CN103955920A - Binocular vision obstacle detection method based on three-dimensional point cloud segmentation - Google Patents
Binocular vision obstacle detection method based on three-dimensional point cloud segmentation Download PDFInfo
- Publication number
- CN103955920A CN103955920A CN201410146864.4A CN201410146864A CN103955920A CN 103955920 A CN103955920 A CN 103955920A CN 201410146864 A CN201410146864 A CN 201410146864A CN 103955920 A CN103955920 A CN 103955920A
- Authority
- CN
- China
- Prior art keywords
- point cloud
- camera
- height
- segmentation
- obstacle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000011218 segmentation Effects 0.000 title claims abstract description 44
- 238000001514 detection method Methods 0.000 title claims abstract description 41
- 238000012937 correction Methods 0.000 claims abstract description 28
- 238000004364 calculation method Methods 0.000 claims abstract description 22
- 238000003709 image segmentation Methods 0.000 claims abstract description 13
- 230000000007 visual effect Effects 0.000 claims abstract description 7
- 238000005516 engineering process Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 22
- 238000003384 imaging method Methods 0.000 claims description 18
- 239000011159 matrix material Substances 0.000 claims description 17
- 230000004927 fusion Effects 0.000 claims description 14
- 230000003287 optical effect Effects 0.000 claims description 9
- 238000013519 translation Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- 239000003086 colorant Substances 0.000 claims description 3
- 238000003672 processing method Methods 0.000 claims 1
- 238000013507 mapping Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Image Processing (AREA)
Abstract
本发明提供一种基于三维点云分割的双目视觉障碍物检测方法,包括同步采集两个相同规格的摄像机图像;对双目摄像机进行标定校正并计算三维点云分割阈值;用立体匹配算法和三维重构计算得到三维点云,对基准图做图像分割得到图块;自动检测三维点云的路面高度,利用三维点云分割阈值分割出路面点云、不同位置的障碍物点云和未知区域点云;利用分割得到的点云结合分割后的图块,判决障碍物和路面的正确性,确定障碍物、路面和未知区域的位置范围。本发明在较复杂的环境中仍可检测摄像机与路面高度并自动估算三维分割的阈值,分割出障碍物点云、路面点云和未知区域点云;结束彩色图像分割技术,融合颜色信息判决障碍物和路面的正确性,确定障碍物、路面和未知区域的位置范围,实现高鲁棒性的障碍物检测,具有更高的可靠性和实用性。
The invention provides a binocular visual obstacle detection method based on three-dimensional point cloud segmentation, which includes synchronously collecting two camera images of the same specification; performing calibration correction on the binocular camera and calculating the three-dimensional point cloud segmentation threshold; using a stereo matching algorithm and 3D reconstruction calculations to obtain 3D point clouds, image segmentation of the reference map to obtain tiles; automatically detect the road height of the 3D point cloud, use the 3D point cloud segmentation threshold to segment the road surface point cloud, obstacle point cloud at different positions and unknown areas Point cloud: use the segmented point cloud combined with the segmented tiles to determine the correctness of obstacles and road surfaces, and determine the location range of obstacles, road surfaces, and unknown areas. The present invention can still detect the height of the camera and the road surface and automatically estimate the threshold of three-dimensional segmentation in a more complex environment, and segment out obstacle point clouds, road surface point clouds and unknown area point clouds; end the color image segmentation technology, and integrate color information to judge obstacles The correctness of objects and road surfaces, determine the location range of obstacles, road surfaces and unknown areas, and achieve highly robust obstacle detection, with higher reliability and practicability.
Description
技术领域technical field
本发明涉及自主移动机器人和自动驾驶等基于双目立体视觉障碍物自动检测领域,具体是基于三维点云分割的双目视觉障碍物检测方法。The invention relates to the field of automatic detection of obstacles based on binocular stereo vision, such as autonomous mobile robots and automatic driving, in particular to a binocular vision obstacle detection method based on three-dimensional point cloud segmentation.
