CN103956456A - Halogen anion doped lithium-rich positive electrode material as well as preparation method and application of positive electrode material - Google Patents
Halogen anion doped lithium-rich positive electrode material as well as preparation method and application of positive electrode material Download PDFInfo
- Publication number
- CN103956456A CN103956456A CN201410160158.5A CN201410160158A CN103956456A CN 103956456 A CN103956456 A CN 103956456A CN 201410160158 A CN201410160158 A CN 201410160158A CN 103956456 A CN103956456 A CN 103956456A
- Authority
- CN
- China
- Prior art keywords
- lithium
- cathode material
- preparation
- salt
- rich
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 27
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 229910052736 halogen Inorganic materials 0.000 title claims abstract description 23
- -1 Halogen anion Chemical class 0.000 title claims abstract description 18
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 239000007774 positive electrode material Substances 0.000 title abstract description 8
- 239000010406 cathode material Substances 0.000 claims abstract description 28
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 12
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 7
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 4
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 4
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 4
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 4
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 4
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 4
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 4
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 4
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 4
- 229910052794 bromium Inorganic materials 0.000 claims abstract description 3
- 229910052740 iodine Inorganic materials 0.000 claims abstract description 3
- 239000011572 manganese Substances 0.000 claims description 38
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 34
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 15
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 6
- 239000002243 precursor Substances 0.000 claims description 6
- 150000002696 manganese Chemical class 0.000 claims description 5
- 150000001868 cobalt Chemical class 0.000 claims description 4
- 229910003002 lithium salt Inorganic materials 0.000 claims description 4
- 159000000002 lithium salts Chemical class 0.000 claims description 4
- 229910021645 metal ion Inorganic materials 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 3
- 229910002651 NO3 Inorganic materials 0.000 claims description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 3
- 150000003863 ammonium salts Chemical class 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 239000000243 solution Substances 0.000 claims description 2
- 239000007921 spray Substances 0.000 claims description 2
- 238000001694 spray drying Methods 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 31
- 150000002367 halogens Chemical class 0.000 abstract description 7
- 230000009466 transformation Effects 0.000 abstract description 2
- 229910052789 astatine Inorganic materials 0.000 abstract 1
- 238000000034 method Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明涉及二次电池的一种卤素阴离子掺杂的富锂正极材料及其制备方法和应用。表达式为:Li[Li(1-2x)/3MxMn(2-x)/3]O2-zAz,M为Co、Ni、Al、Mg、Zn、Ga、B、Zr、Ti、Ca、Ce、Y、Nb元素中的至少一种或其组合,A=Cl、Br或I中的至少一种或其组合,0<x<0.5;0<z≤0.5;当M=Ni,Co中的一种或其组合并且A=Cl时,x≠0.2。制备步骤是在制备层状富锂氧化物正极材料Li[Li(1-2x)/3MxMn(2-x)/3]O2的过程中,按照化学计量比引入卤素阴离子A,配制成溶液,经过固化、干燥、焙烧制得。本发明作为锂离子电池正极材料时可以提高材料的首次充放电效率;抑制了材料在电化学循环中的结构转变。本发明提高了富锂层状氧化物正极材料的电化学性能,具有首次充放电效率高,容量高,循环性能好,制备过程简单重现性好等特点。The invention relates to a halogen anion-doped lithium-rich cathode material for a secondary battery, a preparation method and application thereof. The expression is: Li[Li (1-2x)/3 M x Mn (2-x)/3 ]O 2-z A z , M is Co, Ni, Al, Mg, Zn, Ga, B, Zr, At least one or a combination of Ti, Ca, Ce, Y, Nb elements, A = at least one or a combination of Cl, Br or I, 0<x<0.5;0<z≤0.5; when M= When one or a combination of Ni, Co and A=Cl, x≠0.2. The preparation step is to introduce the halogen anion A according to the stoichiometric ratio during the preparation of the layered lithium-rich oxide positive electrode material Li[Li (1-2x)/3 M x Mn (2-x)/3 ]O 2 , and prepare Into a solution, solidified, dried and roasted. When the invention is used as the positive electrode material of the lithium ion battery, the first charge and discharge efficiency of the material can be improved; the structural transformation of the material in the electrochemical cycle is suppressed. The invention improves the electrochemical performance of the lithium-rich layered oxide cathode material, and has the characteristics of high initial charge and discharge efficiency, high capacity, good cycle performance, simple preparation process and good reproducibility.
