CN103963996B - 横向压力梯度可控的乘波前体与进气道一体化设计方法 - Google Patents

横向压力梯度可控的乘波前体与进气道一体化设计方法 Download PDF

Info

Publication number
CN103963996B
CN103963996B CN201410220303.4A CN201410220303A CN103963996B CN 103963996 B CN103963996 B CN 103963996B CN 201410220303 A CN201410220303 A CN 201410220303A CN 103963996 B CN103963996 B CN 103963996B
Authority
CN
China
Prior art keywords
shock
dimensional
inlet
leading edge
design
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410220303.4A
Other languages
English (en)
Other versions
CN103963996A (zh
Inventor
尤延铖
李怡庆
韩伟强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201410220303.4A priority Critical patent/CN103963996B/zh
Publication of CN103963996A publication Critical patent/CN103963996A/zh
Application granted granted Critical
Publication of CN103963996B publication Critical patent/CN103963996B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

横向压力梯度可控的乘波前体与进气道一体化设计方法,涉及临近空间高超声速飞行器。设计二元进气道所需的基本流场;确定设计截面所在位置;按工况要求设计在设计截面内前缘捕获型线的投影,并求出各楔切面内前缘点至激波点在z方向上的投影距离;获取各离散激波点所对应的楔切面位置内压缩型线应具有的压力分布;按求出的压力分布运用二维特征线法得到新生成的二元进气道压缩型线;将得到的二元进气道压缩型线排列于相应的前缘捕获型线处构成完整的进气道压缩型面,三维造型后,得到乘波前体与二元进气道一体化装置,完成横向压力梯度可控的乘波前体与进气道一体化设计。可保证装置有较高的升阻力特性,增大发动机推力的同时减小外流阻力。