背景技术Background technique
双目立体视觉是计算机视觉的一个重要分支,这种视觉直接模拟人类双眼处理景物的方式,简便可靠,在许多领域均极具应用价值,如机器人导航与航测、三维测量、智能交通及虚拟现实等。双目立体视觉是由不同位置的两台或者一台摄像机经过移动或旋转拍摄同一幅场景,通过计算空间点在两幅图像中的视差,获得该点的三维坐标值。在自主移动机器人和自动驾驶等领域的研究中,最基本条件是要求机器人或自动驾驶车配备有视觉装置。该视觉系统应能完成类似人眼的基本功能,为路径的规划提供可靠的视觉信息。障碍物的目标检测和距离信息的获取是自主移动机器人和自动驾驶中的关键部分。基于双目立体视觉的障碍物检测的关键在于:(1)双目图像对的立体匹配,计算三维点云;(2)障碍物目标的提取,即识别出障碍物位置和大小。通常自主移动机器人和自动驾驶等应用环境复杂,受光学失真和噪声、平滑表面的镜面反射、投影缩减、透视失真、低纹理、重复纹理、透明物体和重叠和非连续区域因素的影响,无法保证通过立体匹配计算可得到稠密的视差图。另外,在复杂的道路环境下,仅依靠道路颜色经验值或道路边线检测来对单幅图像道路检测的正确性不高,无法直接应用到实际场合中。Binocular stereo vision is an important branch of computer vision. This vision directly simulates the way human eyes process scenes. It is simple and reliable, and has great application value in many fields, such as robot navigation and aerial survey, three-dimensional measurement, intelligent transportation and virtual reality. wait. Binocular stereo vision is to shoot the same scene by two or one camera in different positions after moving or rotating, and obtain the three-dimensional coordinate value of the point by calculating the parallax of the spatial point in the two images. In the research of autonomous mobile robots and autonomous driving, the most basic condition is to require robots or autonomous vehicles to be equipped with vision devices. The vision system should be able to complete the basic functions similar to the human eye, and provide reliable visual information for path planning. Object detection of obstacles and acquisition of distance information are key parts in autonomous mobile robots and autonomous driving. The key to obstacle detection based on binocular stereo vision is: (1) Stereo matching of binocular image pairs to calculate 3D point cloud; (2) Obstacle target extraction, that is, to identify the position and size of obstacles. Typically applications such as autonomous mobile robots and autonomous driving have complex environments affected by optical distortion and noise, specular reflections from smooth surfaces, projection reduction, perspective distortion, low texture, repetitive texture, transparent objects, and overlapping and non-contiguous areas, and cannot be guaranteed A dense disparity map can be obtained through stereo matching calculation. In addition, in a complex road environment, only relying on road color experience or road edge detection to detect roads in a single image is not accurate enough and cannot be directly applied to practical situations.
随着对机器视觉的不断深入研究,目前已有不少高效且能获得较稠密视差图的立体匹配算法应用到实际场景当中,如三维重建、智能交通、智能检测等。图像分割是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程,它是由图像处理到图像分析的关键步骤。研究人员已不断改进原有的彩色图像分割方法并把其它学科的一些新理论和新方法用于图像分割,提出了不少新的适应特定场合的分割方法。With the continuous and in-depth research on machine vision, many stereo matching algorithms that are efficient and can obtain denser disparity maps have been applied to actual scenes, such as 3D reconstruction, intelligent transportation, and intelligent detection. Image segmentation is the technology and process of dividing an image into several specific regions with unique properties and proposing objects of interest. It is a key step from image processing to image analysis. Researchers have continuously improved the original color image segmentation methods and applied some new theories and methods from other disciplines to image segmentation, and proposed many new segmentation methods suitable for specific occasions.
发明内容Contents of the invention
本发明的目的是要提供一种基于三维点云分割的双目视觉障碍物检测方法,该方法在三维点云上初步分割出路面点云和高于地面的障碍物点云,再结合彩色图像分割算法融合判决,最终确定障碍物。The purpose of the present invention is to provide a binocular vision obstacle detection method based on three-dimensional point cloud segmentation, the method preliminarily segment the road surface point cloud and the obstacle point cloud above the ground on the three-dimensional point cloud, and then combine the color image Segmentation algorithms fuse decisions to finally identify obstacles.