Description
技术领域technical field
本发明涉及二次电池的一种卤素阴离子掺杂的富锂正极材料及其制备方法和应用。The invention relates to a halogen anion-doped lithium-rich cathode material for a secondary battery, a preparation method and application thereof.
背景技术Background technique
由于科技的发展,人们对储能的要求越来越高。锂离子电池因为具有能量密度高,相对绿色环保以及使用寿命长等优点,成为研究的热点。作为锂离子电池的的关键部分,正极材料起着重要作用。层状富锂氧化物正极材料Li[Li(1-2x)/3MxMn(2-x)/3]O2因为具有超过200mAh/g的高比容量,成为下一代锂离子电池最有可能的正极材料。然而,目前层状富锂氧化物正极材料还存在一些不足之处,主要有:首次充放电效率低而引起的首次不可逆容量损失大,循环过程中层状结构容易向尖晶石结构转变,电压平台降低,进而引起能量密度下降等问题。Due to the development of science and technology, people's requirements for energy storage are getting higher and higher. Lithium-ion batteries have become a research hotspot because of their advantages such as high energy density, relatively green environmental protection and long service life. As a key part of lithium-ion batteries, cathode materials play an important role. The layered lithium-rich oxide cathode material Li[Li (1-2x)/3 M x Mn (2-x)/3 ]O 2 has become the most promising material for next-generation lithium-ion batteries because of its high specific capacity exceeding 200mAh/g. possible cathode material. However, there are still some deficiencies in the current layered lithium-rich oxide cathode materials, mainly including: the first irreversible capacity loss caused by the low initial charge and discharge efficiency, the layered structure is easy to transform into a spinel structure during the cycle, and the voltage The platform is lowered, which in turn causes problems such as a decrease in energy density.
为了改善这些方面的问题,按照已有的文献报道,对层状富锂氧化物正极材料进行改性的方法主要包括表面包覆、其他预处理方式和体相离子掺杂。中国专利CN200980150179.6和CN201110434564.2报道,采用金属氟化物包覆富锂正极材料能改善其电化学性能。CN201110111035.9采用过硫酸盐或硫酸盐等氧化剂对材料进行表面预处理,使材料的首次效率及高倍率的放电容量得到提高。在体相掺杂方面,目前的报道主要集中于金属阳离子掺杂,例如:CN200910186311.0报道了通过阳离子掺杂的方法提高材料的循环性能和倍率性能的方法;CN201210391471.0和CN201210391672.0分别报道了一种采用掺杂三价离子和铁铜锡离子的富锂固溶体正极材料的制备方法。在阴离子掺杂方面,CN201310087241报道了一种用PO4 3-,SO4 2-,A1O2 -等聚阴离子掺杂对材料进行改性的方法;CN200980138690.4采用氟掺杂改良材料的性能。CN201210216042.X采用掺杂氯离子的方法,但是其述的材料在表达式中只能含有Li、Ni、Co、Mn、O和Cl元素,且Li的含量被固定为Li1.2。In order to improve these problems, according to the existing literature reports, the methods for modifying layered lithium-rich oxide cathode materials mainly include surface coating, other pretreatment methods and bulk ion doping. Chinese patents CN200980150179.6 and CN201110434564.2 report that coating lithium-rich cathode materials with metal fluoride can improve their electrochemical performance. CN201110111035.9 uses oxidants such as persulfate or sulfate to pretreat the surface of the material, so that the first-time efficiency and high-rate discharge capacity of the material are improved. In terms of bulk phase doping, current reports mainly focus on metal cation doping, for example: CN200910186311.0 reports a method for improving the cycle performance and rate performance of materials by cation doping; CN201210391471.0 and CN201210391672.0 respectively A method for the preparation of Li-rich solid solution cathode materials using doped trivalent ions and Fe-Cu-Sn ions is reported. In terms of anion doping, CN201310087241 reported a method of modifying materials by doping polyanions such as PO 4 3- , SO 4 2- , A1O 2 - ; CN200980138690.4 used fluorine doping to improve the performance of materials. CN201210216042.X adopts the method of doping chloride ions, but the material described in it can only contain Li, Ni, Co, Mn, O and Cl elements in the expression, and the content of Li is fixed as Li1.2.
发明内容Contents of the invention
本发明目的在于提供一种卤素阴离子掺杂的层状富锂氧化物正极材料及其制备方法,以改善富锂材料现有的不足,本发明具有制备方法简单、电极材料比容量高、倍率和循环性能好等优点。The purpose of the present invention is to provide a halogen anion-doped layered lithium-rich oxide positive electrode material and its preparation method to improve the existing shortcomings of lithium-rich materials. The present invention has the advantages of simple preparation method, high specific capacity of electrode materials, high rate and Good cycle performance and other advantages.
本发明提供的一种卤素阴离子掺杂层状富锂氧化物正极材料的表达式为:Li[Li(1-2x)/3MxMn(2-x)/3]O2-zAz,M为Co、Ni、Al、Mg、Zn、Ga、B、Zr、Ti、Ca、Ce、Y、Nb元素中的至少一种或其组合,A=Cl、Br或I中的一种或其组合,0<x<0.5;0<z≤0.5;当M=Ni,Co中的一种或其组合并且A=Cl时,x≠0.2。The expression of a halogen anion-doped layered lithium-rich oxide cathode material provided by the present invention is: Li[Li (1-2x)/3 M x Mn (2-x)/3 ]O 2-z A z , M is at least one or a combination of Co, Ni, Al, Mg, Zn, Ga, B, Zr, Ti, Ca, Ce, Y, Nb elements, A = one of Cl, Br or I or Its combination, 0<x<0.5;0<z≤0.5; when M=Ni, Co or a combination thereof and A=Cl, x≠0.2.
制备步骤是在制备层状富锂氧化物正极材料Li[Li(1-2x)/3MxMn(2-x)/3]O2的过程中,按照化学计量比引入卤素阴离子A,配制成溶液,经过固化、干燥、焙烧制得Li[Li(1-2x)/3MxMn(2-x)/3]O2-zAz。The preparation step is to introduce the halogen anion A according to the stoichiometric ratio in the process of preparing the layered lithium-rich oxide cathode material Li[Li (1-2x)/3 M x Mn (2-x)/3 ]O 2 , and prepare Li[Li (1-2x)/3 M x Mn (2-x)/3 ]O 2-z A z was obtained through solidification, drying and roasting.
所述的富锂正极材料为Li[Li0.17Ni0.25Mn0.58]O2、Li[Li0.20Ni0.1Al0.03Co0.13Mn0.54]O2或Li[Li02Co0.4Mn0.4]O2。The lithium-rich cathode material is Li[Li 0.17 Ni 0.25 Mn 0.58 ]O 2 , Li[Li 0.20 Ni 0.1 Al 0.03 Co 0.13 Mn 0.54 ]O 2 or Li[Li 02 Co 0.4 Mn 0.4 ]O 2 .
所述的卤素阴离子掺杂的富锂正极材料为Li[Li017Ni0.25Mn058]O1.85Cl0.15、Li[Li0.22Ni0.05Al0.02Co0.1Mn0.61]O194Br0.06或Li[Li0.2Co0.4Mn0.4]O1.98I0.02。The lithium-rich cathode material doped with halogen anions is Li[Li 017 Ni 0.25 Mn 058 ]O 1.85 Cl 0.15 , Li[Li 0.22 Ni 0.05 Al 0.02 Co 0.1 Mn 0.61 ]O 194 Br 0.06 or Li[Li 0.2 Co 0.4 Mn 0.4 ]O 1.98 I 0.02 .
本发明提供的卤素阴离子掺杂的富锂正极材料的制备方法是经过如下的步骤:The preparation method of the halogen anion-doped lithium-rich cathode material provided by the present invention is through the following steps:
1)按计量比将锂盐(醋酸锂或硝酸锂或氢氧化锂)、镍、锰或(和)钴盐(硝酸盐或醋酸盐)和卤素阴离子A的盐(铵盐或锰盐或者与金属M形成的盐)配制成水溶液,其中锂盐的质量比化学计量比过量3~8%;金属离子总浓度为0.5~2摩尔每升;然后加入柠檬酸,柠檬酸和总金属离子摩尔比为2∶1,用氨水将混合液的pH调节至9,搅拌均匀;1) Lithium salt (lithium acetate or lithium nitrate or lithium hydroxide), nickel, manganese or (and) cobalt salt (nitrate or acetate) and the salt of halogen anion A (ammonium salt or manganese salt or The salt formed with metal M) is prepared into an aqueous solution, wherein the mass ratio of the lithium salt is 3-8% in excess of the stoichiometric ratio; the total concentration of metal ions is 0.5-2 moles per liter; then add citric acid, citric acid and total metal ion moles The ratio is 2:1, adjust the pH of the mixture to 9 with ammonia water, and stir evenly;
2)将步骤1)所制得的溶液在喷雾干燥机中进行喷雾干燥,得到混合均匀的前躯体;2) spray drying the solution prepared in step 1) in a spray dryer to obtain a uniformly mixed precursor;
3)将步骤2)所得的前驱体产物转移至坩埚中,在420~500℃条件下焙烧4~9小时;3) Transfer the precursor product obtained in step 2) to a crucible, and bake at 420-500° C. for 4-9 hours;
4)将步骤3)所得产物研磨,在700~900℃条件下焙烧10~22小时,即得到产物Li[Li(1-2x)/3MxMn(2-x)/3]O2-zAz。4) Grind the product obtained in step 3) and bake it at 700-900°C for 10-22 hours to obtain the product Li[Li (1-2x)/3 M x Mn (2-x)/3 ]O 2- z A z .
所述的卤素阴离子来源为含有该卤素阴离子的铵盐、锰盐或表达式中M元素的盐。The source of the halogen anion is the ammonium salt, the manganese salt or the salt of the M element in the expression containing the halogen anion.
所述的镍、钴盐和锰盐分别是它们的硝酸盐或醋酸盐。Described nickel, cobalt salt and manganese salt are their nitrate or acetate respectively.
本发明得到的层状氧化物正极材料Li[Li(1-2x)/3MxMn(2-x)/3]O2-zAz可直接用于制造锂离子电池。The layered oxide cathode material Li[Li (1-2x)/3 M x Mn (2-x)/3 ]O 2-z A z obtained in the present invention can be directly used to manufacture lithium ion batteries.
本发明的优点是,卤素阴离子掺杂的层状氧化物Li[Li(1-2x)/3MxMn(2-x)/3]O2-zAz材料作为锂离子电池正极材料时1)可以抑制材料在首次充电过程中的氧析出,从而可以提高材料的首次充放电效率;2)掺杂的卤素阴离子稳定了材料的结构,抑制了材料在电化学循环中的结构转变;3)卤素阴离子掺杂在一定程度上延缓了电压平台的下降。因此本发明提高了富锂层状氧化物正极材料的电化学性能,具有首次充放电效率高,容量高,循环性能好,制备过程简单重现性好等特点。The advantage of the present invention is, when the layered oxide Li[Li (1-2x)/3 M x Mn (2-x)/3 ]O 2-z A z material of halide anion doping is used as lithium ion battery cathode material 1) It can inhibit the oxygen precipitation of the material during the first charging process, thereby improving the first charge and discharge efficiency of the material; 2) The doped halogen anion stabilizes the structure of the material and inhibits the structural transformation of the material during the electrochemical cycle; 3 ) doping with halogen anions delays the drop of the voltage plateau to a certain extent. Therefore, the invention improves the electrochemical performance of the lithium-rich layered oxide cathode material, and has the characteristics of high initial charge and discharge efficiency, high capacity, good cycle performance, simple preparation process and good reproducibility.
附图说明Description of drawings
图1为实施例1所制备的Li[Li0.17Ni025Mn0.58]O1.85Cl0.15正极材料的X射线衍射(XRD)图。FIG. 1 is an X-ray diffraction (XRD) pattern of the Li[Li 0.17 Ni 025 Mn 0.58 ]O 1.85 Cl 0.15 cathode material prepared in Example 1.