Description

横向压力梯度可控的乘波前体与进气道一体化设计方法
技术领域
本发明涉及临近空间高超声速飞行器,尤其是涉及一种横向压力梯度可控的乘波前体与进气道一体化设计方法。
背景技术
临近空间飞行器的发展涉及国家安全与和平利用空间,是目前国际竞相争夺空间技术的焦点之一,而临近空间高超声速远程机动飞行器的研究又因其重要的战略意义成为临近空间飞行器发展的重中之重。以美国、俄罗斯为代表的世界强国都在大力推进各自的高超声速飞行研制计划([1]Joseph,M.H,JamesS.M.RichardC.M.,TheX-51AScramjetEngineFlightDemonstrationProgram,15thAIAAInternationalSpacePlanesandHypersonicSystemsandTechnologiesConference,2008)。自上世纪60年代以来的大量研究([2]Heiser,W.H.andPratt,D.T.,HypersonicAirbreathingPropulsion.AIAAInc.,WashingtonD.C.,USA,1994)充分说明,飞机器与推进系统的一体化设计是实现高超声速飞行的关键,而机体/推进系统一体化的核心则是飞行器和进气道的一体化。近半个世纪来,纵多学者在飞行器外形设计和高超声速进气道研究方面开展了细致的研究工作,从目前的研究热点和趋势看,乘波体飞行器设计和二维进气道研究成为两个领域内的重要技术。
进气道是高超声速飞行器推进系统中的主要部件。它位于飞行器的前部,直接与高超声速飞行器前体相连接,起着压缩来流,为下游提供尽可能多高能气流的作用。从技术角度分析,高超声速进气道的设计要求主要有以下几点:①设计状态流量捕获能力强,为推进系统提供尽可能多的流量;②在压缩气流至所需压比的同时,应做到效率(出口总压)高和出口气流畸变小;③设计方案应在结构上对飞行器总体性能有利:长度尽量短、几何形状固定都有利于减轻重量、提高性能;④外流阻力小,这就要求进气道溢流小,且进气道迎风面积与捕获面积之比尽量小;⑤应有尽量宽的工作马赫数范围
虽然在高超声速飞行器和高超声速进气道研究领域,各项研究已经取得了显著的进展,部件性能也在不断提升。然而,迄今为止,科研人员尚未找到有效的方法,将乘波前体与二维进气道部件一体化,使二者的结合实现捕获流量的最大化。
发明内容
本发明的目的旨在提供可有效提高进气道流量捕获特性的一种横向压力梯度可控的乘波前体与进气道一体化设计方法。
本发明包括以下步骤:
1)设计二元进气道所需的基本流场;
2)确定设计截面所在位置;
3)按工况要求设计在设计截面内前缘捕获型线的投影,并求出各楔切面内前缘点至激波点在z方向上的投影距离;
4)获取各离散激波点所对应的楔切面位置内压缩型线应具有的压力分布;
5)按照步骤4)中求出的压力分布运用二维特征线法得到新生成的二元进气道压缩型线;
6)将步骤5)得到的二元进气道压缩型线排列于相应的前缘捕获型线处构成完整的进气道压缩型面,三维造型后,得到乘波前体与二元进气道一体化装置,完成横向压力梯度可控的乘波前体与进气道一体化设计。
在步骤1)中,所述基本流场包括用于生成指定入射激波的尖劈、二元进气道压缩型面、入射激波、二元进气道唇口;所述入射激波由高超声速来流撞击用于生成指定入射激波的尖劈生成,入射激波的形状由二元进气道压缩型面的形状决定,入射激波于二元进气道唇口处反射。
在步骤2)中,所述确定设计截面所在位置的所在位置为二元进气道压缩型面总长的一半,设计截面所在位置之前压缩型面完全按照楔导乘波理论生成,设计截面所在位置之后的压缩型面依靠型线的发展趋势生成。
在步骤4)中,所述获取各离散激波点所对应的楔切面位置内压缩型线应具有的压力分布的方法可为:根据各楔切面内前缘点至激波点在z方向上的投影距离,由设计截面所在位置内的激波点沿激波曲线向前取点,当得到激波点至设计截面所在位置内的激波点于Z方向上的投影距离与各楔切面内前缘点至激波点在z方向上的投影距离相等时该激波点即为基本流场内前缘点所在位置,提取出基本流场内前缘点所在位置之后沿二元进气道压缩型线的压力分布曲线,基本流场内前缘点所在位置与设计截面所在位置内的激波点位于X方向上的投影距离即为激波点至前缘点在x方向上的实际投影距离。