实现本发明目的的技术方案是:The technical scheme that realizes the object of the present invention is:
一种基于三维点云分割的双目立体视觉的障碍物自动检测方法,包括如下步骤:A method for automatic detection of obstacles based on binocular stereo vision based on three-dimensional point cloud segmentation, comprising the steps of:
(1)通过不同位置的两台摄像机获取两路彩色图像,利用立体标定方法对双目摄像机进行标定,计算两个摄像机的内外参数和相对位置关系,根据这些参数分别对两个摄像机进行消除畸变和行(或列)对准,使两路彩色图像的成像原点坐标一致,得到校正后的双目彩色视图。由传感器获取或预先确定摄像机相对路面的俯仰角和高度;(1) Obtain two color images through two cameras in different positions, use the stereo calibration method to calibrate the binocular camera, calculate the internal and external parameters and relative positional relationship of the two cameras, and eliminate the distortion of the two cameras according to these parameters Align with the row (or column) so that the imaging origin coordinates of the two color images are consistent, and a corrected binocular color view is obtained. Obtain or predetermine the pitch angle and height of the camera relative to the road surface by the sensor;
(2)对步骤(1)校正后得到的双目彩色视图,选择其中一幅视图作为基准图。利用立体匹配算法对基准图进行匹配计算,得到初步的视差图。对基准图进行彩色图像分割,得到颜色相近的图块。根据步骤(1)获得的摄像机相对路面位置关系数据,计算点云分割的阈值,包括在一定精度下可检测到障碍物的最近距离、最远距离、最大高度和最大宽度。(2) For the binocular color views obtained after step (1) correction, select one of the views as the reference image. Use the stereo matching algorithm to perform matching calculation on the reference image to obtain the preliminary disparity image. Carry out color image segmentation on the reference image to obtain blocks with similar colors. According to the position relationship data of the camera relative to the road surface obtained in step (1), calculate the threshold of point cloud segmentation, including the shortest distance, the furthest distance, the maximum height and the maximum width of the obstacle that can be detected with a certain accuracy.
(3)在步骤(2)计算得到的视差图后,利用步骤(1)计算得到两个摄像机相对位置关系数据(重投影矩阵)进行视差图三维重构,计算出三维点云。(3) After the disparity map calculated in step (2), use the relative positional relationship data (reprojection matrix) of the two cameras calculated in step (1) to perform 3D reconstruction of the disparity map to calculate a 3D point cloud.
(4)根据步骤(1)获取的摄像机相对地面的位置数据,校正由步骤(3)计算得出的三维点云,使路面点云相对于摄像机的高度一致。(4) According to the position data of the camera relative to the ground obtained in step (1), correct the 3D point cloud calculated by step (3), so that the height of the road surface point cloud relative to the camera is consistent.
(5)对步骤(4)校正后的三维点云进行检测出路面高度(路面相对摄像机的高度),由步骤(2)计算的分割阈值分割出障碍物、路面和未知点云。(5) Detect the road surface height (the height of the road surface relative to the camera) from the 3D point cloud corrected in step (4), and segment obstacles, road surfaces and unknown point clouds by the segmentation threshold calculated in step (2).
(6)融合步骤(5)分割的点云和步骤(2)对基准图图像分割的图块,确定障碍物、路面和未知区域,并标记显示出来。(6) Fusion the point cloud segmented in step (5) and the segmented block of the reference map image in step (2), determine obstacles, road surfaces and unknown areas, and mark them out.
上述整个过程,所述的两个摄像机是始终保持同规格的,即像素、焦距、光圈等性能相同或接近,考虑到影响立体匹配计算的因素,尽量选择高清晰度的摄像机。两个摄像机的相对位置和焦距是固定的,即一经标定不再改变两摄像机的相对位置和焦距。两个摄像机相与路面的俯仰角度和高度可以固定,也可以变动。步骤(1)中两个摄像头的分辨率综合设备的计算性能而确定,通常可采用640x480或1027x768等分辨率。标定摄像机可采用人工标定、平面棋盘标定或圆(平面圆或平行圆)标定等,计算出切向畸变、径向畸变、焦距、成像原点、校正映射矩阵和重投影矩阵。校正映射用于校正两个摄像机的彩色视图,使两幅图像成像原点坐标一致,两摄像头光轴平行、左右成像平面共面、对极线行或列对齐。摄像机相对路面的位置包括俯仰角和高度,其中高度为可选项。Throughout the above process, the two cameras mentioned above always maintain the same specifications, that is, the performance of pixels, focal lengths, apertures, etc. are the same or close. Considering the factors that affect the stereo matching calculation, try to choose a high-definition camera. The relative position and focal length of the two cameras are fixed, that is, once calibrated, the relative position and focal length of the two cameras will not be changed. The pitch angle and height of the two cameras relative to the road surface can be fixed or variable. In step (1), the resolutions of the two cameras are determined based on the computing performance of the device, and usually a resolution of 640x480 or 1027x768 can be used. The calibration camera can be manually calibrated, plane checkerboard calibration or circle (plane circle or parallel circle) calibration, etc., to calculate tangential distortion, radial distortion, focal length, imaging origin, correction mapping matrix and reprojection matrix. The correction mapping is used to correct the color views of the two cameras, so that the coordinates of the origin of the two images are consistent, the optical axes of the two cameras are parallel, the left and right imaging planes are coplanar, and the epipolar lines are aligned. The position of the camera relative to the road surface includes a pitch angle and a height, where the height is optional.