图2为实施例1所制备的Li[Li0.17Ni0.25Mn0.58]O185Cl0.15正极材料的透射电子显微镜(TEM)照片。FIG. 2 is a transmission electron microscope (TEM) photo of the Li[Li 0.17 Ni 0.25 Mn 0.58 ]O 185 Cl 0.15 cathode material prepared in Example 1.
图3为实施例1所制备的Li[Li017Ni0.25Mn0.58]O1.85Cl0.15正极材料在30毫安每克电流密度下的放电曲线。3 is the discharge curve of the Li[Li 017 Ni 0.25 Mn 0.58 ]O 1.85 Cl 0.15 positive electrode material prepared in Example 1 at a current density of 30 mA/g.
图4为实施例2所制备的Li[Li0.22Ni005Al0.02Co0.1Mn0.61]O1.94Br0.06正极材料在30毫安每克电流密度下的放电容量循环曲线。4 is the discharge capacity cycle curve of the Li[Li 0.22 Ni 005 Al 0.02 Co 0.1 Mn 0.61 ]O 1.94 Br 0.06 positive electrode material prepared in Example 2 at a current density of 30 milliamperes per gram.
图5为实施例3所制备的Li[Li0.2Co0.4Mn04]O1.98I002正极材料在30毫安每克电流密度下的放电曲线。FIG. 5 is the discharge curve of the Li[Li 0.2 Co 0.4 Mn 04 ]O 1.98 I 002 cathode material prepared in Example 3 at a current density of 30 mA/g.
具体实施方式Detailed ways
本发明可从下述的实施方案中予以体现,但只是用于举例说明的目的,而不是用于限制本发明。The present invention can be embodied in the embodiments described below, but only for the purpose of illustration and not for limiting the invention.
实施例1Example 1
Li[Li017Ni0.25Mn058]O1.85Cl0.15的制备:Preparation of Li[Li 017 Ni 0.25 Mn 058 ]O 1.85 Cl 0.15 :
称取6.248克CH3COOLi·2H2O,3.111克Ni(CH3COO)2·2H2O,6.229克Mn(CH3COO)2·2H2O和0.7422克MnCl2·4H2O,配制成200毫升水溶液,然后加入200毫升1.0摩尔每升的柠檬酸,加入氨水将混合液的pH调节至9,搅拌均匀;将上述溶液注入到喷雾干燥机(北京来亨科贸有限责任公司,L-217)中进行喷雾干燥,得到混合均匀的前躯体;将所得前躯体研磨成粉末,转移至坩埚中,在480℃下焙烧7.5小时,冷却后,将材料研磨并将研磨好的的材料置于马弗炉中900℃高温烧结10小时,最后制得卤素阴离子掺杂的Li[Li017Ni0.25Mn0.58]O1.85Cl0.15材料。图1是所制备材料的X-射线衍射(XRD)图,图中没有出现其他化合物的衍射峰,证明材料的体相晶体结构并没有因为掺杂Cl-而改变。图2是所制备材料的透射电子显微镜(TEM)图,从图中可以看出材料颗粒为类球形,粒径在100-200纳米范围内。Weigh 6.248 grams of CH 3 COOLi 2H 2 O, 3.111 grams of Ni(CH 3 COO) 2 2H 2 O, 6.229 grams of Mn(CH 3 COO) 2 2H 2 O and 0.7422 grams of MnCl 2 4H 2 O, and prepare into 200 milliliters of aqueous solution, then add citric acid of 200 milliliters of 1.0 moles per liter, add ammoniacal liquor and adjust the pH of the mixed solution to 9, stir well; -217) to spray-dry to obtain a homogeneously mixed precursor; grind the obtained precursor into powder, transfer it to a crucible, and bake it at 480°C for 7.5 hours. After cooling, grind the material and place the ground material on After sintering in a muffle furnace at 900°C for 10 hours, the halogen anion-doped Li[Li 017 Ni 0.25 Mn 0.58 ]O 1.85 Cl 0.15 material was finally prepared. Figure 1 is an X-ray diffraction (XRD) pattern of the prepared material, in which no diffraction peaks of other compounds appear, proving that the bulk crystal structure of the material has not been changed by doping Cl- . Fig. 2 is a transmission electron microscope (TEM) image of the prepared material, from which it can be seen that the material particles are spherical in shape, and the particle diameter is in the range of 100-200 nanometers.
电化学性能测试如下:以所制备的卤素阴离子掺杂的富锂材料为正极材料,以金属锂为对电极,按常规方法组装成半电池,对所装配的电池在室温条件下进行恒流充放电测试,电压范围为:2.0~4.8伏。图3展示了在30毫安每克电流密度下,材料的放电曲线。从图3中可以看出,所制备的材料放电容量为275.1mAh/g,具有较高的放电比容量。The electrochemical performance test is as follows: the prepared halogen anion-doped lithium-rich material is used as the positive electrode material, metal lithium is used as the counter electrode, and a half-cell is assembled according to the conventional method, and the assembled battery is charged at a constant current at room temperature. Discharge test, the voltage range is: 2.0 ~ 4.8 volts. Figure 3 shows the discharge curve of the material at a current density of 30 mA/g. It can be seen from Figure 3 that the prepared material has a discharge capacity of 275.1mAh/g, which has a relatively high discharge specific capacity.
实施例2Example 2
Li[Li022Ni0.05Al0.02Co0.1Mn0.61]O1.94Br0.06的制备:Preparation of Li[Li 022 Ni 0.05 Al 0.02 Co 0.1 Mn 0.61 ]O 1.94 Br 0.06 :
将实施例1中的CH3COOLi·2H2O质量改为6.5456克,Ni(CH3COO)2·2H2O质量改为0.5807克,Mn(CH3COO)2·2H2O质量改为7.4889克。添加Co(CH3COO)2·2H2O质量为1.2454g,NH4Br质量为0.2938g,Al(NO3)3·9H2O质量为0.3751g。其他同实施例1,即可制得Li[Li022Ni0.05Al0.02Co0.1Mn061]O1.94Br0.06材料。图4显示了其电化学性能,在30毫安每克电流密度下,掺Br离子的Li[Li0.22Ni0.05Al0.02Co0.1Mn0.61]O1.94Br0.06材料30周后的放电比容量为223.0毫安时每克,循环性能优异。Change the mass of CH 3 COOLi·2H 2 O in Example 1 to 6.5456 grams, the mass of Ni(CH 3 COO) 2 ·2H 2 O to 0.5807 grams, and the mass of Mn(CH 3 COO) 2 ·2H 2 O to 7.4889 grams. The mass of added Co(CH 3 COO) 2 ·2H 2 O was 1.2454g, the mass of NH 4 Br was 0.2938g, and the mass of Al(NO 3 ) 3 ·9H 2 O was 0.3751g. Others are the same as in Example 1, Li[Li 022 Ni 0.05 Al 0.02 Co 0.1 Mn 061 ]O 1.94 Br 0.06 material can be prepared. Figure 4 shows its electrochemical performance. At a current density of 30 mA/g, the Br-doped Li[Li 0.22 Ni 0.05 Al 0.02 Co 0.1 Mn 0.61 ]O 1.94 Br 0.06 material has a specific discharge capacity of 223.0 after 30 weeks mAh per gram, excellent cycle performance.