本发明的技术方案是一种横向压力梯度可控的乘波前体与进气道一体化设计,其结构包括乘波前体与二元进气道。考虑装置的横侧向压力梯度,指定由中间向两侧压力逐渐升高的梯度,从而获得高的流量捕获特性。
本发明的优点是:同时兼顾了乘波前体与二元进气道的性能,可以保证乘波前体与二元进气道一体化装置具有较高的升阻力特性。而考虑其横侧向压力梯度后可以保证二元进气道实现全流量捕获来流,增大发动机推力的同时减小外流阻力。
附图说明
图1是二元进气道基本流场示意图;
图2是本发明实施例的设计截面示意图;
图3是本发明实施例的原理图1;
图4是本发明实施例的原理图2;
图5是本发明实施例的原理图3;
图6是本发明的具体实施方案轴侧图;
图7是本发明的具体实施方案俯视图;
图8是本发明的具体实施方案正视图;
图9是本发明的具体实施方案左视图。
图中各标记为:1表示高超声速来流、2表示尖劈(用于生成指定入射激波)、3表示二元进气道压缩型线、4表示入射激波、5表示二元进气道唇口、6表示设计截面所在位置、7表示设计截面所在位置内的激波点、8表示设计截面内的激波离散点、9表示设计截面内前缘捕获型线的投影、10表示各离散激波点所对应的楔切面位置、11表示各楔切面内前缘点至激波点在z方向上的投影距离、12表示基本流场内前缘点所在位置、13表示需要提出压力分布曲线的压缩型线段、14表示新生成的二元进气道压缩型线、15表示新生成的入射激波曲线、16表示设计截面至前缘点在x方向上的实际投影距离、17表示位于设计截面之后的进气道压缩段、18表示前缘捕获型线、19表示二元进气道部分、20表示乘波前体压缩部分、21表示进气道内压缩部分、22表示二元进气道进口、23表示二元进气道压缩型线、24表示二元进气道横向溢流口。
具体实施方式
以下实施例将结合附图对本发明作进一步说明。
横向压力梯度可控的乘波前体与进气道一体化设计方法为了有效提高乘波前体与二元进气道一体化装置捕获流量而提出的设计方法。
横向压力梯度可控的乘波前体与进气道一体化设计方法主要实施步骤包括:
1、设计二元进气道所需的基本流场。基本流场包括用于生成指定入射激波的尖劈2、二元进气道压缩型面3,入射激波4、二元进气道唇口5。其中入射激波4由高超声速来流1撞击用于生成指定入射激波的尖劈2生成,入射激波4的形状由二元进气道压缩型面3的形状决定,入射激波4于二元进气道唇口5处反射;
2、确定设计截面所在位置6。选取设计截面所在位置6所在位置为二元进气道压缩型面3总长的一半。设计截面所在位置6之前压缩型面完全按照楔导乘波理论生成,设计截面之后的压缩型面依靠型线的发展趋势生成;
3、按工况要求设计在设计截面内前缘捕获型线的投影9,并求出各楔切面内前缘点至激波点在z方向上的投影距离11;
4、获取各离散激波点所对应的楔切面位置10内压缩型线应具有的压力分布。获取方法为根据各楔切面内前缘点至激波点在z方向上的投影距离11,由设计截面所在位置内的激波点7沿激波曲线向前取点,当得到激波点至设计截面所在位置内的激波点7于Z方向上的投影距离与各楔切面内前缘点至激波点在z方向上的投影距离11相等时该激波点即为基本流场内前缘点所在位置12,提取出基本流场内前缘点所在位置12之后沿二元进气道压缩型线3的压力分布曲线,基本流场内前缘点所在位置12与设计截面所在位置内的激波点7位于X方向上的投影距离即为激波点至前缘点在x方向上的实际投影距离16;
5、按照步骤4中求出的压力分布运用二维特征线法得到新生成的二元进气道压缩型线14;
6、将得到型线排列于相应的前缘捕获型线18处构成完整的进气道压缩型面,三维造型得到乘波前体与二元进气道一体化装置。
实施例:考虑横侧向压力变化的乘波前体与进气道一体化设计方法,本实施例给定来流马赫数Ma=5.5,设计出基本流场如图1所示,按照本发明所述设计方法,可设计如图6所示一体化装置。所述装置由二元进气道外压缩部分19、二元进气道内压缩部分21与乘波前体外压缩部分20组成。该装置在设计条件下激波完全贴口两侧压力梯度略大于中间二元进气道部分,实现理论捕获流量大于100%。该装置存在二元进气道横向溢流口24,横向溢流口按反射激波角设计。
运用本发明生成装置在保持乘波前体与二元进气道一体化装置整体形状的同时,实现了横侧向压力梯度由中间向两侧的参数化设计,能够提高进气道流量捕获系数,从而提高推进系统的总体性能。

Claims (4)

1.横向压力梯度可控的乘波前体与进气道一体化设计方法,其特征在于包括以下步骤:
1)设计二元进气道所需的基本流场;
2)确定设计截面所在位置;
3)按工况要求设计在设计截面内前缘捕获型线的投影,并求出各楔切面内前缘点至激波点在z方向上的投影距离;
4)获取各离散激波点所对应的楔切面位置内压缩型线应具有的压力分布;
5)按照步骤4)中求出的压力分布运用二维特征线法得到新生成的二元进气道压缩型线;
6)将步骤5)得到的二元进气道压缩型线排列于相应的前缘捕获型线处构成完整的进气道压缩型面,三维造型后,得到乘波前体与二元进气道一体化装置,完成横向压力梯度可控的乘波前体与进气道一体化设计。
2.如权利要求1所述横向压力梯度可控的乘波前体与进气道一体化设计方法,其特征在于在步骤1)中,所述基本流场包括用于生成指定入射激波的尖劈、二元进气道压缩型面、入射激波、二元进气道唇口;所述入射激波由高超声速来流撞击用于生成指定入射激波的尖劈生成,入射激波的形状由二元进气道压缩型面的形状决定,入射激波于二元进气道唇口处反射。
3.如权利要求1所述横向压力梯度可控的乘波前体与进气道一体化设计方法,其特征在于在步骤2)中,所述确定设计截面所在位置的所在位置为二元进气道压缩型面总长的一半,设计截面所在位置之前压缩型面完全按照楔导乘波理论生成,设计截面所在位置之后的压缩型面依靠型线的发展趋势生成。
4.如权利要求1所述横向压力梯度可控的乘波前体与进气道一体化设计方法,其特征在于在步骤4)中,所述获取各离散激波点所对应的楔切面位置内压缩型线应具有的压力分布的方法为:根据各楔切面内前缘点至激波点在z方向上的投影距离,由设计截面所在位置内的激波点沿激波曲线向前取点,当得到激波点至设计截面所在位置内的激波点于z方向上的投影距离与各楔切面内前缘点至激波点在z方向上的投影距离相等时该激波点即为基本流场内前缘点所在位置,提取出基本流场内前缘点所在位置之后沿二元进气道压缩型线的压力分布曲线,基本流场内前缘点所在位置与设计截面所在位置内的激波点位于x方向上的投影距离即为激波点至前缘点在x方向上的实际投影距离。
CN201410220303.4A 2014-05-23 2014-05-23 横向压力梯度可控的乘波前体与进气道一体化设计方法 Active CN103963996B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410220303.4A CN103963996B (zh) 2014-05-23 2014-05-23 横向压力梯度可控的乘波前体与进气道一体化设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410220303.4A CN103963996B (zh) 2014-05-23 2014-05-23 横向压力梯度可控的乘波前体与进气道一体化设计方法

Publications (2)

Publication Number Publication Date
CN103963996A CN103963996A (zh) 2014-08-06
CN103963996B true CN103963996B (zh) 2015-11-11

Family

ID=51234099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410220303.4A Active CN103963996B (zh) 2014-05-23 2014-05-23 横向压力梯度可控的乘波前体与进气道一体化设计方法

Country Status (1)

Country Link
CN (1) CN103963996B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105173116B (zh) * 2015-09-25 2017-03-29 北京航空航天大学 高超声速飞行器密切曲面乘波体设计方法
CN105151306B (zh) * 2015-09-29 2017-02-22 厦门大学 圆锥构型高超声速飞行器前体与进气道一体化设计方法
CN105649779B (zh) * 2016-01-29 2017-03-08 厦门大学 横向压力梯度可控的鼓包设计方法
CN108088635A (zh) * 2016-11-23 2018-05-29 北京机电工程研究所 一种非密封异形结构内压试验装置
CN106401796B (zh) * 2016-12-06 2017-11-07 中国科学技术大学 一种激波管
CN106777828B (zh) * 2017-01-25 2020-07-03 厦门大学 壁面压力可控的内外乘波一体化设计方法
CN109927917B (zh) * 2019-04-22 2020-10-16 中国人民解放军国防科技大学 一种超声速飞行器内转式乘波前体进气道一体化设计方法
CN110182380B (zh) * 2019-05-24 2022-09-02 南昌航空大学 基于典型内转进气道的高超声速内外流一体化设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7568347B2 (en) * 2005-07-22 2009-08-04 Lockheed Martin Corporation Method for designing flowfield molded hypersonic inlet for integrated turbojet and ram-scramjet applications
CN201301752Y (zh) * 2008-10-15 2009-09-02 南京航空航天大学 进出口形状可定制的内乘波式高超声速进气道
CN201301753Y (zh) * 2008-10-15 2009-09-02 南京航空航天大学 可兼顾内外流性能的内乘波式进气道
CN101813027A (zh) * 2010-03-29 2010-08-25 南京航空航天大学 实现不等强波系与前机身一体化Bump进气道的方法
CN103662087A (zh) * 2013-12-11 2014-03-26 厦门大学 高超声速飞行器与进气道内外乘波一体化设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7568347B2 (en) * 2005-07-22 2009-08-04 Lockheed Martin Corporation Method for designing flowfield molded hypersonic inlet for integrated turbojet and ram-scramjet applications
CN201301752Y (zh) * 2008-10-15 2009-09-02 南京航空航天大学 进出口形状可定制的内乘波式高超声速进气道
CN201301753Y (zh) * 2008-10-15 2009-09-02 南京航空航天大学 可兼顾内外流性能的内乘波式进气道
CN101813027A (zh) * 2010-03-29 2010-08-25 南京航空航天大学 实现不等强波系与前机身一体化Bump进气道的方法
CN103662087A (zh) * 2013-12-11 2014-03-26 厦门大学 高超声速飞行器与进气道内外乘波一体化设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
密切内锥乘波前体进气道一体化设计和性能分析;贺旭照等;《推进技术》;20120831;第33卷(第4期);第510-515页 *

Also Published As

Publication number Publication date
CN103963996A (zh) 2014-08-06

Similar Documents

Publication Publication Date Title
CN103963996B (zh) 横向压力梯度可控的乘波前体与进气道一体化设计方法
CN103662087B (zh) 高超声速飞行器与进气道内外乘波一体化设计方法
CN105775158B (zh) 高超声速细长体飞行器与三维内转进气道一体化设计方法
CN203581388U (zh) 高超声速飞行器与进气道内外乘波一体化装置
CN105151306B (zh) 圆锥构型高超声速飞行器前体与进气道一体化设计方法
Chatelain et al. Large eddy simulation of wind turbine wakes
CN112340014B (zh) 内外流解耦的双乘波高速吸气式飞行器及其生成方法
CN107514311B (zh) 基于前体激波的内转式进气道/乘波前体一体化设计方法
CN107089341B (zh) 与飞行器一体化的高超声速进气道外压缩面设计方法
CN104908975B (zh) 飞行器前体与内乘波式高超声速进气道一体化设计方法
CN106777828B (zh) 壁面压力可控的内外乘波一体化设计方法
CN109455309B (zh) 基于圆锥前体激波的前掠内乘波进气道一体化设计方法
CN108090246A (zh) 一种防冰部件温度场计算方法
CN105221264A (zh) 基于密切锥导乘波理论的鼓包进气道设计方法
CN111767613A (zh) 压缩面偏置的定几何高速进气道进口段设计方法
CN103592100A (zh) 一种栅格翼风洞试验模型缩比方法
CN203958610U (zh) 双进气道高超声速乘波体飞行器装置
CN209080155U (zh) 基于圆锥前体激波的前掠内乘波进气道一体化装置
Kumar et al. Particle image velocimetry measurements on a generic submarine hull form
CN108502204B (zh) 高超声速组合楔乘波体设计方法
CN103029830B (zh) 一种双乘波体对拼吸气式高超飞行器前体及其设计方法
CN204956937U (zh) 圆锥构型高超声速飞行器前体与进气道一体化装置
CN107862128A (zh) 一种三栖气垫船的机翼安装角度的获取方法
CN203819494U (zh) 横向压力梯度可控的乘波前体与进气道一体化装置
CN100567082C (zh) 一种用于构造进气道斜切进口的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant