CN103966178A - Rice yellow-green leaf related protein as well as encoding gene and application of rice yellow-green leaf related protein - Google Patents

Rice yellow-green leaf related protein as well as encoding gene and application of rice yellow-green leaf related protein Download PDF

Info

Publication number
CN103966178A
CN103966178A CN201410231309.1A CN201410231309A CN103966178A CN 103966178 A CN103966178 A CN 103966178A CN 201410231309 A CN201410231309 A CN 201410231309A CN 103966178 A CN103966178 A CN 103966178A
Authority
CN
China
Prior art keywords
rice
yellow
gene
ygl11
green leaf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410231309.1A
Other languages
Chinese (zh)
Other versions
CN103966178B (en
Inventor
王军
杨杰
朱金燕
范方军
李文奇
周勇
仲维功
梁国华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Yanjiang Agricultural Science Research Institute
Original Assignee
Jiangsu Yanjiang Agricultural Science Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Yanjiang Agricultural Science Research Institute filed Critical Jiangsu Yanjiang Agricultural Science Research Institute
Priority to CN201410231309.1A priority Critical patent/CN103966178B/en
Publication of CN103966178A publication Critical patent/CN103966178A/en
Application granted granted Critical
Publication of CN103966178B publication Critical patent/CN103966178B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • C12Y114/13122Chlorophyllide-a oxygenase (1.14.13.122)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种水稻黄绿叶相关蛋白质及其编码基因与应用。本发明提供的水稻黄绿叶相关蛋白质,由SEQ ID No.1所示的氨基酸序列组成的蛋白质,或者将SEQ ID No.1所示的氨基酸序列经过一个或多个氨基酸的添加、取代、插入或缺失且与水稻黄绿叶相关的由SEQ ID No.1衍生的蛋白质。本发明还同时公开了编码该蛋白质的基因,该基因具有SEQ ID No.2和3所示的核苷酸序列。本发明的黄绿叶控制基因还可作为杂交制种过程中假杂种的指示标记,应用于杂交育种和品种改良中。

The invention discloses a rice yellow-green leaf-related protein, its coding gene and application. The rice yellow-green leaf-related protein provided by the present invention is a protein composed of the amino acid sequence shown in SEQ ID No. 1, or the amino acid sequence shown in SEQ ID No. 1 is added, substituted, inserted or added by one or more amino acids. A protein derived from SEQ ID No. 1 that is missing and associated with rice yellow-green leaves. The invention also discloses the gene encoding the protein at the same time, and the gene has the nucleotide sequences shown in SEQ ID No.2 and 3. The yellow-green leaf control gene of the invention can also be used as an indicator mark for pseudo-hybrids in the process of hybrid seed production, and can be used in hybrid breeding and variety improvement.

Description

一种水稻黄绿叶相关蛋白质及其编码基因与应用A rice yellow-green leaf-related protein, its coding gene and application

一、技术领域1. Technical field

本发明涉及一种水稻黄绿叶相关蛋白质及其编码基因与应用,属于植物基因工程领域。The invention relates to a rice yellow-green leaf-related protein and its coding gene and application, belonging to the field of plant genetic engineering.

二、背景技术2. Background technology

水稻是重要的粮食作物,为世界上一半以上的人口提供食物和营养来源。水稻也是一种重要的战略性物资,占我国粮食总产的一半以上,提高水稻产量对确保我国粮食安全和农业可持续发展有十分重要的战略意义。植物的生物产量和经济产量主要是依靠其叶片等器官的光合作用而生产的,水稻植株90-95%的干物质来自光合作用。光合作用的效率依赖于光合色素的合成和叶绿体的正常发育。叶绿素是绿色植物叶绿体内参与光合作用的重要色素,在光合作用的能量捕获及能量传递中起着重要作用(Fromme P,et al.,FEBS Letters,2003,555(1):40-44)。叶色是叶绿体中各种色素的综合表现,正常水稻叶片中叶绿素占优势,通常表现为绿色。Rice is an important food crop, providing food and a source of nutrition for more than half of the world's population. Rice is also an important strategic material, accounting for more than half of my country's total grain output. Increasing rice production is of great strategic significance to ensure my country's food security and sustainable agricultural development. The biological output and economic output of plants are mainly produced by the photosynthesis of their leaves and other organs, and 90-95% of the dry matter of rice plants comes from photosynthesis. The efficiency of photosynthesis depends on the synthesis of photosynthetic pigments and the normal development of chloroplasts. Chlorophyll is an important pigment involved in photosynthesis in the chlorophyll of green plants, and plays an important role in the energy capture and energy transfer of photosynthesis (Fromme P, et al., FEBS Letters, 2003, 555(1): 40-44). Leaf color is a comprehensive expression of various pigments in chloroplasts. In normal rice leaves, chlorophyll is dominant and usually appears green.

水稻叶色突变是一种比较常见的突变性状,突变基因往往直接或间接影响叶绿素的合成和降解,改变叶绿素含量,所以叶色突变体也被称为叶绿素合成缺陷突变体(黄晓群,等.西北植物学报,2005,25(8):1685-1691)。叶色突变体是研究水稻叶绿素生物合成途径和光合作用机制的理想材料,还可作为标记性状在杂种优势利用中加以应用。据不完全统计,目前报道的水稻叶色突变体已经超过163个,这些突变体大致可分白化、黄化、浅绿、白翠、绿白、黄绿、条纹和黄绿等8种类型(Gong H,et al.,Sci.Agric.Sin.,2001,34(4):686-689),这些突变大部分是由隐性核基因控制的,至少有124个基因被定位到具体分子标记之间,分布在水稻全部12条染色体上,35个叶色相关的基因被成功克隆,这些基因主要参与叶绿素的合成与降解、叶绿体的发育与分化等方面(邓晓娟,等.杂交水稻,2012,27(5):9-14)。Rice leaf color mutation is a relatively common mutation trait. The mutant gene often directly or indirectly affects the synthesis and degradation of chlorophyll, changing the chlorophyll content, so the leaf color mutant is also called a chlorophyll synthesis defect mutant (Huang Xiaoqun, et al. Northwest Acta Bot, 2005, 25(8):1685-1691). Leaf color mutants are ideal materials for studying chlorophyll biosynthesis pathways and photosynthetic mechanisms in rice, and can also be used as marker traits in the utilization of heterosis. According to incomplete statistics, more than 163 rice leaf color mutants have been reported so far, and these mutants can be roughly divided into 8 types: albino, yellow, light green, white emerald, green-white, yellow-green, striped and yellow-green ( Gong H, et al., Sci.Agric.Sin., 2001,34(4):686-689), most of these mutations are controlled by recessive nuclear genes, at least 124 genes have been mapped to specific molecular markers Among them, distributed on all 12 chromosomes of rice, 35 genes related to leaf color have been successfully cloned. These genes are mainly involved in the synthesis and degradation of chlorophyll, the development and differentiation of chloroplasts, etc. (Deng Xiaojuan, et al. Hybrid Rice, 2012, 27(5):9-14).

虽然已经报道了大量水稻叶色相关的突变体,并且克隆了部分基因,但对水稻中叶绿素合成相关基因及叶绿体的发育机制仍了解甚少。因此,筛选和鉴定水稻叶色相关突变体并对控制其性状的基因进行克隆及功能研究具有重要的理论意义和应用价值。Although a large number of mutants related to rice leaf color have been reported and some genes have been cloned, the genes related to chlorophyll synthesis and the development mechanism of chloroplast in rice are still poorly understood. Therefore, it is of great theoretical significance and application value to screen and identify mutants related to rice leaf color and to clone and study the functions of genes controlling their traits.

三、发明内容3. Contents of the invention

技术问题:technical problem:

提供一种水稻黄绿叶相关的蛋白质及其编码该蛋白质的基因,本发明还提供了该蛋白质及其编码基因的应用。A rice yellow-green leaf-related protein and a gene encoding the protein are provided, and the invention also provides applications of the protein and the gene encoding the protein.

技术方案:Technical solutions:

本发明的第一方面,提供了水稻黄绿叶突变体ygl11(t)的应用,该突变体ygl11(t)分类命名:水稻(Oryza sativa),保藏编号CGMCC No.9160,于2014年5月4在中国微生物菌种保藏管理委员会普通微生物中心进行保藏,地址:北京市朝阳区北辰西路1号院3号中科院微生物研究所。水稻黄绿叶突变体ygl11(t)可以在水稻杂交育种和品种改良中得到应用。The first aspect of the present invention provides the application of rice yellow-green leaf mutant ygl11 (t), the mutant ygl11 (t) taxonomic designation: rice (Oryza sativa), preservation number CGMCC No.9160, on May 4, 2014 Preserved in the General Microbiology Center of China Microbiological Culture Collection Management Committee, address: Institute of Microbiology, Chinese Academy of Sciences, No. 3, No. 1 Beichen West Road, Chaoyang District, Beijing. The rice yellow-green leaf mutant ygl11(t) can be applied in rice hybrid breeding and variety improvement.

同时提供一种来自水稻黄绿叶突变体ygl11(t)的水稻黄绿叶相关的蛋白质,该蛋白质具有SEQ ID No.1所示的氨基酸序列。该蛋白质还包括在SEQ ID No.1所示的氨基酸序列中添加、取代、插入或缺失一个或多个氨基酸且与水稻黄绿叶相关的由SEQ ID No.1衍生的蛋白质。At the same time, a rice yellow-green leaf-related protein from rice yellow-green leaf mutant ygl11(t) is provided, and the protein has the amino acid sequence shown in SEQ ID No.1. The protein also includes a protein derived from SEQ ID No. 1 that has one or more amino acids added, substituted, inserted or deleted in the amino acid sequence shown in SEQ ID No. 1 and is related to rice yellow-green leaves.

在本发明的另一方面,提供了编码上述蛋白质的ygl11(t)基因,具有SEQ ID No.2和3所示的核苷酸序列。ygl11(t)基因还包括在SEQ ID No.2和3所示的核苷酸序列中添加、取代、插入或缺失一个或多个核苷酸而生成的突变体、等位基因或衍生物。In another aspect of the present invention, there is provided the ygl11(t) gene encoding the above protein, which has the nucleotide sequences shown in SEQ ID No.2 and 3. The ygl11(t) gene also includes mutants, alleles or derivatives produced by adding, substituting, inserting or deleting one or more nucleotides in the nucleotide sequences shown in SEQ ID No. 2 and 3.

所述的基因可以在水稻杂交育种和品种改良中得到应用。The gene can be applied in rice hybrid breeding and variety improvement.

有益效果:Beneficial effect:

本发明提供了一种水稻黄绿叶相关蛋白质及其编码基因,该水稻黄绿叶相关蛋白质参与了水稻叶绿素a到叶绿素b的合成过程,编码该黄绿叶蛋白质的YGL11(t)基因虽然降低了突变体的叶绿素含量,但没有影响黄绿叶突变体的净光合速率,在分蘖盛期突变体的净光合速率还极显著高于野生型。将上述蛋白质编码的基因导入到光温敏两系不育系中,若制种遇到低温,造成光温敏雄性不育系少量自交结实,混进杂交种,下季种植杂交种时,由于杂交种植株表现正常绿色,而不育系自交结实植株表现为黄绿色,秧田期借助叶色表现就可以方便地剔除杂株,达到去杂保纯的效果,从而有效提高两系法杂交稻纯度,减少生产风险。The invention provides a rice yellow-green leaf-related protein and its coding gene. The rice yellow-green leaf-related protein participates in the synthesis process of rice chlorophyll a to chlorophyll b. Although the YGL11(t) gene encoding the yellow-green leaf protein reduces the chlorophyll content, but did not affect the net photosynthetic rate of the yellow-green leaf mutant, and the net photosynthetic rate of the mutant was significantly higher than that of the wild type at the tillering stage. The gene encoding the above protein is introduced into the photothermosensitive two-line male sterile line. If the seed production encounters low temperature, a small amount of photothermosensitive male sterile line will self-fertilize and become fruitful, and it will be mixed into the hybrid. When the hybrid is planted in the next season, Since the hybrid plants appear normally green, and the self-fertile plants of the male sterile line appear yellow-green, the seedling stage can be conveniently eliminated by virtue of the leaf color to achieve the effect of removing impurities and maintaining purity, thereby effectively improving the quality of two-line hybridization. Improve rice purity and reduce production risks.

四、附图说明4. Description of drawings

图1是黄绿叶突变体ygl11(t)及野生型南粳41的表型图Figure 1 is the phenotype diagram of the yellow-green leaf mutant ygl11(t) and the wild type Nanjing 41

(A为苗期表型;B为抽穗期表型;C为成熟期叶片;A、B、C中左侧为ygl11(t)突变体,右侧为野生型南粳41)(A is the phenotype at the seedling stage; B is the phenotype at the heading stage; C is the leaf at the mature stage; the left side of A, B, and C is the ygl11(t) mutant, and the right side is the wild-type Nanjing 41)

图2是黄绿叶突变体ygl11(t)与野生型南粳41不同时期的净光合速率图Figure 2 is a graph of the net photosynthetic rate of the yellow-green leaf mutant ygl11(t) and the wild type Nanjing 41 at different stages

图3是YGL11(t)基因的精细定位与克隆图(A为YGL11(t)基因的初步定位结果;B为YGL11(t)基因的精细定位结果;C为YGL11(t)定位区域内含有的开放阅读框(ORF);D为YGL11(t)的编码基因的序列差异)Figure 3 is the fine mapping and cloning map of the YGL11(t) gene (A is the preliminary mapping result of the YGL11(t) gene; B is the fine mapping result of the YGL11(t) gene; C is the YGL11(t) gene contained in the localization region Open reading frame (ORF); D is the sequence difference of the coding gene of YGL11(t)

生物保藏biological deposit

水稻黄绿叶突变体ygl11(t),分类命名:水稻(Oryza sativa),保藏编号CGMCCNo.9160。于2014年5月4在中国微生物菌种保藏管理委员会普通微生物中心进行保藏,地址:北京市朝阳区北辰西路1号院3号中科院微生物研究所。Rice yellow-green leaf mutant ygl11(t), taxonomic name: rice (Oryza sativa), deposit number CGMCCNo.9160. On May 4, 2014, it was preserved in the General Microbiology Center of China Microbiological Culture Collection Management Committee, address: Institute of Microbiology, Chinese Academy of Sciences, No. 3, Yard 1, Beichen West Road, Chaoyang District, Beijing.

五、具体实施方式5. Specific implementation

为充分公开本发明一种水稻黄绿叶相关蛋白质及其编码基因与应用,以下结合方法验证和实施实例加以说明。具体实施步骤如下:In order to fully disclose a rice yellow-green leaf-related protein of the present invention, its coding gene and its application, the method verification and implementation examples are described below. The specific implementation steps are as follows:

(一)试验材料(1) Test materials

水稻黄绿叶突变体来源于粳稻品种南粳41的自然突变,经过连续多代自交繁殖和选择,该突变体的表型已经稳定,命名为ygl11(t)。构建分离群体的另一亲本为籼稻测序品种扬稻6号(又被称为:9311)。The rice yellow-green leaf mutant is derived from the natural mutation of the japonica rice variety Nanjing 41. After multiple generations of self-breeding and selection, the phenotype of the mutant has been stabilized, and it is named ygl11(t). The other parent of the segregation population was the indica sequenced variety Yangdao 6 (also known as: 9311).

南粳41和扬稻6号均为公知公用材料,江苏省农业种质资源中期库可免费提供。具体参考文献为:仲维功等,优质高产粳稻新品种南粳41的选育及栽培技术,江苏农业科学,2003,4:24-25;徐卯林等,优质高产抗病中籼新品种扬稻6号的选育及利用,中国稻米,2001,1:24-26。Both Nanjing 41 and Yangdao 6 are well-known public materials, and they can be provided free of charge by the medium-term bank of agricultural germplasm resources in Jiangsu Province. Specific references are: Zhong Weigong et al., Breeding and Cultivation Techniques of High-quality and High-yielding Japonica Rice Variety Nanjing 41, Jiangsu Agricultural Sciences, 2003, 4:24-25; Breeding and Utilization of No. 6, China Rice, 2001, 1: 24-26.

(二)YGL11(t)基因的精细定位(2) Fine mapping of YGL11(t) gene

1、突变体ygl11(t)的表型1. Phenotype of mutant ygl11(t)

ygl11(t)在整个生育期过程中植株和叶片均表现为黄绿色,与野生型南粳41差异明显(图1)。ygl11(t)在不同时期的叶绿素含量和类胡萝卜素含量都明显低于野生型南粳41,不同时期ygl11(t)的叶绿素含量是野生型的45.7%~74.7%。其中,叶绿素a含量是野生型的55.2%~87.5%;叶绿素b含量是野生型的12.5%~25.3%;类胡萝卜含量是野生型的62.3%~97.0%(表1)。利用LI-6400便携式光合测定仪在分蘖盛期和开花后10天对ygl11(t)和野生型的光合速率进行测定。ygl11(t)在分蘖盛期的净光合速率极显著高于野生型,比野生型提高了4.9μ mol m-2s-1;ygl11(t)开花后10天的净光合速率比野生型略低,只降低0.95μ molm-2s-1(图2),差异不显著,说明ygl11(t)叶绿素的降低并没有降低其净光合速率。The plants and leaves of ygl11(t) were yellow-green throughout the growth period, which was significantly different from wild-type Nanjing 41 (Fig. 1). The chlorophyll content and carotenoid content of ygl11(t) in different periods were significantly lower than that of wild type Nanjing 41, and the chlorophyll content of ygl11(t) in different periods was 45.7%-74.7% of wild type. Among them, the content of chlorophyll a is 55.2%-87.5% of the wild type; the content of chlorophyll b is 12.5%-25.3% of the wild type; the content of carotenoid is 62.3%-97.0% of the wild type (Table 1). The photosynthetic rate of ygl11(t) and wild type was measured at the full tillering stage and 10 days after flowering by LI-6400 portable photosynthetic measuring instrument. The net photosynthetic rate of ygl11(t) at the full tillering stage was extremely significantly higher than that of the wild type, which was 4.9 μ mol m -2 s -1 higher than that of the wild type; the net photosynthetic rate of ygl11(t) at 10 days after flowering was slightly low, only decreased by 0.95μ molm -2 s -1 (Fig. 2), the difference was not significant, indicating that the reduction of chlorophyll in ygl11(t) did not reduce its net photosynthetic rate.

表1突变体ygl1(t)和野生型南粳41叶片的叶绿素和类胡萝卜素含量Table 1 Chlorophyll and carotenoid contents of mutant ygl1(t) and wild type Nanjing 41 leaves

2、ygl11(t)的遗传分析2. Genetic analysis of ygl11(t)

将ygl11(t)与籼稻品种9311配置正反交杂交组合,其F1均表现为正常绿色,说明该黄绿叶性状为隐性遗传,黄绿叶对正常绿色为隐性。其F2分离群体中黄绿叶与正常绿叶分离非常明显,说明黄绿叶性状受主效基因控制。F2中正常绿叶和黄绿叶的分离比符合3﹕1的分离比例(表2),说明该性状是受1对隐性主效核基因控制。F2和F3分离群体中的累积3687株黄绿叶隐性个体被用于YGL11(t)基因的定位与克隆。在分蘖期每株取1.0g左右的嫩叶,用来提取总DNA。When ygl11(t) was reciprocally crossed with indica variety 9311, the F 1 showed normal green color, which indicated that the trait of yellow-green leaves was recessive, and yellow-green leaves were recessive to normal green. The yellow-green leaves and normal green leaves in the F 2 segregation population were very obvious, which indicated that the traits of yellow-green leaves were controlled by major genes. The segregation ratio of normal green leaves and yellow-green leaves in F 2 conformed to the segregation ratio of 3:1 (Table 2), indicating that this trait was controlled by a pair of recessive major nuclear genes. The cumulative 3687 yellow-green leaf recessive individuals in F 2 and F 3 segregation populations were used for the mapping and cloning of YGL11(t) gene. At the tillering stage, about 1.0 g of young leaves were taken from each plant to extract the total DNA.

表2ygl11(t)和9311正反交F1、F2的表型Table 2 Phenotypes of ygl11(t) and 9311 reciprocal cross F 1 and F 2

3、水稻植株基因组DNA提取3. Genomic DNA extraction from rice plants

取大约1.0g水稻叶片(即步骤2中的水稻嫩叶),参照SDS法(Dellaporta S L,etal.,Plant Mol B iol Rep,1983,1(1):19221.)提取水稻植株基因组DNA。具体步骤为:取水稻分蘖期叶片1.0g左右,在-20℃预冷的研钵中用液氮研磨并装入2.0mL离心管;加入600uL提取液(20%SDS,1M Tris-HCl,0.5M EDTA,5M NaCl,65℃预热),摇匀,65℃温浴30min,中间振荡3~4次;加入1/4体积5M KAC,摇匀后置冰上30min;加入氯仿-异戊醇(24:1)300~400uL,在摇床上充分振荡,120rpm,30min;8000~10000rpm离心15分钟,液面分层,下层颜色较深,上层微带黄绿色,取上清(400uL左右)至另一离心管;加入等体积氯仿-异戊醇(24:1),摇床上充分振荡,80~90rpm,30min;8000rpm离心15分钟,转移上清(400uL左右)至新的离心管;加入2倍体积-20℃预冷的无水乙醇,轻轻摇匀直到有絮状物产生,12,000rpm离心6min;弃无水乙醇,加入4℃70%乙醇,放置10min,弃上清,超净工作台上风干1h;加入100~200uLTE,-20℃保存。Take about 1.0 g of rice leaves (i.e. the young leaves of rice in step 2), and extract the genomic DNA of rice plants with reference to the SDS method (Dellaporta S L, et al., Plant Mol Biol Rep, 1983, 1(1):19221.). The specific steps are: take about 1.0 g of rice leaves at the tillering stage, grind them with liquid nitrogen in a mortar pre-cooled at -20°C, and put them into a 2.0 mL centrifuge tube; add 600 uL of extract (20% SDS, 1M Tris-HCl, 0.5 M EDTA, 5M NaCl, preheated at 65°C), shake well, incubate at 65°C for 30 minutes, shake 3-4 times in the middle; add 1/4 volume of 5M KAC, shake well and place on ice for 30 minutes; add chloroform-isoamyl alcohol ( 24:1) 300-400uL, shake fully on a shaker, 120rpm, 30min; centrifuge at 8000-10000rpm for 15 minutes, the liquid surface is stratified, the lower layer is darker in color, and the upper layer is slightly yellow-green. Take the supernatant (about 400uL) to another A centrifuge tube; add an equal volume of chloroform-isoamyl alcohol (24:1), shake fully on a shaker, 80-90rpm, 30min; centrifuge at 8000rpm for 15 minutes, transfer the supernatant (about 400uL) to a new centrifuge tube; add 2 times Volume -20°C pre-cooled absolute ethanol, shake gently until flocs are produced, centrifuge at 12,000rpm for 6min; discard absolute ethanol, add 4°C 70% ethanol, let stand for 10min, discard supernatant, ultra-clean workbench Air-dry for 1 hour; add 100-200 uLTE and store at -20°C.

4、SSR、InDel和CAPs标记的合成4. Synthesis of SSR, InDel and CAPs markers

SSR引物为公用引物,引物序列引自http://www.gramene.org/。SSR primers are public primers, and the primer sequences are from http://www.gramene.org/.

InDel和CAPs标记的开发:根据Shen等研究结果找出日本晴和9311在目标区域中的序列缺失或插入位点(Shen Y J,et al.,Plant Physiology,2004,135(3):1198-1205),用Primer Premier5.0选择包含≥8bp序列缺失或插入位点设计出扩增长度100-300bp PCR产物的上下游引物;为了更可靠地进行精细定位并克隆YGL11(t)基因,根据基因初步定位的结果,在相关区段找到日本晴和9311之间存在的SNP,用BioXM2.6进行酶切位点分析,对含有酶切位点的SNP序列利用Primer Premier5.0设计CAPs引物,引物由上海英潍捷基公司合成。Development of InDel and CAPs markers: Find out the sequence deletion or insertion sites of Nipponbare and 9311 in the target region according to the research results of Shen et al. (Shen Y J, et al., Plant Physiology,2004,135(3):1198-1205) , using Primer Premier5.0 to select sequences containing ≥ 8bp deletion or insertion sites to design upstream and downstream primers for amplifying PCR products with a length of 100-300bp; in order to perform fine mapping and clone the YGL11(t) gene more reliably, according to the preliminary positioning of the gene As a result, the SNP between Nipponbare and 9311 was found in the relevant section, and the restriction site analysis was performed with BioXM2.6, and the CAPs primers were designed by Primer Premier5.0 for the SNP sequence containing the restriction site, and the primers were provided by Shanghai Ying Synthesized by Weijieji Company.

5、YGL11(t)基因的定位5. Localization of YGL11(t) gene

YGL11(t)基因的初步定位:黄绿叶基因YGL11(t)定位采用Michelmore等(MichelmoreR W,et al.,Proc.Natl.Acad.Sci.USA,1991,88(21):9828-9832)提出的BSA法。将F2分离群体中的正常单株和黄绿叶单株分成2组,每组内将10株植株的DNA混合,形成正常单株和黄绿叶单株的2个池。利用600个均匀覆盖全基因组的SSR标记对2个池之间进行多态性分析,然后利用在2个池间表现出多态的标记对F2分离群体中的白化转绿单株进行连锁分析。全基因组多态性分析时,发现第10染色体上的SSR标记RM258、RM171、RM147、RM591和RM590在2个池间表现出多态性。利用这5个SSR标记进一步进行群体检测,发现黄绿基因YGL11(t)与这些分子标记存在不同程度的连锁,证实该基因位于第10染色体上。利用MAPMAKER3.0软件连锁分析表明YGL11(t)位于RM147和RM591之间,与RM147和RM591的遗传距离均为0.4cM(图3A)。Preliminary location of YGL11 (t) gene: The location of yellow-green leaf gene YGL11 (t) was proposed by Michelmore et al. The BSA Act. The normal individual plants and yellow-green leaf individual plants in the F 2 segregation population were divided into 2 groups, and the DNAs of 10 plants were mixed in each group to form 2 pools of normal individual plants and yellow-green leaf individual plants. Polymorphism analysis between the two pools was performed using 600 SSR markers that evenly covered the whole genome, and then linkage analysis was performed on the albino-green individual plants in the F 2 segregation population using the markers that showed polymorphism between the two pools. During genome-wide polymorphism analysis, it was found that the SSR markers RM258, RM171, RM147, RM591 and RM590 on chromosome 10 were polymorphic between the two pools. Using these five SSR markers for further population detection, it was found that the yellow-green gene YGL11(t) was linked to these molecular markers to varying degrees, confirming that the gene was located on chromosome 10. Linkage analysis using MAPMAKER3.0 software showed that YGL11(t) was located between RM147 and RM591, and the genetic distance to both RM147 and RM591 was 0.4cM (Fig. 3A).

YGL11(t)基因的精细定位:为了进一步精细定位该基因,我们在RM147和RM591之间的区段内发展了多对InDel和CAPs标记,利用其中在2个基因池间有差异的标记(表3)最终将YGL11(t)定位在第10染色体PAC克隆AC087599上的I4和D3之间的58.1kb的区段内(图3B)。Fine mapping of the YGL11(t) gene: In order to further fine-map the gene, we developed multiple pairs of InDel and CAPs markers in the segment between RM147 and RM591, using markers that were differential between the two gene pools (Table 3) YGL11(t) was finally mapped to a segment of 58.1 kb between I4 and D3 on PAC clone AC087599 on chromosome 10 ( FIG. 3B ).

20μL PCR反应体系包括:10×PCR Buffer(Mg2+)2.0mL,dNTP(10mmol/L)0.5μL,Taq酶(5U/μL)0.2μL,正向引物(10pmol/L)1.0μL,反向引物(10pmol/L)1.0μL,DNA2.0μL,ddH2O13.3μL。20μL PCR reaction system includes: 10×PCR Buffer (Mg 2+ ) 2.0mL, dNTP (10mmol/L) 0.5μL, Taq enzyme (5U/μL) 0.2μL, forward primer (10pmol/L) 1.0μL, reverse Primer (10 pmol/L) 1.0 μL, DNA 2.0 μL, ddH 2 O 13.3 μL.

PCR反应条件包括:94℃预变性5min,然后94℃变性1min、53℃退火1min、72℃延伸1.5min,32个循环,最后72℃延伸10min,10℃冷却10min后,将扩增产物加上样缓冲液终止反应。PCR reaction conditions include: pre-denaturation at 94°C for 5 minutes, followed by denaturation at 94°C for 1 minute, annealing at 53°C for 1 minute, extension at 72°C for 1.5 minutes, 32 cycles, and finally extension at 72°C for 10 minutes, cooling at 10°C for 10 minutes, and adding the amplified product buffer to stop the reaction.

PCR产物检测:反应结束后扩增产物加入指示剂(0.25%溴酚兰、0.25%二甲苯青FF、40%蔗糖水溶液),将扩增产物在3.5%琼脂糖上进行电泳,DuRed染色,紫外凝胶成相系统保存图像。PCR product detection: After the reaction, the amplification product was added with an indicator (0.25% bromophenol blue, 0.25% xylene cyanol FF, 40% sucrose aqueous solution), and the amplification product was electrophoresed on 3.5% agarose, stained with DuRed, and ultraviolet The gel phase system saves the image.

(三)YGL11(t)基因的克隆(3) Cloning of YGL11(t) gene

利用TIGR网站(http://www.tigr.org)中提供的水稻第10染色体的PAC克隆AC087599序列的基因注释结果,对标记I4和D3之间的58.1kb的区段进行了候选基因分析,在此区域中共有6个开放阅读框(ORF),同时我们获得了6个开放阅读框的基因注释结果(图3C),其中的ORF2和ORF4编码了与叶绿素合成相关的酶,分别为叶绿素酸酯氧化酶1(chlorophyllide a oxygenase1,CAO1)和叶绿素酸酯氧化酶2(CAO2)。分别设计了能够扩增这2个基因DNA序列的8对引物(表3),利用这8对引物分别对突变体和野生型中这2个基因进行PCR扩增,PCR产物经过琼脂糖凝胶电泳回收收后送上海英潍捷基公司进行测序。利用BioXM2.6软件将突变体和野生型序列与数据库中日本晴的CAO1、CAO2基因进行序列比对,发现突变体在CAO1基因第9外显子的第117至118位存在2个碱基缺失,野生型序列与日本晴完全一致(图3D)。该突变造成翻译移码,导致蛋白质翻译提前终止。Using the gene annotation results of the PAC clone AC087599 sequence of rice chromosome 10 provided in the TIGR website (http://www.tigr.org), the candidate gene analysis was performed on the 58.1kb segment between markers I4 and D3, There are 6 open reading frames (ORFs) in this region, and we obtained the gene annotation results of 6 open reading frames (Fig. 3C). Among them, ORF2 and ORF4 encode enzymes related to chlorophyll synthesis, namely chlorophyll acid Ester oxidase 1 (chlorophyllide a oxygenase1, CAO1) and chlorophyllide oxidase 2 (CAO2). 8 pairs of primers (Table 3) capable of amplifying the DNA sequences of these 2 genes were designed respectively. These 8 pairs of primers were used to carry out PCR amplification of the 2 genes in the mutant and wild type respectively, and the PCR products were passed through agarose gel. After electrophoresis recovery, it was sent to Shanghai Yingwei Jieji Company for sequencing. Using BioXM2.6 software to compare the mutant and wild-type sequences with the Nipponbare CAO1 and CAO2 genes in the database, it was found that the mutant had two base deletions in the 117th to 118th positions of the 9th exon of the CAO1 gene, The wild-type sequence was completely consistent with Nipponbare (Fig. 3D). This mutation causes a translational frameshift, leading to premature termination of protein translation.

因此,序列表SEQ ID NO.2和3中的核苷酸序列,即为YGL11(t)基因的序列,所编码的与水稻黄绿叶相关的蛋白质如序列表SEQ ID NO.1。Therefore, the nucleotide sequence in SEQ ID NO.2 and 3 in the sequence listing is the sequence of the YGL11(t) gene, and the protein encoded by the yellow-green leaf of rice is shown in SEQ ID NO.1 in the sequence listing.

对F2分离群体中10株黄绿叶单株的该位点进行了测序,发现10株黄绿叶个体在该位点均存在上述2个碱基的缺失。进一步验证了YGL11(t)基因是与水稻黄绿叶相关的功能。Sequenced the locus of 10 individuals with yellow-green leaves in the F 2 segregation population, and found that all 10 individuals with yellow-green leaves had the deletion of the above two bases at this site. It was further verified that the YGL11(t) gene is related to the function of rice yellow-green leaves.

ygl11(t)基因还包括在SEQ ID No.2和3所示的核苷酸序列中添加、取代、插入或缺失一个或多个核苷酸而生成的突变体、等位基因或衍生物。所编码的与水稻黄绿叶相关的蛋白质还包括在SEQ ID No.1所示的氨基酸序列中添加、取代、插入或缺失一个或多个氨基酸且与水稻黄绿叶相关的由SEQ ID No.1衍生的蛋白质。The ygl11(t) gene also includes mutants, alleles or derivatives produced by adding, substituting, inserting or deleting one or more nucleotides in the nucleotide sequences shown in SEQ ID No. 2 and 3. The encoded protein related to yellow-green leaves of rice also includes addition, substitution, insertion or deletion of one or more amino acids in the amino acid sequence shown in SEQ ID No.1 and is derived from SEQ ID No.1 related to yellow-green leaves of rice. of protein.

所述的ygl11(t)基因可以在水稻杂交育种和品种改良中得到应用。The ygl11(t) gene can be applied in rice hybrid breeding and variety improvement.

表3YGL11(t)基因定位和测序所用的引物Table 3 The primers used for YGL11(t) gene mapping and sequencing

SEQ ID NO.1SEQ ID NO.1

YGL11(t)编码的氨基酸序列:Amino acid sequence encoded by YGL11(t):

MVTLLIETTQGVGRYGGIKVYAVLGDDGADYAKNNAWEALFHVDDPGPRVPIAKGKFLDVNQALEVVRFDIQYCDWRARQDLLTIMVLHNKVVEVLNPLAREFKSIGTLRKELAELQEELAKAHNQVHLSETRVSSALDKLAQMETLVNDRLLQDGGSSASTAECTSLAPSTSSASRVVNKKPPRRSLNVSGPVQPYNPSLKNFWYPVAFSSDLKDDTMVPIDCFEEQWVIFRGKDGRPGCVMNTCAHRACPLHLGSVNEGRIQCPYHGWEYSTDGKCEKMPSTKMLNVRIRSLPCFEQEGMVWIWPGNDPPKSTIPSLLPPSGFTIHAEIVMELPVEHGLLLDNLLDLAHAPFTHTSTFAKGWSVPSLVKFLTPSSGLQGYWDPYPIDMEFRPPCMVLSTIGISKPGKLEGKSTKQCSTHLHQLHICLPSSRNKTRLLYRMSLDFAPWIKHVPFMHILWSHFAEKVLNEDLRLVLGQQERMINGANVWNWPVSYDKLGIRYRLWRRHMVTLLIETTQGVGRYGGIKVYAVLGDDGADYAKNNAWEALFHVDDPGPRVPIAKGKFLDVNQALEVVRFDIQYCDWRARQDLLTIMVLHNKVVEVLNPLAREFKSIGTLRKELAELQEELAKAHNQVHLSETRVSSALDKLAQMETLVNDRLLQDGGSSASTAECTSLAPSTSSASRVVNKKPPRRSLNVSGPVQPYNPSLKNFWYPVAFSSDLKDDTMVPIDCFEEQWVIFRGKDGRPGCVMNTCAHRACPLHLGSVNEGRIQCPYHGWEYSTDGKCEKMPSTKMLNVRIRSLPCFEQEGMVWIWPGNDPPKSTIPSLLPPSGFTIHAEIVMELPVEHGLLLDNLLDLAHAPFTHTSTFAKGWSVPSLVKFLTPSSGLQGYWDPYPIDMEFRPPCMVLSTIGISKPGKLEGKSTKQCSTHLHQLHICLPSSRNKTRLLYRMSLDFAPWIKHVPFMHILWSHFAEKVLNEDLRLVLGQQERMINGANVWNWPVSYDKLGIRYRLWRRH

SEQ ID NO.2SEQ ID NO.2

YGL11(t)genomic DNA:YGL11(t)genomic DNA:

ATGACCACTGTGGCATCGCTGTCTTTGCTGCCGCACTTGCTCATCAAGCCTTCCTTCAGGTGTTGCTCCAGAAAGGTGAGTTCTTCTTGTTGTTCCTTGAATCTGTTTTTGTTGTTGTTGTTTGGCGATTCTTGAATTTGTTTTGGGGTATCTGGCGATGGGAGGAACCATGTTTCTTGTTTGGTTTTTGGGTTCAGGTGGCCATTCTTGATGAAAAACTGAGTGTTTGAGTTTGAGCAGTGCAATGGAGTTACCATTTTTGTTCTTCTGATTGGATTCTTTGTGATGGTTGATGTTTTTGTTCAGACAATGGTTTCAAGGTTCTGTGATTCTTCAGACCCCATATCTTAAAACCTGTTGTATTGAAGTAAGCAAAAAAACAAATCTTGATCAAGGACAGCCTAGTTGCCAATTTTTCTTTGCAAATCTGAATGCAATTCAATCTCTTTCTTCCAGCAAATGCGTGCAGCTTTCCCCCAGTAACCACAGGCTTATCTCTGACACTGATTTAACTAGATTTTGCTAATCTCTTTGATACTAGTTTGTCTGCTAAAATAGAGTGCATGTGAGGTTGATGAAAATTGATGGTGACCTTGCTGATTGAAACTACACAGGGTGTTGGTAGATATGGAGGAATCAAGGTGTATGCGGTGCTCGGTGATGATGGAGCTGACTATGCAAAGAACAACGCATGGGAGGCCTTGTTCCATGTCGATGACCCGGGGCCAAGGGTTCCAATTGCAAAAGGCAAGTTCTTGGATGTCAACCAAGCTCTTGAGGTGGTCCGGTTCGATATCCAGTATTGCGATTGGAGGGCGCGGCAGGACCTCCTCACCATCATGGTTCTTCACAACAAGGTAGGAAGCATTGGACAAGTCACAAGTTCAGAGAAGAGGTCAAAGCTTTCATAGTCTGAATTTTACAGATCATGGGATTCAAAATTGGACTGCATACTGAATAATGCTTGAGGTTGAAGTTTCGGATGACTGACATAGGTTAACTTAAATGAATTTTTGAACATTGAAATGCAGGTGGTAGAGGTTCTTAATCCTTTAGCAAGGGAGTTCAAGTCAATTGGAACCTTGAGGAAAGAGCTTGCAGAATTACAGGAAGAATTGGCAAAAGCTCACAATCAGGTATTGTACTTTCAGGAGACAGGAGCCAAATGAAAAACTTCAATATTATATGGATTCTGATGTTTTACATGTCTAATCCAGGTTCATCTGTCGGAAACTAGAGTATCATCTGCCCTTGATAAGTTGGCACAAATGGAGACCCTTGTCAACGACAGACTGTTGCAAGATGGAGGCTCTAGCGCATCTACAGCCGAGTGCACTTCCCTTGCTCCAAGCACGTCATCAGCGTCCCGTGTTGTAAACAAGAAACCTCCTCGCCGGAGTCTGAACGTGTCTGGTCCAGTGCAGCCATACAATCCCAGTCTGAAGAACTTCTGGTACCCAGTTGCTTTCTCCAGTGACCTAAAAGACGATACAATGGTAAAAACAACGTGCGATTCAGGCATTTTTTTACGAGGTCAGAGTTAGCAGTTGCAGAAACTTATGTTTATTTGATGTGGTTTGCGCATTCTCAGGTGCCAATAGATTGTTTTGAGGAGCAGTGGGTAATTTTCCGAGGAAAGGATGGGAGACCTGGATGTGTTATGAACACATGTGCTCACAGAGCTTGCCCTCTTCATCTTGGCTCAGTTAATGAGGGCAGAATCCAATGCCCTTACCATGGTAAGAAAAGACAGCTTTACATGAACTTTCATTTCTGCATGCTTCCGCATTTATTTCTGAAGTCTTCAGATGAAAATTTGCCAACAGAGAGAAGTTGCGAAAGTAGTATTTCAGTTTTTTTTTGTTTTCATAACCTTCAGGTTGGGAGTATTCAACTGATGGAAAATGTGAGAAAATGCCATCCACAAAGATGCTCAACGTGCGCATCCGGTCATTACCATGCTTTGAGCAAGAAGGAATGGTTTGGATATGGCCTGGCAATGACCCACCGAAGTCGACTATCCCTTCTCTGCTGCCTCCTTCAGGATTTACAATTCACGCAGAGGTAAAAGGAGATCATGTCATGCTGCAGCAACCATACTATGTGGAACTGTCCTGTGCATTTCAAGATTTTTACTGGACTGAAAAGTAATGGAATTGTTCTTGATCATCAACAGATAGTGATGGAGCTACCAGTGGAGCATGGACTTCTTCTGGACAATCTATTAGATCTTGCTCATGCTCCTTTTACTCATACATCCACCTTTGCCAAGGGTTGGAGTGTTCCAAGGTATTTACATACATATATTTTCACAGCCATGTGGAATTCTTTTTTTTTTTTTTAGAAAATGGATAGCCATGTGGAAATGTCTTCAGAAATCATCATGCTGATGCTATGTTCATTTCCCAGCTTGGTGAAGTTCTTGACACCTTCATCTGGGCTTCAAGGATACTGGGATCCATACCCGATCGACATGGAATTTCGACCACCATGCATGGTGTTGTCAACCATTGGCATCTCAAAGCCTGGAAAACTAGAGGGGAAGAGCACCAAGCAATGTTCGACGCATCTCCACCAGCTCCATATCTGTTTGCCCTCCTCTAGGAATAAAACCAGGCTGCTCTACCGGATGTCTCTCGACTTCGCTCCATGGATCAAGCATGTCCCTTTCATGCATATACTATGGTCACATTTTGCTGAGAAGGTGAGTCCGAAAAATTCAGAGCAACTTCATACTAAACTGTTGTCCATCTCATGTCATTACAGTTTGCACCTGACTATAGTATGCGGTTACCTTTGTTTTGCATACTGTCCTCTATACAACATCTATAATAATCTTGTATGATCTTTCTGCAGGTCTTGAATGAGGATCTTCGACTCGTGCTCGGGCAGCAAGAACGGATGATCAATGGCGCAAATGTCTGGAACTGGCCAGTATCATATGACAAGCTTGGTATCCGGTATCGGTTGTGGAGACGCCATTGAGAGGGGAGTAGACAGGTTGCCATTCAGTAACCAAAGTGAGAGTGGATCATAGATGACCACTGTGGCATCGCTGTCTTTGCTGCCGCACTTGCTCATCAAGCCTTCCTTCAGGTGTTGCTCCAGAAAGGTGAGTTCTTCTTGTTGTTCCTTGAATCTGTTTTTGTTGTTGTTGTTTGGCGATTCTTGAATTTGTTTTGGGGTATCTGGCGATGGGAGGAACCATGTTTCTTGTTTGGTTTTTGGGTTCAGGTGGCCATTCTTGATGAAAAACTGAGTGTTTGAGTTTGAGCAGTGCAATGGAGTTACCATTTTTGTTCTTCTGATTGGATTCTTTGTGATGGTTGATGTTTTTGTTCAGACAATGGTTTCAAGGTTCTGTGATTCTTCAGACCCCATATCTTAAAACCTGTTGTATTGAAGTAAGCAAAAAAACAAATCTTGATCAAGGACAGCCTAGTTGCCAATTTTTCTTTGCAAATCTGAATGCAATTCAATCTCTTTCTTCCAGCAAATGCGTGCAGCTTTCCCCCAGTAACCACAGGCTTATCTCTGACACTGATTTAACTAGATTTTGCTAATCTCTTTGATACTAGTTTGTCTGCTAAAATAGAGTGCATGTGAGGTTGATGAAAATTGATGGTGACCTTGCTGATTGAAACTACACAGGGTGTTGGTAGATATGGAGGAATCAAGGTGTATGCGGTGCTCGGTGATGATGGAGCTGACTATGCAAAGAACAACGCATGGGAGGCCTTGTTCCATGTCGATGACCCGGGGCCAAGGGTTCCAATTGCAAAAGGCAAGTTCTTGGATGTCAACCAAGCTCTTGAGGTGGTCCGGTTCGATATCCAGTATTGCGATTGGAGGGCGCGGCAGGACCTCCTCACCATCATGGTTCTTCACAACAAGGTAGGAAGCATTGGACAAGTCACAAGTTCAGAGAAGAGGTCAAAGCTTTCATAGTCTGAATTTTACAGATCATGGGATTCAAAATTGGACTGCATACTGAATAATGCTTGAGGTTGAAGTTTCGGATGACTGACATAGGTTAA CTTAAATGAATTTTTGAACATTGAAATGCAGGTGGTAGAGGTTCTTAATCCTTTAGCAAGGGAGTTCAAGTCAATTGGAACCTTGAGGAAAGAGCTTGCAGAATTACAGGAAGAATTGGCAAAAGCTCACAATCAGGTATTGTACTTTCAGGAGACAGGAGCCAAATGAAAAACTTCAATATTATATGGATTCTGATGTTTTACATGTCTAATCCAGGTTCATCTGTCGGAAACTAGAGTATCATCTGCCCTTGATAAGTTGGCACAAATGGAGACCCTTGTCAACGACAGACTGTTGCAAGATGGAGGCTCTAGCGCATCTACAGCCGAGTGCACTTCCCTTGCTCCAAGCACGTCATCAGCGTCCCGTGTTGTAAACAAGAAACCTCCTCGCCGGAGTCTGAACGTGTCTGGTCCAGTGCAGCCATACAATCCCAGTCTGAAGAACTTCTGGTACCCAGTTGCTTTCTCCAGTGACCTAAAAGACGATACAATGGTAAAAACAACGTGCGATTCAGGCATTTTTTTACGAGGTCAGAGTTAGCAGTTGCAGAAACTTATGTTTATTTGATGTGGTTTGCGCATTCTCAGGTGCCAATAGATTGTTTTGAGGAGCAGTGGGTAATTTTCCGAGGAAAGGATGGGAGACCTGGATGTGTTATGAACACATGTGCTCACAGAGCTTGCCCTCTTCATCTTGGCTCAGTTAATGAGGGCAGAATCCAATGCCCTTACCATGGTAAGAAAAGACAGCTTTACATGAACTTTCATTTCTGCATGCTTCCGCATTTATTTCTGAAGTCTTCAGATGAAAATTTGCCAACAGAGAGAAGTTGCGAAAGTAGTATTTCAGTTTTTTTTTGTTTTCATAACCTTCAGGTTGGGAGTATTCAACTGATGGAAAATGTGAGAAAATGCCATCCACAAAGATGCTCAACGTGCGCATCCGGTCATTACCATGCTTTGAGCAAGAAGGAATGGTTTGGATATGGCCTGGCAA TGACCCACCGAAGTCGACTATCCCTTCTCTGCTGCCTCCTTCAGGATTTACAATTCACGCAGAGGTAAAAGGAGATCATGTCATGCTGCAGCAACCATACTATGTGGAACTGTCCTGTGCATTTCAAGATTTTTACTGGACTGAAAAGTAATGGAATTGTTCTTGATCATCAACAGATAGTGATGGAGCTACCAGTGGAGCATGGACTTCTTCTGGACAATCTATTAGATCTTGCTCATGCTCCTTTTACTCATACATCCACCTTTGCCAAGGGTTGGAGTGTTCCAAGGTATTTACATACATATATTTTCACAGCCATGTGGAATTCTTTTTTTTTTTTTTAGAAAATGGATAGCCATGTGGAAATGTCTTCAGAAATCATCATGCTGATGCTATGTTCATTTCCCAGCTTGGTGAAGTTCTTGACACCTTCATCTGGGCTTCAAGGATACTGGGATCCATACCCGATCGACATGGAATTTCGACCACCATGCATGGTGTTGTCAACCATTGGCATCTCAAAGCCTGGAAAACTAGAGGGGAAGAGCACCAAGCAATGTTCGACGCATCTCCACCAGCTCCATATCTGTTTGCCCTCCTCTAGGAATAAAACCAGGCTGCTCTACCGGATGTCTCTCGACTTCGCTCCATGGATCAAGCATGTCCCTTTCATGCATATACTATGGTCACATTTTGCTGAGAAGGTGAGTCCGAAAAATTCAGAGCAACTTCATACTAAACTGTTGTCCATCTCATGTCATTACAGTTTGCACCTGACTATAGTATGCGGTTACCTTTGTTTTGCATACTGTCCTCTATACAACATCTATAATAATCTTGTATGATCTTTCTGCAGGTCTTGAATGAGGATCTTCGACTCGTGCTCGGGCAGCAAGAACGGATGATCAATGGCGCAAATGTCTGGAACTGGCCAGTATCATATGACAAGCTTGGTATCCGGTATCGGTTGTGGAGACGCCATTGAGAGGGGAGTAGACAG GTTGCCATTCAGTAACCAAAGTGAGAGTGGATCATAG

SEQ ID NO.3SEQ ID NO.3

YGL11(t)cDNA:YGL11(t) cDNA:

ATGACCACTGTGGCATCGCTGTCTTTGCTGCCGCACTTGCTCATCAAGCCTTCCTTCAGGTGTTGCTCCAGAAAGGGTGTTGGTAGATATGGAGGAATCAAGGTGTATGCGGTGCTCGGTGATGATGGAGCTGACTATGCAAAGAACAACGCATGGGAGGCCTTGTTCCATGTCGATGACCCGGGGCCAAGGGTTCCAATTGCAAAAGGCAAGTTCTTGGATGTCAACCAAGCTCTTGAGGTGGTCCGGTTCGATATCCAGTATTGCGATTGGAGGGCGCGGCAGGACCTCCTCACCATCATGGTTCTTCACAACAAGGTGGTAGAGGTTCTTAATCCTTTAGCAAGGGAGTTCAAGTCAATTGGAACCTTGAGGAAAGAGCTTGCAGAATTACAGGAAGAATTGGCAAAAGCTCACAATCAGGTTCATCTGTCGGAAACTAGAGTATCATCTGCCCTTGATAAGTTGGCACAAATGGAGACCCTTGTCAACGACAGACTGTTGCAAGATGGAGGCTCTAGCGCATCTACAGCCGAGTGCACTTCCCTTGCTCCAAGCACGTCATCAGCGTCCCGTGTTGTAAACAAGAAACCTCCTCGCCGGAGTCTGAACGTGTCTGGTCCAGTGCAGCCATACAATCCCAGTCTGAAGAACTTCTGGTACCCAGTTGCTTTCTCCAGTGACCTAAAAGACGATACAATGGTGCCAATAGATTGTTTTGAGGAGCAGTGGGTAATTTTCCGAGGAAAGGATGGGAGACCTGGATGTGTTATGAACACATGTGCTCACAGAGCTTGCCCTCTTCATCTTGGCTCAGTTAATGAGGGCAGAATCCAATGCCCTTACCATGGTTGGGAGTATTCAACTGATGGAAAATGTGAGAAAATGCCATCCACAAAGATGCTCAACGTGCGCATCCGGTCATTACCATGCTTTGAGCAAGAAGGAATGGTTTGGATATGGCCTGGCAATGACCCACCGAAGTCGACTATCCCTTCTCTGCTGCCTCCTTCAGGATTTACAATTCACGCAGAGATAGTGATGGAGCTACCAGTGGAGCATGGACTTCTTCTGGACAATCTATTAGATCTTGCTCATGCTCCTTTTACTCATACATCCACCTTTGCCAAGGGTTGGAGTGTTCCAAGCTTGGTGAAGTTCTTGACACCTTCATCTGGGCTTCAAGGATACTGGGATCCATACCCGATCGACATGGAATTTCGACCACCATGCATGGTGTTGTCAACCATTGGCATCTCAAAGCCTGGAAAACTAGAGGGGAAGAGCACCAAGCAATGTTCGACGCATCTCCACCAGCTCCATATCTGTTTGCCCTCCTCTAGGAATAAAACCAGGCTGCTCTACCGGATGTCTCTCGACTTCGCTCCATGGATCAAGCATGTCCCTTTCATGCATATACTATGGTCACATTTTGCTGAGAAGGTCTTGAATGAGGATCTTCGACTCGTGCTCGGGCAGCAAGAACGGATGATCAATGGCGCAAATGTCTGGAACTGGCCAGTATCATATGACAAGCTTGGTATCCGGTATCGGTTGTGGAGACGCCATTGAGAGGGGAGTAGACAGGTTGCCATTCAGTAACCAAAGTGAGAGTGGATCATAGATGACCACTGTGGCATCGCTGTCTTTGCTGCCGCACTTGCTCATCAAGCCTTCCTTCAGGTGTTGCTCCAGAAAGGGTGTTGGTAGATATGGAGGAATCAAGGTGTATGCGGTGCTCGGTGATGATGGAGCTGACTATGCAAAGAACAACGCATGGGAGGCCTTGTTCCATGTCGATGACCCGGGGCCAAGGGTTCCAATTGCAAAAGGCAAGTTCTTGGATGTCAACCAAGCTCTTGAGGTGGTCCGGTTCGATATCCAGTATTGCGATTGGAGGGCGCGGCAGGACCTCCTCACCATCATGGTTCTTCACAACAAGGTGGTAGAGGTTCTTAATCCTTTAGCAAGGGAGTTCAAGTCAATTGGAACCTTGAGGAAAGAGCTTGCAGAATTACAGGAAGAATTGGCAAAAGCTCACAATCAGGTTCATCTGTCGGAAACTAGAGTATCATCTGCCCTTGATAAGTTGGCACAAATGGAGACCCTTGTCAACGACAGACTGTTGCAAGATGGAGGCTCTAGCGCATCTACAGCCGAGTGCACTTCCCTTGCTCCAAGCACGTCATCAGCGTCCCGTGTTGTAAACAAGAAACCTCCTCGCCGGAGTCTGAACGTGTCTGGTCCAGTGCAGCCATACAATCCCAGTCTGAAGAACTTCTGGTACCCAGTTGCTTTCTCCAGTGACCTAAAAGACGATACAATGGTGCCAATAGATTGTTTTGAGGAGCAGTGGGTAATTTTCCGAGGAAAGGATGGGAGACCTGGATGTGTTATGAACACATGTGCTCACAGAGCTTGCCCTCTTCATCTTGGCTCAGTTAATGAGGGCAGAATCCAATGCCCTTACCATGGTTGGGAGTATTCAACTGATGGAAAATGTGAGAAAATGCCATCCACAAAGATGCTCAACGTGCGCATCCGGTCATTACCATGCTTTGAGCAAGAAGGAATGGTTTGGATATGGCCTGGCAATGACCCACCGAAGTCGACTATCCCTTCTC TGCTGCCTCCTTCAGGATTTACAATTCACGCAGAGATAGTGATGGAGCTACCAGTGGAGCATGGACTTCTTCTGGACAATCTATTAGATCTTGCTCATGCTCCTTTTACTCATACATCCACCTTTGCCAAGGGTTGGAGTGTTCCAAGCTTGGTGAAGTTCTTGACACCTTCATCTGGGCTTCAAGGATACTGGGATCCATACCCGATCGACATGGAATTTCGACCACCATGCATGGTGTTGTCAACCATTGGCATCTCAAAGCCTGGAAAACTAGAGGGGAAGAGCACCAAGCAATGTTCGACGCATCTCCACCAGCTCCATATCTGTTTGCCCTCCTCTAGGAATAAAACCAGGCTGCTCTACCGGATGTCTCTCGACTTCGCTCCATGGATCAAGCATGTCCCTTTCATGCATATACTATGGTCACATTTTGCTGAGAAGGTCTTGAATGAGGATCTTCGACTCGTGCTCGGGCAGCAAGAACGGATGATCAATGGCGCAAATGTCTGGAACTGGCCAGTATCATATGACAAGCTTGGTATCCGGTATCGGTTGTGGAGACGCCATTGAGAGGGGAGTAGACAGGTTGCCATTCAGTAACCAAAGTGAGAGTGGATCATAG

SEQUENCE LISTING SEQUENCE LISTING

<110> 江苏省农业科学院 <110> Jiangsu Academy of Agricultural Sciences

<120> 一种水稻黄绿叶相关蛋白质及其编码基因与应用 <120> A rice yellow-green leaf-related protein and its coding gene and application

<130> 0 <130> 0

<160> 3 <160> 3

<170> PatentIn version 3.1 <170> PatentIn version 3.1

<210> 1 <210> 1

<211> 508 <211> 508

<212> PRT <212> PRT

<213> Oryza sativa <213> Oryza sativa

<220> <220>

<221> YGL11(t)编码的氨基酸序列 <221> Amino acid sequence encoded by YGL11(t)

<222> (1)..(508) <222> (1)..(508)

<223> <223>

<400> 1 <400> 1

Met Val Thr Leu Leu Ile Glu Thr Thr Gln Gly Val Gly Arg Tyr Gly Met Val Thr Leu Leu Ile Glu Thr Thr Gln Gly Val Gly Arg Tyr Gly

1 5 10 15 1 5 10 15

Gly Ile Lys Val Tyr Ala Val Leu Gly Asp Asp Gly Ala Asp Tyr Ala Gly Ile Lys Val Tyr Ala Val Leu Gly Asp Asp Gly Ala Asp Tyr Ala

20 25 30 20 25 30

Lys Asn Asn Ala Trp Glu Ala Leu Phe His Val Asp Asp Pro Gly Pro Lys Asn Asn Ala Trp Glu Ala Leu Phe His Val Asp Asp Pro Gly Pro

35 40 45 35 40 45

Arg Val Pro Ile Ala Lys Gly Lys Phe Leu Asp Val Asn Gln Ala Leu Arg Val Pro Ile Ala Lys Gly Lys Phe Leu Asp Val Asn Gln Ala Leu

50 55 60 50 55 60

Glu Val Val Arg Phe Asp Ile Gln Tyr Cys Asp Trp Arg Ala Arg Gln Glu Val Val Arg Phe Asp Ile Gln Tyr Cys Asp Trp Arg Ala Arg Gln

65 70 75 80 65 70 75 80

Asp Leu Leu Thr Ile Met Val Leu His Asn Lys Val Val Glu Val Leu Asp Leu Leu Thr Ile Met Val Leu His Asn Lys Val Val Glu Val Leu

85 90 95 85 90 95

Asn Pro Leu Ala Arg Glu Phe Lys Ser Ile Gly Thr Leu Arg Lys Glu Asn Pro Leu Ala Arg Glu Phe Lys Ser Ile Gly Thr Leu Arg Lys Glu

100 105 110 100 105 110

Leu Ala Glu Leu Gln Glu Glu Leu Ala Lys Ala His Asn Gln Val His Leu Ala Glu Leu Gln Glu Glu Leu Ala Lys Ala His Asn Gln Val His

115 120 125 115 120 125

Leu Ser Glu Thr Arg Val Ser Ser Ala Leu Asp Lys Leu Ala Gln Met Leu Ser Glu Thr Arg Val Ser Ser Ala Leu Asp Lys Leu Ala Gln Met

130 135 140 130 135 140

Glu Thr Leu Val Asn Asp Arg Leu Leu Gln Asp Gly Gly Ser Ser Ala Glu Thr Leu Val Asn Asp Arg Leu Leu Gln Asp Gly Gly Ser Ser Ser Ala

145 150 155 160 145 150 155 160

Ser Thr Ala Glu Cys Thr Ser Leu Ala Pro Ser Thr Ser Ser Ala Ser Ser Thr Ala Glu Cys Thr Ser Leu Ala Pro Ser Thr Ser Ser Ser Ala Ser

165 170 175 165 170 175

Arg Val Val Asn Lys Lys Pro Pro Arg Arg Ser Leu Asn Val Ser Gly Arg Val Val Asn Lys Lys Pro Pro Arg Arg Ser Leu Asn Val Ser Gly

180 185 190 180 185 190

Pro Val Gln Pro Tyr Asn Pro Ser Leu Lys Asn Phe Trp Tyr Pro Val Pro Val Gln Pro Tyr Asn Pro Ser Leu Lys Asn Phe Trp Tyr Pro Val

195 200 205 195 200 205

Ala Phe Ser Ser Asp Leu Lys Asp Asp Thr Met Val Pro Ile Asp Cys Ala Phe Ser Ser Asp Leu Lys Asp Asp Thr Met Val Pro Ile Asp Cys

210 215 220 210 215 220

Phe Glu Glu Gln Trp Val Ile Phe Arg Gly Lys Asp Gly Arg Pro Gly Phe Glu Glu Gln Trp Val Ile Phe Arg Gly Lys Asp Gly Arg Pro Gly

225 230 235 240 225 230 235 240

Cys Val Met Asn Thr Cys Ala His Arg Ala Cys Pro Leu His Leu Gly Cys Val Met Asn Thr Cys Ala His Arg Ala Cys Pro Leu His Leu Gly

245 250 255 245 250 255

Ser Val Asn Glu Gly Arg Ile Gln Cys Pro Tyr His Gly Trp Glu Tyr Ser Val Asn Glu Gly Arg Ile Gln Cys Pro Tyr His Gly Trp Glu Tyr

260 265 270 260 265 270

Ser Thr Asp Gly Lys Cys Glu Lys Met Pro Ser Thr Lys Met Leu Asn Ser Thr Asp Gly Lys Cys Glu Lys Met Pro Ser Thr Lys Met Leu Asn

275 280 285 275 280 285

Val Arg Ile Arg Ser Leu Pro Cys Phe Glu Gln Glu Gly Met Val Trp Val Arg Ile Arg Ser Leu Pro Cys Phe Glu Gln Glu Gly Met Val Trp

290 295 300 290 295 300

Ile Trp Pro Gly Asn Asp Pro Pro Lys Ser Thr Ile Pro Ser Leu Leu Ile Trp Pro Gly Asn Asp Pro Pro Lys Ser Thr Ile Pro Ser Leu Leu

305 310 315 320 305 310 315 320

Pro Pro Ser Gly Phe Thr Ile His Ala Glu Ile Val Met Glu Leu Pro Pro Pro Ser Gly Phe Thr Ile His Ala Glu Ile Val Met Glu Leu Pro

325 330 335 325 330 335

Val Glu His Gly Leu Leu Leu Asp Asn Leu Leu Asp Leu Ala His Ala Val Glu His Gly Leu Leu Leu Asp Asn Leu Leu Asp Leu Ala His Ala

340 345 350 340 345 350

Pro Phe Thr His Thr Ser Thr Phe Ala Lys Gly Trp Ser Val Pro Ser Pro Phe Thr His Thr Ser Thr Phe Ala Lys Gly Trp Ser Val Pro Ser

355 360 365 355 360 365

Leu Val Lys Phe Leu Thr Pro Ser Ser Gly Leu Gln Gly Tyr Trp Asp Leu Val Lys Phe Leu Thr Pro Ser Ser Gly Leu Gln Gly Tyr Trp Asp

370 375 380 370 375 380

Pro Tyr Pro Ile Asp Met Glu Phe Arg Pro Pro Cys Met Val Leu Ser Pro Tyr Pro Ile Asp Met Glu Phe Arg Pro Pro Cys Met Val Leu Ser

385 390 395 400 385 390 395 400

Thr Ile Gly Ile Ser Lys Pro Gly Lys Leu Glu Gly Lys Ser Thr Lys Thr Ile Gly Ile Ser Lys Pro Gly Lys Leu Glu Gly Lys Ser Thr Lys

405 410 415 405 410 415

Gln Cys Ser Thr His Leu His Gln Leu His Ile Cys Leu Pro Ser Ser Gln Cys Ser Thr His Leu His Gln Leu His Ile Cys Leu Pro Ser Ser

420 425 430 420 425 430

Arg Asn Lys Thr Arg Leu Leu Tyr Arg Met Ser Leu Asp Phe Ala Pro Arg Asn Lys Thr Arg Leu Leu Tyr Arg Met Ser Leu Asp Phe Ala Pro

435 440 445 435 440 445

Trp Ile Lys His Val Pro Phe Met His Ile Leu Trp Ser His Phe Ala Trp Ile Lys His Val Pro Phe Met His Ile Leu Trp Ser His Phe Ala

450 455 460 450 455 460

Glu Lys Val Leu Asn Glu Asp Leu Arg Leu Val Leu Gly Gln Gln Glu Glu Lys Val Leu Asn Glu Asp Leu Arg Leu Val Leu Gly Gln Gln Glu

465 470 475 480 465 470 475 480

Arg Met Ile Asn Gly Ala Asn Val Trp Asn Trp Pro Val Ser Tyr Asp Arg Met Ile Asn Gly Ala Asn Val Trp Asn Trp Pro Val Ser Tyr Asp

485 490 495 485 490 495

Lys Leu Gly Ile Arg Tyr Arg Leu Trp Arg Arg His Lys Leu Gly Ile Arg Tyr Arg Leu Trp Arg Arg His

500 505 500 505

<210> 2 <210> 2

<211> 3037 <211> 3037

<212> DNA <212>DNA

<213> Oryza sativa <213> Oryza sativa

<220> <220>

<221> YGL11(t) genomic DNA <221> YGL11(t) genomic DNA

<222> (1)..(3037) <222> (1)..(3037)

<223> <223>

<400> 2 <400> 2

atgaccactg tggcatcgct gtctttgctg ccgcacttgc tcatcaagcc ttccttcagg 60 atgaccactg tggcatcgct gtctttgctg ccgcacttgc tcatcaagcc ttccttcagg 60

tgttgctcca gaaaggtgag ttcttcttgt tgttccttga atctgttttt gttgttgttg 120 tgttgctcca gaaaggtgag ttcttcttgt tgttccttga atctgttttt gttgttgttg 120

tttggcgatt cttgaatttg ttttggggta tctggcgatg ggaggaacca tgtttcttgt 180 tttggcgatt cttgaatttg ttttggggta tctggcgatg ggaggaacca tgtttcttgt 180

ttggtttttg ggttcaggtg gccattcttg atgaaaaact gagtgtttga gtttgagcag 240 ttggtttttg ggttcaggtg gccattcttg atgaaaaact gagtgtttga gtttgagcag 240

tgcaatggag ttaccatttt tgttcttctg attggattct ttgtgatggt tgatgttttt 300 tgcaatggag ttaccatttt tgttcttctg attggattct ttgtgatggt tgatgttttt 300

gttcagacaa tggtttcaag gttctgtgat tcttcagacc ccatatctta aaacctgttg 360 gttcagacaa tggtttcaag gttctgtgat tcttcagacc ccatatctta aaacctgttg 360

tattgaagta agcaaaaaaa caaatcttga tcaaggacag cctagttgcc aatttttctt 420 tattgaagta agcaaaaaaa caaatcttga tcaaggacag cctagttgcc aatttttctt 420

tgcaaatctg aatgcaattc aatctctttc ttccagcaaa tgcgtgcagc tttcccccag 480 tgcaaatctg aatgcaattc aatctctttc ttccagcaaa tgcgtgcagc tttcccccag 480

taaccacagg cttatctctg acactgattt aactagattt tgctaatctc tttgatacta 540 taaccacagg cttatctctg aactagattt aactagattt tgctaatctc tttgatacta 540

gtttgtctgc taaaatagag tgcatgtgag gttgatgaaa attgatggtg accttgctga 600 gtttgtctgc taaaatagag tgcatgtgag gttgatgaaa attgatggtg accttgctga 600

ttgaaactac acagggtgtt ggtagatatg gaggaatcaa ggtgtatgcg gtgctcggtg 660 ttgaaactac acagggtgtt ggtagatatg gaggaatcaa ggtgtatgcg gtgctcggtg 660

atgatggagc tgactatgca aagaacaacg catgggaggc cttgttccat gtcgatgacc 720 atgatggagc tgactatgca aagaacaacg catgggaggc cttgttccat gtcgatgacc 720

cggggccaag ggttccaatt gcaaaaggca agttcttgga tgtcaaccaa gctcttgagg 780 cggggccaag ggttccaatt gcaaaaggca agttcttgga tgtcaaccaa gctcttgagg 780

tggtccggtt cgatatccag tattgcgatt ggagggcgcg gcaggacctc ctcaccatca 840 tggtccggtt cgatatccag tattgcgatt ggagggcgcg gcaggacctc ctcaccatca 840

tggttcttca caacaaggta ggaagcattg gacaagtcac aagttcagag aagaggtcaa 900 tggttcttca caacaaggta ggaagcattg gacaagtcac aagttcagag aagaggtcaa 900

agctttcata gtctgaattt tacagatcat gggattcaaa attggactgc atactgaata 960 agctttcata gtctgaattt tacagatcat gggattcaaa attggactgc atactgaata 960

atgcttgagg ttgaagtttc ggatgactga cataggttaa cttaaatgaa tttttgaaca 1020 atgcttgagg ttgaagtttc ggatgactga cataggttaa cttaaatgaa tttttgaaca 1020

ttgaaatgca ggtggtagag gttcttaatc ctttagcaag ggagttcaag tcaattggaa 1080 ttgaaatgca ggtggtagag gttcttaatc ctttagcaag ggagttcaag tcaattggaa 1080

ccttgaggaa agagcttgca gaattacagg aagaattggc aaaagctcac aatcaggtat 1140 ccttgaggaa agagcttgca gaattacagg aagaattggc aaaagctcac aatcaggtat 1140

tgtactttca ggagacagga gccaaatgaa aaacttcaat attatatgga ttctgatgtt 1200 tgtactttca ggagacagga gccaaatgaa aaacttcaat attatatgga ttctgatgtt 1200

ttacatgtct aatccaggtt catctgtcgg aaactagagt atcatctgcc cttgataagt 1260 ttacatgtct aatccaggt catctgtcgg aaactagagt atcatctgcc cttgataagt 1260

tggcacaaat ggagaccctt gtcaacgaca gactgttgca agatggaggc tctagcgcat 1320 tggcacaaat ggagaccctt gtcaacgaca gactgttgca agatggaggc tctagcgcat 1320

ctacagccga gtgcacttcc cttgctccaa gcacgtcatc agcgtcccgt gttgtaaaca 1380 ctacagccga gtgcacttcc cttgctccaa gcacgtcatc agcgtcccgt gttgtaaaca 1380

agaaacctcc tcgccggagt ctgaacgtgt ctggtccagt gcagccatac aatcccagtc 1440 agaaacctcc tcgccggagt ctgaacgtgt ctggtccagt gcagccatac aatcccagtc 1440

tgaagaactt ctggtaccca gttgctttct ccagtgacct aaaagacgat acaatggtaa 1500 tgaagaactt ctggtaccca gttgctttct ccagtgacct aaaagacgat acaatggtaa 1500

aaacaacgtg cgattcaggc atttttttac gaggtcagag ttagcagttg cagaaactta 1560 aaacaacgtg cgattcaggc atttttttac gaggtcagag ttagcagttg cagaaactta 1560

tgtttatttg atgtggtttg cgcattctca ggtgccaata gattgttttg aggagcagtg 1620 tgtttatttg atgtggtttg cgcattctca ggtgccaata gattgttttg aggagcagtg 1620

ggtaattttc cgaggaaagg atgggagacc tggatgtgtt atgaacacat gtgctcacag 1680 ggtaattttc cgaggaaagg atgggagacc tggatgtgtt atgaacacat gtgctcacag 1680

agcttgccct cttcatcttg gctcagttaa tgagggcaga atccaatgcc cttaccatgg 1740 agcttgccct cttcatcttg gctcagttaa tgagggcaga atccaatgcc cttaccatgg 1740

taagaaaaga cagctttaca tgaactttca tttctgcatg cttccgcatt tatttctgaa 1800 taagaaaaga cagctttaca tgaactttca tttctgcatg cttccgcatt tatttctgaa 1800

gtcttcagat gaaaatttgc caacagagag aagttgcgaa agtagtattt cagttttttt 1860 gtcttcagat gaaaatttgc caacagagag aagttgcgaa agtagtattt cagttttttt 1860

ttgttttcat aaccttcagg ttgggagtat tcaactgatg gaaaatgtga gaaaatgcca 1920 ttgttttcat aaccttcagg ttgggagtat tcaactgatg gaaaatgtga gaaaatgcca 1920

tccacaaaga tgctcaacgt gcgcatccgg tcattaccat gctttgagca agaaggaatg 1980 tccacaaaga tgctcaacgt gcgcatccgg tcattaccat gctttgagca agaaggaatg 1980

gtttggatat ggcctggcaa tgacccaccg aagtcgacta tcccttctct gctgcctcct 2040 gtttggatat ggcctggcaa tgacccaccg aagtcgacta tcccttctct gctgcctcct 2040

tcaggattta caattcacgc agaggtaaaa ggagatcatg tcatgctgca gcaaccatac 2100 tcaggatta caattcacgc agaggtaaaa ggagatcatg tcatgctgca gcaaccatac 2100

tatgtggaac tgtcctgtgc atttcaagat ttttactgga ctgaaaagta atggaattgt 2160 tatgtggaac tgtcctgtgc atttcaagat ttttactgga ctgaaaagta atggaattgt 2160

tcttgatcat caacagatag tgatggagct accagtggag catggacttc ttctggacaa 2220 tcttgatcat caacagatag tgatggagct accagtggag catggacttc ttctggacaa 2220

tctattagat cttgctcatg ctccttttac tcatacatcc acctttgcca agggttggag 2280 tctattagat cttgctcatg ctccttttac tcatacatcc acctttgcca agggttggag 2280

tgttccaagg tatttacata catatatttt cacagccatg tggaattctt tttttttttt 2340 tgttccaagg tatttacata catatatttt cacagccatg tggaattctt tttttttttt 2340

ttagaaaatg gatagccatg tggaaatgtc ttcagaaatc atcatgctga tgctatgttc 2400 ttagaaaatg gatagccatg tggaaatgtc ttcagaaatc atcatgctga tgctatgttc 2400

atttcccagc ttggtgaagt tcttgacacc ttcatctggg cttcaaggat actgggatcc 2460 atttcccagc ttggtgaagt tcttgacacc ttcatctggg cttcaaggat actgggatcc 2460

atacccgatc gacatggaat ttcgaccacc atgcatggtg ttgtcaacca ttggcatctc 2520 atacccgatc gacatggaat ttcgaccacc atgcatggtg ttgtcaacca ttggcatctc 2520

aaagcctgga aaactagagg ggaagagcac caagcaatgt tcgacgcatc tccaccagct 2580 aaagcctgga aaactagagg ggaagagcac caagcaatgt tcgacgcatc tccaccagct 2580

ccatatctgt ttgccctcct ctaggaataa aaccaggctg ctctaccgga tgtctctcga 2640 ccatatctgt ttgccctcct ctaggaataa aaccaggctg ctctaccgga tgtctctcga 2640

cttcgctcca tggatcaagc atgtcccttt catgcatata ctatggtcac attttgctga 2700 cttcgctcca tggatcaagc atgtcccttt catgcatata ctatggtcac attttgctga 2700

gaaggtgagt ccgaaaaatt cagagcaact tcatactaaa ctgttgtcca tctcatgtca 2760 gaaggtgagt ccgaaaaatt cagagcaact tcatactaaa ctgttgtcca tctcatgtca 2760

ttacagtttg cacctgacta tagtatgcgg ttacctttgt tttgcatact gtcctctata 2820 ttacagtttg cacctgacta tagtatgcgg ttacctttgt tttgcatact gtcctctata 2820

caacatctat aataatcttg tatgatcttt ctgcaggtct tgaatgagga tcttcgactc 2880 caacatctat aataatcttg tatgatcttt ctgcaggtct tgaatgagga tcttcgactc 2880

gtgctcgggc agcaagaacg gatgatcaat ggcgcaaatg tctggaactg gccagtatca 2940 gtgctcgggc agcaagaacg gatgatcaat ggcgcaaatg tctggaactg gccagtatca 2940

tatgacaagc ttggtatccg gtatcggttg tggagacgcc attgagaggg gagtagacag 3000 tatgacaagc ttggtatccg gtatcggttg tggagacgcc attgagagggg gagtagacag 3000

gttgccattc agtaaccaaa gtgagagtgg atcatag 3037 gttgccattc agtaaccaaa gtgagagtgg atcatag 3037

<210> 3 <210> 3

<211> 1624 <211> 1624

<212> DNA <212>DNA

<213> Oryza sativa <213> Oryza sativa

<220> <220>

<221> YGL11(t) cDNA <221> YGL11(t) cDNA

<222> (1)..(1624) <222> (1)..(1624)

<223> <223>

<400> 3 <400> 3

atgaccactg tggcatcgct gtctttgctg ccgcacttgc tcatcaagcc ttccttcagg 60 atgaccactg tggcatcgct gtctttgctg ccgcacttgc tcatcaagcc ttccttcagg 60

tgttgctcca gaaagggtgt tggtagatat ggaggaatca aggtgtatgc ggtgctcggt 120 tgttgctcca gaaagggtgt tggtagatat ggaggaatca aggtgtatgc ggtgctcggt 120

gatgatggag ctgactatgc aaagaacaac gcatgggagg ccttgttcca tgtcgatgac 180 gatgatggag ctgactatgc aaagaacaac gcatgggagg ccttgttcca tgtcgatgac 180

ccggggccaa gggttccaat tgcaaaaggc aagttcttgg atgtcaacca agctcttgag 240 ccggggccaa gggttccaat tgcaaaaggc aagttcttgg atgtcaacca agctcttgag 240

gtggtccggt tcgatatcca gtattgcgat tggagggcgc ggcaggacct cctcaccatc 300 gtggtccggt tcgatatcca gtattgcgat tggagggcgc ggcaggacct cctcaccatc 300

atggttcttc acaacaaggt ggtagaggtt cttaatcctt tagcaaggga gttcaagtca 360 atggttcttc acaacaaggt ggtagaggtt cttaatcctt tagcaaggga gttcaagtca 360

attggaacct tgaggaaaga gcttgcagaa ttacaggaag aattggcaaa agctcacaat 420 attggaacct tgaggaaaga gcttgcagaa ttacaggaag aattggcaaa agctcacaat 420

caggttcatc tgtcggaaac tagagtatca tctgcccttg ataagttggc acaaatggag 480 caggttcatc tgtcggaaac tagagtatca tctgcccttg ataagttggc acaaatggag 480

acccttgtca acgacagact gttgcaagat ggaggctcta gcgcatctac agccgagtgc 540 acccttgtca acgacagact gttgcaagat ggaggctcta gcgcatctac agccgagtgc 540

acttcccttg ctccaagcac gtcatcagcg tcccgtgttg taaacaagaa acctcctcgc 600 acttcccttg ctccaagcac gtcatcagcg tcccgtgttg taaacaagaa acctcctcgc 600

cggagtctga acgtgtctgg tccagtgcag ccatacaatc ccagtctgaa gaacttctgg 660 cggagtctga acgtgtctgg tccagtgcag ccatacaatc ccagtctgaa gaacttctgg 660

tacccagttg ctttctccag tgacctaaaa gacgatacaa tggtgccaat agattgtttt 720 taccccagttg ctttctccag tgacctaaaa gacgatacaa tggtgccaat agattgtttt 720

gaggagcagt gggtaatttt ccgaggaaag gatgggagac ctggatgtgt tatgaacaca 780 gaggagcagt gggtaatttt ccgaggaaag gatgggagac ctggatgtgt tatgaacaca 780

tgtgctcaca gagcttgccc tcttcatctt ggctcagtta atgagggcag aatccaatgc 840 tgtgctcaca gagcttgccc tcttcatctt ggctcagtta atgagggcag aatccaatgc 840

ccttaccatg gttgggagta ttcaactgat ggaaaatgtg agaaaatgcc atccacaaag 900 cctaccatg gttgggagta ttcaactgat ggaaaatgtg agaaaatgcc atccacaaag 900

atgctcaacg tgcgcatccg gtcattacca tgctttgagc aagaaggaat ggtttggata 960 atgctcaacg tgcgcatccg gtcattacca tgctttgagc aagaaggaat ggtttggata 960

tggcctggca atgacccacc gaagtcgact atcccttctc tgctgcctcc ttcaggattt 1020 tggcctggca atgacccacc gaagtcgact atcccttctc tgctgcctcc ttcaggattt 1020

acaattcacg cagagatagt gatggagcta ccagtggagc atggacttct tctggacaat 1080 acaattcacg cagagatagt gatggagcta ccagtggagc atggacttct tctggacaat 1080

ctattagatc ttgctcatgc tccttttact catacatcca cctttgccaa gggttggagt 1140 ctattagatc ttgctcatgc tccttttact catacatcca cctttgccaa gggttggagt 1140

gttccaagct tggtgaagtt cttgacacct tcatctgggc ttcaaggata ctgggatcca 1200 gttccaagct tggtgaagtt cttgacacct tcatctgggc ttcaaggata ctgggatcca 1200

tacccgatcg acatggaatt tcgaccacca tgcatggtgt tgtcaaccat tggcatctca 1260 tacccgatcg acatggaatt tcgaccacca tgcatggtgt tgtcaaccat tggcatctca 1260

aagcctggaa aactagaggg gaagagcacc aagcaatgtt cgacgcatct ccaccagctc 1320 aagcctggaa aactagagggg gaagagcacc aagcaatgtt cgacgcatct ccaccagctc 1320

catatctgtt tgccctcctc taggaataaa accaggctgc tctaccggat gtctctcgac 1380 catatctgtt tgccctcctc taggaataaa accaggctgc tctaccggat gtctctcgac 1380

ttcgctccat ggatcaagca tgtccctttc atgcatatac tatggtcaca ttttgctgag 1440 ttcgctccat ggatcaagca tgtccctttc atgcatatac tatggtcaca ttttgctgag 1440

aaggtcttga atgaggatct tcgactcgtg ctcgggcagc aagaacggat gatcaatggc 1500 aaggtcttga atgaggatct tcgactcgtg ctcgggcagc aagaacggat gatcaatggc 1500

gcaaatgtct ggaactggcc agtatcatat gacaagcttg gtatccggta tcggttgtgg 1560 gcaaatgtct ggaactggcc agtatcatat gacaagcttg gtatccggta tcggttgtgg 1560

agacgccatt gagaggggag tagacaggtt gccattcagt aaccaaagtg agagtggatc 1620 agacgccatt gagaggggag tagacaggtt gccattcagt aaccaaagtg agagtggatc 1620

atag 1624 atag 1624

Claims (6)

1.水稻黄绿叶突变体ygl11(t)的应用, 该突变体ygl11(t)分类命名:水稻(Oryza sativa), 保藏编号CGMCC No.9160,于2014年5月4在中国微生物菌种保藏管理委员会普通微生物中心进行保藏,地址:北京市朝阳区北辰西路1号院3号 中科院微生物研究所。 1. The application of the yellow-green leaf mutant ygl11(t) of rice. The mutant ygl11(t) is classified and named: Rice ( Oryza sativa ), and the preservation number is CGMCC No.9160. The Committee's General Microbiology Center for preservation, address: Institute of Microbiology, Chinese Academy of Sciences, No. 3, Yard 1, Beichen West Road, Chaoyang District, Beijing. 2.来自于权利要求1所述水稻黄绿叶突变体ygl11(t)的一种水稻黄绿叶相关的蛋白质,其特征在于:该蛋白质具有SEQ ID No.1所示的氨基酸序列。 2. A rice yellow-green leaf-related protein from the rice yellow-green leaf mutant ygl11(t) according to claim 1, characterized in that: the protein has the amino acid sequence shown in SEQ ID No.1. 3.根据权利要求2所述的水稻黄绿叶相关蛋白质,其特征在于:所述氨基酸序列还包括在SEQ ID No.1所示的氨基酸序列中添加、取代、插入或缺失一个或多个氨基酸且与水稻黄绿叶相关的由SEQ ID No.1衍生的蛋白质。 3. The rice yellow-green leaf-associated protein according to claim 2, characterized in that: said amino acid sequence also includes addition, substitution, insertion or deletion of one or more amino acids in the amino acid sequence shown in SEQ ID No.1 and A protein derived from SEQ ID No. 1 associated with yellow-green leaves of rice. 4.一种编码权利要求2所述蛋白质的基因,其特征在于:该基因具有SEQ ID No.2和3所示的核苷酸序列。 4. A gene encoding the protein of claim 2, characterized in that the gene has the nucleotide sequences shown in SEQ ID No.2 and 3. 5.根据权利要求4所述的基因,其特征在于:所述核苷酸序列还包括在SEQ ID No.2和3所示的核苷酸序列中添加、取代、插入或缺失一个或多个核苷酸而生成的突变体、等位基因或衍生物。 5. The gene according to claim 4, characterized in that: the nucleotide sequence also includes one or more additions, substitutions, insertions or deletions in the nucleotide sequence shown in SEQ ID No.2 and 3 Mutants, alleles or derivatives produced from nucleotides. 6.权利要求4或5所述的基因在水稻杂交育种和品种改良中的应用。 6. The application of the gene described in claim 4 or 5 in rice hybrid breeding and variety improvement.
CN201410231309.1A 2014-05-28 2014-05-28 A kind of yellowish green leaf related protein of paddy rice and encoding gene thereof and application Expired - Fee Related CN103966178B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410231309.1A CN103966178B (en) 2014-05-28 2014-05-28 A kind of yellowish green leaf related protein of paddy rice and encoding gene thereof and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410231309.1A CN103966178B (en) 2014-05-28 2014-05-28 A kind of yellowish green leaf related protein of paddy rice and encoding gene thereof and application

Publications (2)

Publication Number Publication Date
CN103966178A true CN103966178A (en) 2014-08-06
CN103966178B CN103966178B (en) 2016-04-13

Family

ID=51236185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410231309.1A Expired - Fee Related CN103966178B (en) 2014-05-28 2014-05-28 A kind of yellowish green leaf related protein of paddy rice and encoding gene thereof and application

Country Status (1)

Country Link
CN (1) CN103966178B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404061A (en) * 2014-12-03 2015-03-11 西南大学 Yellow green leaf mutant gene YGL6 of rice, protein encoded by yellow green leaf mutant gene YGL6 and application of yellow green leaf mutant gene YGL6
CN105420256A (en) * 2015-12-31 2016-03-23 西南大学 Rice yellow-green leaf mutation gene YGL8, protein coded by rice yellow-green leaf mutation gene YGL8, and application of rice yellow-green leaf mutation gene YGL8
CN109402231A (en) * 2017-09-30 2019-03-01 湖南省农业生物技术研究中心 A kind of method of Rapid identification hybrid rice seeds purity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101096676A (en) * 2007-06-08 2008-01-02 南京农业大学 Rice Chlorophyll Synthase Mutant Gene and Its Application in Genetic Engineering
CN103114076A (en) * 2013-01-29 2013-05-22 浙江省农业科学院 Rice leaf color control gene heme oxygenase2 (HO2) and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101096676A (en) * 2007-06-08 2008-01-02 南京农业大学 Rice Chlorophyll Synthase Mutant Gene and Its Application in Genetic Engineering
CN103114076A (en) * 2013-01-29 2013-05-22 浙江省农业科学院 Rice leaf color control gene heme oxygenase2 (HO2) and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨海莲 等: ""一个水稻黄绿叶突变体yg10的遗传分析和基因定位"", 《中国水稻科学》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404061A (en) * 2014-12-03 2015-03-11 西南大学 Yellow green leaf mutant gene YGL6 of rice, protein encoded by yellow green leaf mutant gene YGL6 and application of yellow green leaf mutant gene YGL6
CN105420256A (en) * 2015-12-31 2016-03-23 西南大学 Rice yellow-green leaf mutation gene YGL8, protein coded by rice yellow-green leaf mutation gene YGL8, and application of rice yellow-green leaf mutation gene YGL8
CN109402231A (en) * 2017-09-30 2019-03-01 湖南省农业生物技术研究中心 A kind of method of Rapid identification hybrid rice seeds purity

Also Published As

Publication number Publication date
CN103966178B (en) 2016-04-13

Similar Documents

Publication Publication Date Title
CN101486757B (en) Plant chloroplast development associated protein, and coding gene and use thereof
WO2017092110A1 (en) Sesamum indicum inflorescence definite gene sidt1 and snp marker thereof
CN111333707A (en) A plant grain shape-related protein and its encoding gene and application
CN108603198A (en) Manipulate the composition and method of development of plants
CN101899437B (en) Functional molecular marker for identifying fusarium wilt resistance of sweet melons and application of functional molecular marker
CN106434944A (en) Application of SNP molecular marker closely linked to aphid resistance gene of prunus persica
CN103966178B (en) A kind of yellowish green leaf related protein of paddy rice and encoding gene thereof and application
CN108913668A (en) Rice albefaction turns albumen and the application of greenery gene VAL1 and its coding
CN107574171B (en) A major QTL for salt resistance in maize and its related genes, molecular markers and applications
CN107893082A (en) Rice leaf sugar accumulation related gene SAC1 and its SAC1 mutator and application
CN108003227A (en) GAP-associated protein GAP and its encoding gene during a kind of rice early blossoming
WO2024174431A1 (en) Protein gmphd6 related to weight and yield of seeds, and related biological material and use thereof
CN115232823B (en) Cabbage mustard mushroom leaf development related gene and application thereof
CN111315764A (en) A petal purpurin and its encoding gene
CN106399538B (en) Application of SNP (single nucleotide polymorphism) marker closely linked with peach tree dwarfing gene
EP3772909A1 (en) Genes associated with resistance to wheat yellow rust
CN105821058B (en) Rice yellow-green leaf trait gene ygl8 and its application in rice breeding
CN107176978A (en) A kind of rice ear sprouting period related protein and its encoding gene and application
CN104087603B (en) Oryza sativa L. zebra leaf mutant gene ZEBRA15 and the albumen of coding thereof and application
CN105925587A (en) Early rice chloroplast development gene affected by low temperature response and detection method and application thereof
CN113817754B (en) Rice short-grain gene SHG1 and application thereof
CN104830968B (en) A kind of rice neck length of spike degree gene qPNL 12 molecular labeling
CN104894247B (en) The functional indicia related to Chinese cabbage CCA1 gene code region mutations and its application
CN104593518B (en) With Fructus Cucumidis sativi trichome development gene M ict be divided into from molecular marker
CN114645053B (en) ZmWRKY70 protein and application of encoding gene thereof in drought resistance of plants

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160413