgy wgz wrx wry wrz wax way]T
wherein, wgiAnd i is white noise and satisfies wgi~N(0,σ2),i=x,y,z;
The state equation of the system is expressed as follows:
wherein, F is the system matrix, G is the system control matrix, obtains the formula discretization:
wherein,
3. the bee colony algorithm-based single point gravity matching method for improving CKF according to claim 2, wherein: in step 3, the initial value X of the state quantity0Initial value P of sum-covariance matrix0Expressed as:
when the time updating is carried out by adopting the CKF method, the nonlinear system state equation and the measurement equation with additive Gaussian noise are considered to have the following forms
xk=f(xk-1k-1)+ωk-1
zk=h(xkk)+νk
Wherein x isk∈RnIs the state of the system at time k,is an input of the system, zk∈RmIs a measure of the system, ωk-1V and vkIs uncorrelated zero-mean white Gaussian noise with covariance matrices of Qk-1And Rk
A weighted Gaussian score of (x) for any function f
Volume point set { ξ) with 2n elementsiIs as
Wherein, the volume point xiiIs an n-dimensional column vector, n being the state dimension;cholesky decomposition for covariance P and satisfiesUsing the volume rule, under the Bayesian estimation framework, the known posterior density function at the k-th time is assumed
The time update by the CKF method is as follows:
(1) calculating volume points
(2) Propagation of volume points
(3) State prediction valueSum-covariance matrix
Wherein Qk-1And (4) inputting a covariance matrix for the system.
4. The method of claim 3 for improving single point gravity matching of CKF based on bee colony algorithm, wherein the method comprises the following steps: in the step 4, the method specifically comprises the following steps:
step 4.1: initializing parameters; randomly generating n numbers of data points with respect to a given longitude λkLatitude and longitudeInitial solution X in the vicinity of velocity ViPosition ofIs given currentlyInitializing a solution group according to the following formula;
Xi=Xi0+rand*R
wherein, Xi(i ═ 1,2, … n) is a two-dimensional vector, Xi0Is composed ofThe initial solution obtained, rand, is [0,1 ]]Any number in between, R is the neighborhood radius;
step 4.2: searching a new position solution in the range of the current solution according to the following formula, and calculating the fitness of the new solution; when the fitness of the new solution is better, the position solution is updated to a new position, otherwise, the original solution is kept unchanged, and the number s of times of non-update is added with 1;
wherein k is 1,2, … n, j is 1,2, and i is not equal to j;is [ -1,1 [ ]]Any number in between;
calculating the current fitness function value fitness:
fitness=1/(1+fi)
wherein,
wherein m is1,m2Is a factor, and satisfies m1+m2=1,λk-1|k-1Andrespectively representing the optimal estimated values of the longitude and the latitude after the filtration at the k-1 moment, wherein F is the measured value of the current gravitational field strength, and F is the measured value of the current gravitational field strengthkIs a current longitude lambda output according to an inertial navigation systemkAnd latitudeObtaining the strength of the gravitational field, V, in a gravity reference mapkThe carrier velocity as the doppler output;
step 4.3: the probability of each lead bee being selected is calculated as follows:
Pithe fitness function value representing the proportion of the fitness function value of a specific solution to the sum of the fitness function values;
step 4.4: selecting a leading bee by the following bee in a roulette mode, namely following the updated solution in the step 4.2, updating the position information in the step 4.1, if the position is more optimal, updating to a new solution, and if the position is not more optimal, adding 1 to the number s of times of non-updating;
step 4.5: when the number of times of non-update is greater than a given value s in the vicinity of the i-th solutionmaxIf no solution more suitable than the current solution is found, leading the bees to abandon the current position solution, changing the solution into the detection bees, and initializing a new solution group according to the method of the step 4.1;
step 4.6: if the iteration times reach the maximum value, the algorithm iteration is ended, the optimal solution at the moment is output, and if not, the step 4.2 is returned to continue the circulation.
5. The method for improving single-point gravity matching of CKF based on bee colony algorithm as claimed in claim 4, wherein in step 6, the measurement update is performed by using the CKF method as follows:
(1) calculating volume points
(2) Volumetric point propagation
Zj,k=h(Xj,kk),j=1,2,…2n.
(3) Estimating a measurement prediction value at time k
(4) Estimating innovation variance
(5) Estimating a covariance matrix
(6) Estimating filter gain
Kk=Pxz,kPzz,k -1
(7) State estimation value at time k
(8) Covariance value of state estimation at time k
CN201410216172.2A 2014-05-21 2014-05-21 Single-point gravity matching method for improving CKF on basis of bee colony algorithm Active CN103968839B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410216172.2A CN103968839B (en) 2014-05-21 2014-05-21 Single-point gravity matching method for improving CKF on basis of bee colony algorithm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410216172.2A CN103968839B (en) 2014-05-21 2014-05-21 Single-point gravity matching method for improving CKF on basis of bee colony algorithm

Publications (2)

Publication Number Publication Date
CN103968839A true CN103968839A (en) 2014-08-06
CN103968839B CN103968839B (en) 2017-02-22

Family

ID=51238632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410216172.2A Active CN103968839B (en) 2014-05-21 2014-05-21 Single-point gravity matching method for improving CKF on basis of bee colony algorithm

Country Status (1)

Country Link
CN (1) CN103968839B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108303095A (en) * 2018-02-02 2018-07-20 哈尔滨工业大学 Robust volume target cooperative localization method suitable for non-Gaussian filtering
CN108444479A (en) * 2018-03-15 2018-08-24 北京理工大学 Gravity Matching method based on ADAPTIVE ROBUST Unscented kalman filtering
CN110285834A (en) * 2019-07-08 2019-09-27 哈尔滨工程大学 Double ionertial navigation system based on a dot position information quickly independently resets method
CN110417378A (en) * 2019-06-11 2019-11-05 浙江工业大学 A kind of gravity value estimation method based on cold atom interference-type gravimeter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345241A (en) * 1992-12-07 1994-09-06 Litton Systems, Inc. Self-contained method for correction of an inertial system over a body of water
CN102788578A (en) * 2012-07-25 2012-11-21 中国人民解放军海军工程大学 Matching navigation method based on local gravity field approximation
US20130297203A1 (en) * 2012-03-17 2013-11-07 mCube, Incorporated Methods and apparatus for low-cost inertial dead-reckoning using context detection
CN103487056A (en) * 2013-09-24 2014-01-01 哈尔滨工程大学 Gravity matching method based on artificial bee colony algorithm and average Hausdorff distance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345241A (en) * 1992-12-07 1994-09-06 Litton Systems, Inc. Self-contained method for correction of an inertial system over a body of water
US20130297203A1 (en) * 2012-03-17 2013-11-07 mCube, Incorporated Methods and apparatus for low-cost inertial dead-reckoning using context detection
CN102788578A (en) * 2012-07-25 2012-11-21 中国人民解放军海军工程大学 Matching navigation method based on local gravity field approximation
CN103487056A (en) * 2013-09-24 2014-01-01 哈尔滨工程大学 Gravity matching method based on artificial bee colony algorithm and average Hausdorff distance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高伟等: "基于带约束人工蜂群算法和平均Hausdorff距离的重力匹配方法", 《传感技术学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108303095A (en) * 2018-02-02 2018-07-20 哈尔滨工业大学 Robust volume target cooperative localization method suitable for non-Gaussian filtering
CN108303095B (en) * 2018-02-02 2019-04-19 哈尔滨工业大学 Robust volume target cooperative localization method suitable for non-Gaussian filtering
CN108444479A (en) * 2018-03-15 2018-08-24 北京理工大学 Gravity Matching method based on ADAPTIVE ROBUST Unscented kalman filtering
CN110417378A (en) * 2019-06-11 2019-11-05 浙江工业大学 A kind of gravity value estimation method based on cold atom interference-type gravimeter
CN110417378B (en) * 2019-06-11 2023-07-11 浙江工业大学 Gravity value estimation method based on cold atom interference type gravity meter
CN110285834A (en) * 2019-07-08 2019-09-27 哈尔滨工程大学 Double ionertial navigation system based on a dot position information quickly independently resets method

Also Published As

Publication number Publication date
CN103968839B (en) 2017-02-22

Similar Documents

Publication Publication Date Title
CN106291645B (en) The volume kalman filter method coupled deeply suitable for higher-dimension GNSS/INS
CN103217175B (en) A kind of self-adaptation volume kalman filter method
CN104655131B (en) Inertial navigation Initial Alignment Method based on ISTSSRCKF
CN109000642A (en) A kind of improved strong tracking volume Kalman filtering Combinated navigation method
CN105136145A (en) Kalman filtering based quadrotor unmanned aerial vehicle attitude data fusion method
CN106772524B (en) A kind of agricultural robot integrated navigation information fusion method based on order filtering
CN104567871A (en) Quaternion Kalman filtering attitude estimation method based on geomagnetic gradient tensor
CN112146655B (en) Elastic model design method for BeiDou/SINS tight integrated navigation system
CN103968839B (en) Single-point gravity matching method for improving CKF on basis of bee colony algorithm
CN106597507A (en) High-precision rapid filtering and smoothing algorithm of GNSS/SINS tight combination
CN105180938A (en) Particle filter-based gravity sampling vector matching positioning method
CN103604430A (en) Marginalized cubature Kalman filter (CKF)-based gravity aided navigation method
CN103792562A (en) Strong tracking UKF filter method based on sampling point changing
CN103900574A (en) Attitude estimation method based on iteration volume Kalman filter
CN104374405A (en) MEMS strapdown inertial navigation initial alignment method based on adaptive central difference Kalman filtering
Xu et al. A novel robust filter for outliers and time-varying delay on an SINS/USBL integrated navigation model
CN108508463B (en) Fourier-Hermite orthogonal polynomial based extended ellipsoid collective filtering method
Selezneva et al. Navigation complex with adaptive non-linear Kalman filter for unmanned flight vehicle
CN108827288A (en) A kind of dimensionality reduction strapdown inertial navigation system Initial Alignment Method and system based on dual quaterion
Feddaoui et al. High-gain extended Kalman filter for continuous-discrete systems with asynchronous measurements
CN103218482A (en) Estimation method for uncertain parameters in dynamic system
CN113587926A (en) Spacecraft space autonomous rendezvous and docking relative navigation method
Lau et al. Inertial-based localization for unmanned helicopters against GNSS outage
CN110610513B (en) Invariance center differential filter method for vision SLAM of autonomous mobile robot
Li et al. Strong tracking cubature Kalman filter algorithm for GPS/INS integrated navigation system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant