CN103966096A - 一种细胞培养板及其制备方法和应用 - Google Patents
一种细胞培养板及其制备方法和应用 Download PDFInfo
- Publication number
- CN103966096A CN103966096A CN201410226720.XA CN201410226720A CN103966096A CN 103966096 A CN103966096 A CN 103966096A CN 201410226720 A CN201410226720 A CN 201410226720A CN 103966096 A CN103966096 A CN 103966096A
- Authority
- CN
- China
- Prior art keywords
- culture plate
- tissue culture
- rubber latex
- butadiene rubber
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/20—Material Coatings
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
- C12M25/06—Plates; Walls; Drawers; Multilayer plates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0662—Stem cells
- C12N5/0663—Bone marrow mesenchymal stem cells (BM-MSC)
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Developmental Biology & Embryology (AREA)
- Sustainable Development (AREA)
- Clinical Laboratory Science (AREA)
- Hematology (AREA)
- Rheumatology (AREA)
- Cell Biology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本发明公开了细胞培养板及其的制备方法和应用。所述在细胞培养板,表面涂覆有一层羧基丁腈胶乳膜,所述膜上偶联有RGD多肽。本发明通过羧基丁腈在培养板表面引入羧基偶联RGD短肽来改变细胞在培养板表面的贴壁能力。该细胞专用培养细胞板具备工艺简单、成本低的优点,并且该培养板适用于骨髓间充质干细胞的培养,可促进细胞生长,使细胞贴壁更加牢固并获得更稳定生长状态。
Description
技术领域
本发明涉及一种细胞培养板及其制备方法和在细胞培养中的应用,属于细胞培养技术领域。
背景技术
骨髓间充质干细胞是一群具有多种分化潜能的多能干细胞,能最终分化成骨、软骨、肌肉、神经和脂肪等组织,具有以下特点:①来源较为广泛,易于培养,能在宿主体内外长期存活,且具有自我更新和增殖能力;②低免疫源性,易于外源基因转染和长期表达;③在适宜的环境中具有多项分化潜能等。近年来人们发现骨髓间充质干细胞还具有抑制同种异体免疫反应、减轻移植物抗宿主效应的作用,以上发现使得骨髓间充质干细胞在组织工程、器官移植及自身免疫性疾病领域有着广泛的应用前景。但骨髓间充质干细胞在体外增殖较慢,因此,如何实现少量取样批量体外培养增殖,是骨髓间充质干细胞应用研究的当务之急。
文献Villa-Diaz等报道称聚合物涂层PMEDSAH能够支持人胚胎干细胞在多种不同的培养基中长期生长。这种成分确定的培养基质对于阐明人胚胎干细胞行为的内在机制和最优化人胚胎干细胞生物医学应用条件有着重要意义(Luis G Villa-Diaz,Himabindu Nandivada,JunDing,et al.Synthetic polymer coatings for long-term growth of human embryonic stem cells.Nature biotechnology28(2010):581-583.)。Blin等采用不同交联度的聚赖氨酸/透明质酸纳米膜来调控鼠胚胎干细胞的纳米环境。结果发现,胚胎干细胞在天然膜上的粘附程度最低,能够较好地保持多功能性,随着交联度的增加,粘附程度增加(Guillaume Blin,NassrineLablack,Marianne Louis-Tisserand,et al.Nano-scale control of cellular environment to driveembryonic stem cells selfrenewal and fate.Biomaterials31(2010):1742–1750.)。Hernandez等为了简化人干细胞培养条件,采用CELLstart基质和成分确定的培养基在无饲养层的条件下实现了人胚胎干细胞的自我复制。实验中采用的两种人胚胎干细胞都能够在该条件下传代20多次,并且保持多功能性(Diana Hernandez,Ludmila Ruban,and Christopher Mason.Feeder-freeculture of human embryonic stem cells for scalable expansion in a reproducible manner.Stem Cellsand Development20(2011):1089-1099.)。Markert等设计了生物表面结构阵列(BSSA)用于培养鼠胚胎干细胞,该阵列包括504种不同的表面微结构。结果发现,存在一种特定的表面微结构使得干细胞能在无饲养层的条件下增殖(Lotte D’Andrea Markert,Jette Lovmand,Morten Foss,et al.Identification of distinct topographical surface microstructures favoring eitherundifferentiated expansion or differentiation of murine embryonic stem cells.Stem Cells andDevelopment18(2009):1331-1343.)。这些现有技术存在制备成本高,特别是使用动物中提取的细胞外基质可能含有一些致病物质会损害细胞的生长和分化,因而无法大规模生产。
羧基丁腈胶乳(XNBRL)是作为是丁二烯、丙烯腈和丙烯酸或甲基丙烯酸的三元共聚物。与未引入羧基的丁腈胶乳相比,XNBRL具有突出的机械稳定性和冻解稳定性,其黏合性和与其他高分子的相容性也得到较大改善,它可以用金属氧化物进行硫化,所得胶乳薄膜的机械强度和耐油性均优于非羧化的丁腈胶乳。据大量文献表示羧基丁腈胶乳具备天然胶乳的一些性能,羧基丁腈胶乳由丁二烯和甲基丙烯酸乳液共聚制得的橡胶胶乳,在分子主链上含有亲水的强粘性集团羧基,可避免生霉,虫蛀,产品质量高且稳定,有较好的柔顺性、耐油性、耐化学性、耐刺穿性和耐磨性能,低可提物以及耐静电性能,粘接性能较好且价格便宜。
有相关专利CN102911866 A发明提供一种细胞培养装置,其包括:电极,在该电极表面上设置有通过电方式在亲水性和疏水性之间变化的亲水性/疏水性转换物质。在该情况中,电极设置于适合容纳待培养细胞的区域中。使用该细胞培养装置,向电极施加合适的电压改变了亲水性/疏水性转换物质的亲水性/疏水性。因此,吸附至亲水性/疏水性转换物质的原料被脱附,由此可以将原料供给至细胞。该技术使用电极装置,工艺复杂,亲水性和疏水性的转换会对细胞产生不良影响。本发明直接在细胞培养板表面涂抹羧基丁腈胶乳,相对于之前现有的专利发明,有着成本低,操作简单的优点。
发明内容
本发明的目的在于提供一种细胞培养板及其制备方法,该细胞培养板表面涂覆羧基丁腈胶乳通过化学健合偶联RGD短肽。。
本发明是通过下述技术方案加以实现的,一种细胞培养板,在细胞培养板表面涂覆有一层羧基丁腈胶乳膜,所述膜上偶联有RGD多肽。本发明还公开了所述细胞培养板的制备方法,使用EDC(碳化二亚胺)和NHS(羟基琥珀酰亚胺)以及MES(2-吗啉乙磺酸水合物)偶联方法在培养板表面接枝引入多肽。所述多肽是RGD短肽,具体序列为RGDKKK。
具体的制备步骤如下:
(1)将聚苯乙烯培养板用无水乙醇、蒸馏水洗,真空干燥,备用;
(2)将羧基丁腈胶乳滴加到步骤(1)的培养板中,液面要完全覆盖培养板底部,然后将滴加过羧基丁腈胶乳的聚苯乙烯培养板放入60℃真空干燥箱中30分钟;
(3)用电子天平称取4.78~7.17克碳化二亚胺、3~4.604克羟基琥珀酰亚胺以及10~12.1875克2-吗啉乙磺酸水合物,用50ml蒸馏水将其溶解,放入4℃冰箱,备用;
(4)将(3)中所配的溶液滴加到步骤(2)的培养板中,液面要完全覆盖培养板底部,放入30℃烘箱2小时;
(5)将(4)中的培养板中的混合液体弃之,并将1~2g/L的RGD多肽溶液加入(4)中的细胞培养板中,每孔1~2mL,并放在摇床上反应24小时。
(6)24小时过后,将(5)中的细胞培养板中的液体弃置,并用PH=7.35的磷酸缓冲溶液冲洗,冲洗后烘干,封存封存制得本发明的细胞培养板。
本发明还提供了所述细胞培养板在培养骨髓间充质干细胞中的应用。
将骨髓间充质干细胞以5×103细胞的密度接种于96孔培养板培养7天并测试细胞活力(MTT试验),通过细胞数目及细胞活性来显示细胞的生长状况。
本发明采用在聚苯乙烯细胞培养板表面涂覆羧基丁腈胶乳薄层并偶联RGD短肽以促进骨髓间充质干细胞贴壁生长。相比其它复杂工艺方法而言,本工艺简单易行,采用羧基丁腈胶乳因其具备良好的亲水性能,且具有较好的生物相容性,对于在细胞培养板表面偶联RGD短肽来增强细胞培养板的细胞贴壁能力,可以促进细胞生长。本发明直接在细胞培养板表面涂抹羧基丁腈胶乳,相对于之前现有的专利发明,有着成本低,操作简单的优点。
具体实施方式
为了更加完整的了解本发明的有点和特点,下面结合具体实施案例来进一步介绍本发明。实施例一:涂覆羧基丁腈胶乳偶联RGD短肽的细胞培养板的制备
(1)将聚苯乙烯培养板用无水乙醇、蒸馏水洗三遍,真空干燥,备用。
(2)将羧基丁腈胶乳滴加到步骤(1)的培养板中,液面要完全覆盖培养板底部(约8滴),然后将滴加过羧基丁腈胶乳的聚苯乙烯培养板放入60℃真空干燥箱中30分钟。
(3)用电子天平称取7.17gEDC(碳化二亚胺)、4.604gNHS(羟基琥珀酰亚胺)以及12.1875gMES(2-吗啉乙磺酸水合物),用50ml蒸馏水将其溶解,放入4℃冰箱,备用。
(4)将(3)中所配的溶液滴加到步骤(2)的培养板中液面要完全覆盖培养板底部(约5滴),放入30℃烘箱2小时。
(5)将(4)中的培养板中的混合液体弃之,并将1g/L的RGD多肽溶液加入(4)中的细胞培养板中,每孔2mL,并放在摇床上反应24小时。
(6)24小时过后,将(5)中的细胞培养板中的液体弃置,并用大量的PH=7.35的PBS(磷酸缓冲溶液)冲洗,冲洗后烘干,封存。
(7)细胞实验MTT代谢产物结果显示,经过上述处理的细胞培养板细胞增殖平均值高于未处理培养板6.2%。
实施例二:涂覆羧基丁腈胶乳偶联RGD短肽的细胞培养板的制备
(1)将聚苯乙烯培养板用无水乙醇、蒸馏水洗三遍,真空干燥,备用。
(2)将羧基丁腈胶乳滴加到步骤(1)的培养板中,液面要完全覆盖培养板底部(约8滴),然后将滴加过羧基丁腈胶乳的聚苯乙烯培养板放入60℃真空干燥箱中60分钟。
(3)用电子天平称取4.78gEDC(碳化二亚胺)、6.906gNHS(羟基琥珀酰亚胺)以及18.28gMES(2-吗啉乙磺酸水合物),用100ml蒸馏水将其溶解,放入4℃冰箱,备用。
(4)将(3)中所配的溶液滴加到步骤(2)的培养板中液面要完全覆盖培养板底部(约5滴),放入30℃烘箱5小时。
(5)将(4)中的培养板中的混合液体弃之,并将2g/L的RGD多肽溶液加入(4)中的细胞培养板中,每孔3mL,并放在摇床上反应36小时。
(6)36小时过后,将(5)中的细胞培养板中的液体弃置,并用大量的PH=7.35的PBS(磷酸缓冲溶液)冲洗,冲洗后烘干,封存。
(7)细胞实验MTT代谢产物结果显示,经过上述处理的细胞培养板细胞增殖平均值高于未处理培养板8.5%。
Claims (6)
1.一种细胞培养板,其特征在于,在细胞培养板表面涂覆有一层羧基丁腈胶乳膜,所述膜上偶联有RGD多肽。
2.如权利要求1所述的细胞培养板,其特征在于按照以下方法制备得到:
(1)将聚苯乙烯培养板用无水乙醇、蒸馏水洗,真空干燥,备用;
(2)将羧基丁腈胶乳滴加到步骤(1)的培养板中,液面要完全覆盖培养板底部,然后将滴加过羧基丁腈胶乳的聚苯乙烯培养板放入60℃真空干燥箱中30分钟;
(3)用电子天平称取4.78~7.17克碳化二亚胺、3~4.604克羟基琥珀酰亚胺以及10~12.1875克2-吗啉乙磺酸水合物,用50ml蒸馏水将其溶解,放入4℃冰箱,备用;
(4)将(3)中所配的溶液滴加到步骤(2)的培养板中,液面要完全覆盖培养板底部,放入30℃烘箱2小时;
(5)将(4)中的培养板中的混合液体弃之,并将1~2g/L的RGD多肽溶液加入(4)中的细胞培养板中,每孔1~2mL,并放在摇床上反应24小时。
(6)24小时过后,将(5)中的细胞培养板中的液体弃置,并用PH=7.35的磷酸缓冲溶液冲洗,冲洗后烘干,封存。
3.一种制备权利要求1所述细胞培养板的方法,其特征在于使用碳化二亚胺、羟基琥珀酰亚胺以及2-吗啉乙磺酸水合物偶联方法在培养板表面接枝引入多肽。
4.如权利要求3所述的制备方法,其特征在于所述多肽的序列为RGDKKK。
5.如权利要求3所述的制备方法,其特征在于包括以下步骤:
(1)将聚苯乙烯培养板用无水乙醇、蒸馏水洗,真空干燥,备用;
(2)将羧基丁腈胶乳滴加到步骤(1)的培养板中,液面要完全覆盖培养板底部,然后将滴加过羧基丁腈胶乳的聚苯乙烯培养板放入60℃真空干燥箱中30分钟;
(3)用电子天平称取4.78~7.17克碳化二亚胺、3~4.604克羟基琥珀酰亚胺以及10~12.1875克2-吗啉乙磺酸水合物,用50ml蒸馏水将其溶解,放入4℃冰箱,备用;
(4)将(3)中所配的溶液滴加到步骤(2)的培养板中,液面要完全覆盖培养板底部,放入30℃烘箱2小时;
(5)将(4)中的培养板中的混合液体弃之,并将1~2g/L的RGD多肽溶液加入(4)中的细胞培养板中,每孔1~2mL,并放在摇床上反应24小时。
(6)24小时过后,将(5)中的细胞培养板中的液体弃置,并用PH=7.35的磷酸缓冲溶液冲洗,冲洗后烘干,封存。
6.权利要求1所述细胞培养板在培养骨髓间充质干细胞中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410226720.XA CN103966096A (zh) | 2014-05-26 | 2014-05-26 | 一种细胞培养板及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410226720.XA CN103966096A (zh) | 2014-05-26 | 2014-05-26 | 一种细胞培养板及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103966096A true CN103966096A (zh) | 2014-08-06 |
Family
ID=51236105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410226720.XA Pending CN103966096A (zh) | 2014-05-26 | 2014-05-26 | 一种细胞培养板及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103966096A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1696164A (zh) * | 2005-06-14 | 2005-11-16 | 韩晓峰 | 多用途羧基丁腈胶乳的生产方法 |
EP1616939A1 (en) * | 2003-03-24 | 2006-01-18 | National Institute for Environmental Studies | Cell culture medium and solidified preparation of cell adhesion protein or peptide |
US20060051867A1 (en) * | 1999-01-21 | 2006-03-09 | Hamilton Douglas W | Cell growth |
CN102552975A (zh) * | 2012-02-28 | 2012-07-11 | 青岛中皓生物工程有限公司 | 一种组织工程人角膜基质载体支架及其制备方法 |
-
2014
- 2014-05-26 CN CN201410226720.XA patent/CN103966096A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060051867A1 (en) * | 1999-01-21 | 2006-03-09 | Hamilton Douglas W | Cell growth |
EP1616939A1 (en) * | 2003-03-24 | 2006-01-18 | National Institute for Environmental Studies | Cell culture medium and solidified preparation of cell adhesion protein or peptide |
CN1696164A (zh) * | 2005-06-14 | 2005-11-16 | 韩晓峰 | 多用途羧基丁腈胶乳的生产方法 |
CN102552975A (zh) * | 2012-02-28 | 2012-07-11 | 青岛中皓生物工程有限公司 | 一种组织工程人角膜基质载体支架及其制备方法 |
Non-Patent Citations (3)
Title |
---|
于奎等: "羧基丁腈胶乳的基本性质", 《合成橡胶工业》 * |
赵强等: "生物活性短肽RGD在PET表面接枝方法的研究", 《生物医学工程学杂志》 * |
马亮等: "RGD 序列肽修饰的丝素蛋白仿生支架材料对骨髓间充质干细胞黏附、增殖的影响", 《中国组织工程研究与临床康复》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Corbin et al. | Tunable and reversible substrate stiffness reveals a dynamic mechanosensitivity of cardiomyocytes | |
Greco et al. | Microwrinkled conducting polymer interface for anisotropic multicellular alignment | |
González-Díaz et al. | Hydrogels as extracellular matrix analogs | |
Huang et al. | Engineering three-dimensional cell mechanical microenvironment with hydrogels | |
Simon et al. | Disulfide-based diblock copolymer worm gels: a wholly-synthetic thermoreversible 3D matrix for sheet-based cultures | |
Park et al. | Polydopamine-based interfacial engineering of extracellular matrix hydrogels for the construction and long-term maintenance of living three-dimensional tissues | |
Mashinchian et al. | Cell-imprinted substrates act as an artificial niche for skin regeneration | |
Lewis et al. | A quiescent, regeneration-responsive tissue engineered mesenchymal stem cell bone marrow niche model via magnetic levitation | |
Ricotti et al. | Adhesion and proliferation of skeletal muscle cells on single layer poly (lactic acid) ultra-thin films | |
Shi et al. | Stretchable and micropatterned membrane for osteogenic differentation of stem cells | |
Uto et al. | Substrate fluidity regulates cell adhesion and morphology on poly (ε-caprolactone)-based materials | |
Wei et al. | Mechanics-controlled dynamic cell niches guided osteogenic differentiation of stem cells via preserved cellular mechanical memory | |
Hu et al. | Recent advances in 3D hydrogel culture systems for mesenchymal stem cell-based therapy and cell behavior regulation | |
KR101969115B1 (ko) | 표면 상호작용을 통한 3차원 세포 스페로이드 제작을 위한 배양용기 및 그 용도 | |
Sun et al. | Progressive myofibril reorganization of human cardiomyocytes on a dynamic nanotopographic substrate | |
CN103898058A (zh) | 一种新型胶质瘤干细胞的三维培养方法及其应用 | |
WO2020080364A1 (ja) | 細胞培養基材、細胞培養基材の製造方法、及びスフェロイドの製造方法 | |
JP2018535646A5 (zh) | ||
Joshi et al. | 3D bioprinted alginate-silk-based smart cell-instructive scaffolds for dual differentiation of human mesenchymal stem cells | |
Zeng et al. | How interfacial properties affect adhesion: an analysis from the interactions between microalgal cells and solid substrates | |
Xue et al. | Graded protein/PEG nanopattern arrays: well-defined gradient biomaterials to induce basic cellular behaviors | |
Ting et al. | Conducting polymer hydrogels with electrically-tuneable mechanical properties as dynamic cell culture substrates | |
Moya-Ramírez et al. | Polymer encapsulation of bacterial biosensors enables coculture with mammalian cells | |
Nikolits et al. | Hydrogels from TEMPO-oxidized nanofibrillated cellulose support in vitro cultivation of encapsulated human mesenchymal stem cells | |
CN103436486A (zh) | 一种无动物来源成分的细胞培养用微载体及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140806 |