实施例3Example 3
Li[Li0.2Co0.4Mn0.4]O1.98I0.02材料的制备:Preparation of Li[Li 0.2 Co 0.4 Mn 0.4 ]O 1.98 I 0.02 material:
将实施例1中去掉Ni(CH3COO)2·2H2O、MnCl2·4H2O。Mn(CH3COO)2·2H2O质量改为4.902克,添加Co(CH3COO)2·2H2O质量为4.9816g,LiI质量为0.1879g。CH3COOLi·2H2O质量改为6.3246g,其他同实施例1,即可制得Li[Li0.2Co0.4Mn04]O1.98I0.02材料。图5所示为在30毫安每克电流密度下,本实例所制备的材料的首周充放电曲线,由图可以看出掺杂I后,材料同样具有较高的放电比容量。In Example 1, Ni(CH 3 COO) 2 ·2H 2 O and MnCl 2 ·4H 2 O were removed. The mass of Mn(CH 3 COO) 2 ·2H 2 O was changed to 4.902 g, the mass of Co(CH 3 COO) 2 ·2H 2 O was added to be 4.9816 g, and the mass of LiI was 0.1879 g. The mass of CH 3 COOLi·2H 2 O was changed to 6.3246 g, and the others were the same as in Example 1, so that Li[Li 0.2 Co 0.4 Mn 04 ]O 1.98 I 0.02 material could be prepared. Figure 5 shows the charge-discharge curves of the first cycle of the material prepared in this example at a current density of 30 milliamperes per gram. It can be seen from the figure that after doping with I, the material also has a higher discharge specific capacity.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410160158.5A CN103956456A (en) | 2014-04-17 | 2014-04-17 | Halogen anion doped lithium-rich positive electrode material as well as preparation method and application of positive electrode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410160158.5A CN103956456A (en) | 2014-04-17 | 2014-04-17 | Halogen anion doped lithium-rich positive electrode material as well as preparation method and application of positive electrode material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103956456A true CN103956456A (en) | 2014-07-30 |
Family
ID=51333705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410160158.5A Pending CN103956456A (en) | 2014-04-17 | 2014-04-17 | Halogen anion doped lithium-rich positive electrode material as well as preparation method and application of positive electrode material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103956456A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104393280A (en) * | 2014-11-19 | 2015-03-04 | 陈梅 | Preparation method of manganese-cobalt-lithium positive pole material |
WO2018215254A1 (en) * | 2017-05-24 | 2018-11-29 | Basf Se | Process for making an electrode active material |
CN109921016A (en) * | 2019-03-11 | 2019-06-21 | 安徽师范大学 | A kind of halide ion-assisted copper sulfide microflora material and preparation method and application thereof |
CN111224090A (en) * | 2020-03-12 | 2020-06-02 | 河南电池研究院有限公司 | A composite lithium-rich manganese-based cathode material and preparation method thereof |
CN112072114A (en) * | 2020-09-17 | 2020-12-11 | 中南大学 | Anion-cation co-doped lithium-rich manganese-based positive electrode material and preparation method and application thereof |
CN112652771A (en) * | 2020-12-22 | 2021-04-13 | 北京理工大学重庆创新中心 | Polyanion-doped single-crystal high-nickel positive electrode material and preparation method thereof |
WO2024131289A1 (en) * | 2022-12-19 | 2024-06-27 | 上海交通大学 | Layered positive electrode material for lithium-ion battery, and preparation method therefor and use thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010039732A2 (en) * | 2008-09-30 | 2010-04-08 | Envia Systems, Inc. | Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries |
CN102723472A (en) * | 2012-06-27 | 2012-10-10 | 江南大学 | Chlorine-doped modified lithium ion battery lithium-rich cathode material and preparation method thereof |
CN103199229A (en) * | 2013-03-19 | 2013-07-10 | 南开大学 | Polyanion-doped lithium-enriched layered oxide anode material as well as preparation and application thereof |
CN103441265A (en) * | 2013-09-24 | 2013-12-11 | 上海空间电源研究所 | Co-doped lithium-rich composite anode material and preparation method thereof |
-
2014
- 2014-04-17 CN CN201410160158.5A patent/CN103956456A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010039732A2 (en) * | 2008-09-30 | 2010-04-08 | Envia Systems, Inc. | Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries |
CN102723472A (en) * | 2012-06-27 | 2012-10-10 | 江南大学 | Chlorine-doped modified lithium ion battery lithium-rich cathode material and preparation method thereof |
CN103199229A (en) * | 2013-03-19 | 2013-07-10 | 南开大学 | Polyanion-doped lithium-enriched layered oxide anode material as well as preparation and application thereof |
CN103441265A (en) * | 2013-09-24 | 2013-12-11 | 上海空间电源研究所 | Co-doped lithium-rich composite anode material and preparation method thereof |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104393280A (en) * | 2014-11-19 | 2015-03-04 | 陈梅 | Preparation method of manganese-cobalt-lithium positive pole material |
CN104393280B (en) * | 2014-11-19 | 2017-12-15 | 广州盘太能源科技有限公司 | A kind of preparation method of manganese cobalt lithium anode material |
WO2018215254A1 (en) * | 2017-05-24 | 2018-11-29 | Basf Se | Process for making an electrode active material |
US11394026B2 (en) | 2017-05-24 | 2022-07-19 | Basf Se | Process for making an electrode active material |
CN109921016A (en) * | 2019-03-11 | 2019-06-21 | 安徽师范大学 | A kind of halide ion-assisted copper sulfide microflora material and preparation method and application thereof |
CN111224090A (en) * | 2020-03-12 | 2020-06-02 | 河南电池研究院有限公司 | A composite lithium-rich manganese-based cathode material and preparation method thereof |
CN111224090B (en) * | 2020-03-12 | 2022-08-05 | 河南电池研究院有限公司 | A composite lithium-rich manganese-based cathode material and preparation method thereof |
CN112072114A (en) * | 2020-09-17 | 2020-12-11 | 中南大学 | Anion-cation co-doped lithium-rich manganese-based positive electrode material and preparation method and application thereof |
CN112652771A (en) * | 2020-12-22 | 2021-04-13 | 北京理工大学重庆创新中心 | Polyanion-doped single-crystal high-nickel positive electrode material and preparation method thereof |
WO2024131289A1 (en) * | 2022-12-19 | 2024-06-27 | 上海交通大学 | Layered positive electrode material for lithium-ion battery, and preparation method therefor and use thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103035906B (en) | Lithium manganese phosphate clad lithium-rich layered oxide cathode material as well as preparation and application thereof | |
CN103199229B (en) | Polyanion-doped lithium-enriched layered oxide anode material as well as preparation and application thereof | |
CN103715424B (en) | A kind of nucleocapsid structure positive electrode and preparation method thereof | |
CN103441265B (en) | Rich lithium composite positive pole of a kind of codope and preparation method thereof | |
CN102916169B (en) | Lithium-rich manganese-based anode material and method for manufacturing same | |
CN104201337B (en) | Sodium doped lithium-rich manganese based cathode material for lithium ion battery and preparation method thereof | |
CN104934601B (en) | A kind of preparation method of lithium manganese iron phosphate cathode material | |
CN105185954B (en) | A kind of LiAlO2Coat LiNi1-xCoxO2Anode material for lithium-ion batteries and preparation method thereof | |
CN105990577B (en) | A lithium ion battery cathode material LiNi0.6-xCo0.2Mn0.2AlxO2-yFy and preparation method thereof | |
CN105810934B (en) | A kind of stabilizing lithium rich layered oxide material crystalline domain structure method | |
CN103956456A (en) | Halogen anion doped lithium-rich positive electrode material as well as preparation method and application of positive electrode material | |
CN102496722A (en) | Layered lithium-rich anode material clad by metal fluoride, and preparation method thereof | |
CN110323432A (en) | A kind of miscellaneous modification lithium-ion battery anode material of cation-anion co-doping and preparation method thereof | |
CN104134797B (en) | A kind of high-capacity lithium-rich cathode material and preparation method thereof | |
CN108807886A (en) | Double-coating anode material for lithium-ion batteries LiNi0.6Co0.2Mn0.2O2And preparation method thereof | |
CN103956480B (en) | A kind of WO 3coating LiMn 2 O material and preparation method thereof | |
CN109119624B (en) | Preparation method of lithium titanium phosphate coated lithium-rich manganese-based positive electrode material | |
CN103606675B (en) | A kind of preparation method of lithium-nickel-cobalt-oxygen positive electrode of metal ion mixing | |
CN104779385B (en) | A kind of height ratio capacity anode material for lithium-ion batteries and preparation method thereof | |
CN102983326A (en) | Spherical lithium-nickel-cobalt composite oxide positive electrode material preparation method | |
CN103094523A (en) | A kind of positive electrode material of lithium ion battery and preparation method thereof | |
CN103943862A (en) | Binary layered lithium ion battery cathode material coated with phosphate and preparing method thereof | |
CN108807918B (en) | Surface-coated composite lithium-rich manganese-based cathode material and preparation method thereof | |
CN104253273A (en) | Anion/cation-doped and modified lithium ion battery (4:4:2)type ternary cathode material and preparation method thereof | |
CN105118983A (en) | Method for preparing lithium nickel manganese oxide anode material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140730 |