步骤(2)中所述选择的基准图是确定后续计算参考的主图像。目前立体匹配算法是计算机视觉中的一个难点和热点,算法有很多种,一般的步骤有匹配代价计算、匹配代价叠加、视差获取、视差细化(亚像素级),匹配策略有局部算法和和全局算法。综合设备的计算性能和精确度要求,选择合适的立体匹配算法,高效快速地计算出较稠密的视差图。彩色图像分割即对彩色图像按颜色信息进行图像分割。根据两个摄像机的相对距离和基准摄像机的焦距可以确定在可接受精度下可检测的障碍物离摄像机最近距离、离摄像机最远距离、最大高度和最大宽度。The reference image selected in step (2) is the main image that determines the reference for subsequent calculations. At present, the stereo matching algorithm is a difficult and hot spot in computer vision. There are many algorithms. The general steps include matching cost calculation, matching cost superposition, parallax acquisition, and parallax refinement (sub-pixel level). The matching strategies include local algorithms and global algorithm. Considering the computing performance and accuracy requirements of the comprehensive equipment, an appropriate stereo matching algorithm is selected to efficiently and quickly calculate a denser disparity map. Color image segmentation is to segment the color image according to the color information. According to the relative distance of the two cameras and the focal length of the reference camera, the shortest distance from the camera, the furthest distance from the camera, the maximum height and the maximum width of the obstacle detectable with acceptable accuracy can be determined.
步骤(3)所述的三维点云由视差图利用步骤(1)计算得到的重投影矩阵三维重构计算后得到。视差图是以图像对中任一幅图像为基准,其大小为该基准图像的大小,元素值为视差值的图像,包含了场景的距离信息。The 3D point cloud described in step (3) is obtained by calculating the 3D reconstruction of the disparity map using the reprojection matrix calculated in step (1). The disparity map is based on any image in the image pair, its size is the size of the reference image, and the element value is an image of the disparity value, which contains the distance information of the scene.
步骤(4)所述根据摄像机相对地面的俯仰角度旋转三维点云,使路面点云相对于摄像机的高度一致。In step (4), the three-dimensional point cloud is rotated according to the pitch angle of the camera relative to the ground, so that the height of the road surface point cloud relative to the camera is consistent.
步骤(5)所述根据步骤(2)检测的最大高度或步骤(1)获得的高度分割三维点云,得到路面点云;根据步骤(2)检测的障碍物离摄像机最近距离和离摄像机最远距离,分割三维点云得到离摄像机不同距离范围的障碍物点云和未知区域点云;根据步骤(2)检测的最大宽度分割离摄像机不同距离范围的障碍物点云,得到不同位置的障碍物点云。这一步骤即分割出障碍物点云、路面点云和未知区域点云,未区域点云是由一些匹配计算错误的点云和精度较差的点云构成。In step (5), segment the 3D point cloud according to the maximum height detected in step (2) or the height obtained in step (1) to obtain the road surface point cloud; Long-distance, segment the 3D point cloud to obtain obstacle point cloud and unknown area point cloud at different distances from the camera; segment the obstacle point cloud at different distances from the camera according to the maximum width detected in step (2), and obtain obstacles at different positions object point cloud. This step is to segment the obstacle point cloud, the road surface point cloud and the unknown area point cloud. The non-area point cloud is composed of some point clouds with wrong matching calculations and point clouds with poor accuracy.
步骤(6)所述融合步骤(5)分割的点云和步骤(2)对基准图图像分割的图块,即将步骤(2)彩色图像分割得到的图像块与障碍物点云和路面点云比较,判决障碍物和路面的正确性和区域范围。Step (6) The fusion of the point cloud segmented in step (5) and the segmented block of the reference map image in step (2), that is, the image block obtained by segmenting the color image in step (2) with the obstacle point cloud and the road surface point cloud Compare and judge the correctness and area range of obstacles and road surfaces.
所述双目摄像机标定:标定包括摄像机标定和立体标定。摄像机标定主要计算出切向畸变、径向畸变、焦距和光学中心。立体标定是计算空间上两台摄像机几何关系的过程,依赖于查找两台摄像机之间的旋转矩阵和平移向量;所述双目校正:摄像机需要矫正和立体校正,矫正是消除切向和径向畸变。立体校正是由于两台摄像机几乎不可能有准确的共面和行对准的成像平面,需要通过立体的标定两个摄像机之间的旋转矩阵和平移向量校正;The binocular camera calibration: calibration includes camera calibration and stereo calibration. Camera calibration mainly calculates tangential distortion, radial distortion, focal length and optical center. Stereo calibration is the process of calculating the geometric relationship between two cameras in space, which depends on finding the rotation matrix and translation vector between the two cameras; the binocular correction: the camera needs correction and stereo correction, and correction is to eliminate tangential and radial distortion. Stereo correction is because it is almost impossible for two cameras to have accurate coplanar and line-aligned imaging planes, and it is necessary to calibrate the rotation matrix and translation vector correction between the two cameras through stereo;
所述双目匹配与视差计算:立体匹配主要是通过找出每对图像间的对应关系,根据三角测量原理,得到视差图;在获得了视差信息后,根据投影模型很容易地可以得到原始图像的深度信息和三维信息。立体匹配技术被普遍认为是立体视觉中最困难也是最关键的问题,目前立体匹配算法是计算机视觉中的一个难点和热点,算法很多,一般计算的步骤为:匹配代价计算,匹配代价叠加,视差获取,视差细化;The binocular matching and disparity calculation: the stereo matching is mainly to find out the corresponding relationship between each pair of images, and obtain the disparity map according to the principle of triangulation; after obtaining the disparity information, the original image can be easily obtained according to the projection model depth information and three-dimensional information. Stereo matching technology is generally considered to be the most difficult and critical problem in stereo vision. At present, stereo matching algorithm is a difficult and hot spot in computer vision. There are many algorithms. The general calculation steps are: matching cost calculation, matching cost superposition, parallax Acquisition, parallax refinement;
所述自动估算分割阈值:在允许的最小深度精度范围内,根据摄像机的分辨率和立体标定得到的两摄像机间距离、焦距计算出障碍物离摄像机的最近距离、离摄像机最远距离、最大高度和最大宽度。进而在允许的精度范围内计算出障碍物前后和左右之间的间隔、障碍物高度误差范围。The automatic estimation segmentation threshold: within the allowable minimum depth accuracy range, calculate the shortest distance, the farthest distance, and the maximum height of the obstacle from the camera according to the distance between the two cameras and the focal length obtained by the camera resolution and stereo calibration and max width. Then, within the allowable accuracy range, the distance between the front, rear and left and right of the obstacle, and the error range of the height of the obstacle are calculated.
所述三维点云路面高度检测:对三维重构得到的三维点云进行路面高度检测,满足设定误差的高度视为路面高度。在第一次检测路面高度时误差可能会较大,进行多次迭代检测后,路面高度的检测精确度趋向稳定,并随着近几次的高度检测值更新而更新。The three-dimensional point cloud road height detection: the road height detection is performed on the three-dimensional point cloud obtained by three-dimensional reconstruction, and the height satisfying the set error is regarded as the road height. The error may be large when the road height is detected for the first time. After multiple iterative detections, the detection accuracy of the road height tends to be stable, and it will be updated with the recent height detection value updates.
所述三维点云分割:在三维重构得到较稠密的三维点云后,根据摄像机相对地面的俯仰角度旋转三维点云,使三维点云上路面点云与摄像机处于同一高度。由障碍物离摄像机的最近距离、离摄像机最远距离、最大高度、最大宽度、路面点云高度和障碍物高度误差,分割三维点云得到路面点云、障碍物点云和未知区域点云;由障碍物前后和左右之间的间隔,分割障碍物点云得到各个位置的障碍物点云;未知区域点云是由一些匹配计算错误的点云和精度较差的点云构成。The 3D point cloud segmentation: after 3D reconstruction obtains a relatively dense 3D point cloud, the 3D point cloud is rotated according to the pitch angle of the camera relative to the ground, so that the road surface point cloud on the 3D point cloud is at the same height as the camera. According to the shortest distance from the obstacle to the camera, the farthest distance from the camera, the maximum height, the maximum width, the height of the road point cloud and the height error of the obstacle, the 3D point cloud is divided to obtain the road point cloud, obstacle point cloud and unknown area point cloud; The obstacle point cloud is obtained by segmenting the obstacle point cloud from the distance between the front, rear and left and right of the obstacle; the point cloud of the unknown area is composed of some point clouds with incorrect matching calculations and point clouds with poor accuracy.
所述三维点云融合颜色信息检测障碍物:三维点云融合颜色信息即对三维点云分割得到不同位置的障碍物点云、路面点云和未知区域点云,对彩色基准图进行按颜色图像分割得到图像块,将分割得到的点云与分割得到的图像块融合对比,判决障碍物和路面的正确性,确定障碍物、路面和未知区域的位置范围,实现高可靠性的障碍物检测。The 3D point cloud fusion color information detects obstacles: the 3D point cloud fusion color information is to segment the 3D point cloud to obtain obstacle point clouds, road surface point clouds and unknown area point clouds at different positions, and perform color-based image analysis on the color reference map. The segmented image blocks are obtained, and the segmented point cloud is fused and compared with the segmented image blocks to judge the correctness of obstacles and road surfaces, determine the location range of obstacles, road surfaces, and unknown areas, and achieve highly reliable obstacle detection.
本发明的优点是:与现有技术相比,本发明在较复杂的环境中三维重构较稠密的三维点云,在摄像机与路面成一定俯仰角下仍可检测摄像机与路面高度并自动估算三维分割的阈值,分割出障碍物点云、路面点云和未知区域点云;结束彩色图像分割技术,融合颜色信息判决障碍物和路面的正确性,确定障碍物、路面和未知区域的位置范围;相比单图像依靠经验检测路面障碍物的方法,具有更高的可靠性和实用性。The advantage of the present invention is: compared with the prior art, the present invention reconstructs a denser 3D point cloud in a more complex environment, and can still detect and automatically estimate the height of the camera and the road when the camera and the road form a certain pitch angle Threshold of 3D segmentation, segment out obstacle point cloud, road surface point cloud and unknown area point cloud; end color image segmentation technology, fuse color information to judge the correctness of obstacles and road surface, and determine the position range of obstacles, road surface and unknown area ; Compared with the method of single image relying on experience to detect road obstacles, it has higher reliability and practicability.
附图说明Description of drawings
图1为基于三维点云分割的双目视觉障碍物检测方法原理图。Figure 1 is a schematic diagram of a binocular visual obstacle detection method based on 3D point cloud segmentation.
图2为双目立体成像原理图。Figure 2 is a schematic diagram of binocular stereo imaging.
具体实施方式Detailed ways
基于三维点云分割并融合颜色信息的障碍物自动检测方法,如图1所示,包括以下步骤:An automatic obstacle detection method based on 3D point cloud segmentation and fusion of color information, as shown in Figure 1, includes the following steps:
步骤一:通过不同位置的两台摄像机获取两路彩色图像,利用立体标定方法对双目摄像机进行标定,计算两个摄像机的内外参数和相对位置关系,根据这些参数分别对两个摄像机进行消除畸变和行(或列)对准,使两路彩色图像的成像原点坐标一致,得到校正后的双目彩色视图。由传感器获取或预先确定摄像机相对路面的俯仰角和高度。两个摄像机的相对位置和焦距是固定的,即一经标定不再改变两摄像机的相对位置和焦距。两个摄像机相与路面的俯仰角度和高度可以固定,也可以变动。Step 1: Obtain two color images through two cameras at different positions, use the stereo calibration method to calibrate the binocular camera, calculate the internal and external parameters and relative positional relationship of the two cameras, and eliminate the distortion of the two cameras according to these parameters Align with the row (or column) so that the imaging origin coordinates of the two color images are consistent, and a corrected binocular color view is obtained. The pitch angle and height of the camera relative to the road surface are acquired or predetermined by the sensor. The relative position and focal length of the two cameras are fixed, that is, once calibrated, the relative position and focal length of the two cameras will not be changed. The pitch angle and height of the two cameras relative to the road surface can be fixed or variable.
两个摄像头的分辨率综合设备的计算性能而确定,通常可采用640x480或1027x768等分辨率。标定摄像机可采用人工标定、平面棋盘标定或圆(平面圆或平行圆)标定等,计算出切向畸变、径向畸变、焦距、成像原点、校正映射矩阵和重投影矩阵。校正映射用于校正两个摄像机的彩色视图,使两幅图像成像原点坐标一致,两摄像头光轴平行、左右成像平面共面、对极线行或列对齐。摄像机相对路面的位置包括俯仰角和高度,其中高度为可选项。The resolutions of the two cameras are determined based on the computing performance of the device, and resolutions such as 640x480 or 1027x768 can usually be used. The calibration camera can be manually calibrated, plane checkerboard calibration or circle (plane circle or parallel circle) calibration, etc., to calculate tangential distortion, radial distortion, focal length, imaging origin, correction mapping matrix and reprojection matrix. The correction mapping is used to correct the color views of the two cameras, so that the coordinates of the origin of the two images are consistent, the optical axes of the two cameras are parallel, the left and right imaging planes are coplanar, and the epipolar lines are aligned. The position of the camera relative to the road surface includes a pitch angle and a height, where the height is optional.
在本发明中,两个摄像机是始终保持同规格的,即像素、焦距、光圈等性能相同或接近,考虑到影响立体匹配计算的因素,尽量选择高清晰度的摄像机。In the present invention, the two cameras always maintain the same specifications, that is, the performance of pixels, focal lengths, apertures, etc. is the same or close. Considering the factors affecting the calculation of stereo matching, a high-definition camera should be selected as much as possible.
现举例使用平面棋盘标定方法标定左右水平放置好的双目摄像机。调整好双目摄像机并采集到两路RGB图像后,利用n行m列黑白格棋盘对其标定(n和m大于4),摄像头由于光学透镜的特性使得成像存在着径向畸变:Here is an example of using the plane checkerboard calibration method to calibrate the left and right horizontally placed binocular cameras. After adjusting the binocular camera and collecting two RGB images, use n rows and m columns of black and white checkerboard to calibrate it (n and m are greater than 4). Due to the characteristics of the optical lens, the imaging of the camera has radial distortion:
xcorrected=x(1+k1r2+k2r4+k3r6) (1)x corrected =x(1+k 1 r 2 +k 2 r 4 +k 3 r 6 ) (1)
ycorrected=y(1+k1r2+k2r4+k3r6)y corrected =y(1+k 1 r 2 +k 2 r 4 +k 3 r 6 )
公式中(x,y)为获取的原始图像像素,(xcorrected,ycorrected)为校正径向畸变的图像像素,参数k1,k2,k3为径向畸变参数;In the formula, (x, y) is the obtained original image pixel, (x corrected , y corrected ) is the image pixel corrected for radial distortion, and the parameters k 1 , k 2 , k 3 are the radial distortion parameters;
由于在工艺上,装配成像传感器和镜头时存在误差,传感器与光学镜头之间并非完全平行,因此成像存在切向畸变:Due to the error in assembling the imaging sensor and lens in the process, the sensor and the optical lens are not completely parallel, so there is tangential distortion in the imaging:
xcorrected=x+[2p1y+p2(r2+2x2)] (2)x corrected =x+[2p 1 y+p 2 (r 2 +2x 2 )] (2)
ycorrected=y+[p1(r2+2y2)+2p2x]y corrected =y+[p 1 (r 2 +2y 2 )+2p 2 x]
公式中(x,y)为获取的原始图像像素,(xcorrected,ycorrected)为校正切向畸变的图像像素,参数p1,p2为切向畸变参数;单个摄像机的定标主要是计算出摄像机的内参以及外参。双目摄像机定标不仅要得出每个摄像机的内部参数,还需要通过立体标定来测量两个摄像机之间的相对位置(三维平移向量和旋转矩阵)。In the formula (x, y) is the acquired original image pixel, (x corrected , y corrected ) is the image pixel corrected for tangential distortion, and the parameters p 1 and p 2 are tangential distortion parameters; the calibration of a single camera is mainly to calculate Intrinsic and extrinsic parameters of the camera. Stereo camera calibration not only needs to obtain the internal parameters of each camera, but also needs to measure the relative position (3D translation vector and rotation matrix) between the two cameras through stereo calibration.
双目校正是根据摄像机定标后获得的单目内参数据(焦距、成像原点、畸变系数)和双目相对位置关系(旋转矩阵和平移向量),分别对左右视图进行消除畸变和行对准,使得左右视图的成像原点坐标一致、两摄像头光轴平行、左右成像平面共面、对极线行对齐,便于立体匹配的计算。Binocular correction is based on the monocular internal reference data (focal length, imaging origin, distortion coefficient) and binocular relative position relationship (rotation matrix and translation vector) obtained after camera calibration, to eliminate distortion and line alignment of the left and right views respectively. The imaging origin coordinates of the left and right views are consistent, the optical axes of the two cameras are parallel, the left and right imaging planes are coplanar, and the epipolar lines are aligned, which facilitates the calculation of stereo matching.
步骤二:对步骤一校正后得到的双目彩色视图,选择其中一幅视图作为基准图。利用立体匹配算法对基准图进行匹配计算,得到初步的视差图。对基准图进行彩色图像分割,得到颜色相近的图块。根据步骤一获得的摄像机相对路面位置关系数据,计算点云分割的阈值,包括在可接受精度下可检测的最近距离、最远距离、最大高度和最大宽度。Step 2: For the binocular color views obtained after the correction in Step 1, select one of the views as the reference image. Use the stereo matching algorithm to perform matching calculation on the reference image to obtain the preliminary disparity image. Carry out color image segmentation on the reference image to obtain blocks with similar colors. According to the position relationship data of the camera relative to the road surface obtained in step 1, calculate the threshold of point cloud segmentation, including the shortest distance, the longest distance, the maximum height and the maximum width that can be detected with acceptable accuracy.
现利用Heiko Hirschmüller提出的SGBM立体匹配算法并加以优化,以左视图为基图进行匹配,计算得到初步的视差图。立体匹配算法包括以下几个步骤:首先进行匹配代价计算,Now use the SGBM stereo matching algorithm proposed by Heiko Hirschmüller and optimize it, use the left view as the base image for matching, and calculate the preliminary disparity map. The stereo matching algorithm includes the following steps: first, the matching cost is calculated,
C(p,d)=C(x,y,d)=CBT(pLi,pLi+d,I′L,I′R)C(p,d)=C(x,y,d)=C BT (p Li ,p Li +d,I′ L ,I′ R )
=max{0,IL(pLi)-I′max,I′min-IL(pLi)} (3)=max{0,I L (p Li )-I′ max ,I′ min -I L (p Li )} (3)
等式(3)中,d为视差。In equation (3), d is the parallax.
匹配代价叠加如下式:The matching cost is superimposed as follows:
式(4)中D为视差图,右侧第一项表示所有像素点的匹配代价的和。In formula (4), D is the disparity map, and the first term on the right represents the sum of matching costs of all pixels.
图像分割方法有很多种,这里用基于颜色的均值漂移聚类相似算法。这里均值漂移分割能找到在空间上颜色分布的峰值,通过给定一组多给数据,其维数是(x,y,蓝,绿,红),均值漂移可以用一个窗口扫描空间来找到数据密度最高的“聚块”。设定一个空间半径,根据颜色变量设定一个颜色半径。当均值漂移窗口移动时,经过窗口变换后收敛到数据峰值的所有点都会连通起来,并且属于该峰值。这种所属关系,是从密集的尖峰辐射,形成了图像的分割。分割由比例金字塔完成,金字塔中高层的颜色簇,拥有自己的边界,这些边界在金字塔中被精确定义在金字塔的低一层。There are many image segmentation methods, and the color-based mean shift clustering similarity algorithm is used here. Here, the mean shift segmentation can find the peak of the color distribution in space. By giving a set of multiple data whose dimensions are (x, y, blue, green, red), the mean shift can use a window to scan the space to find the data The densest "clumps". Set a space radius, set a color radius according to the color variable. When the mean shift window moves, all points that converge to the peak of the data after window transformation will be connected and belong to the peak. This affiliation, radiating from the dense spikes, forms the segmentation of the image. Segmentation is done by proportional pyramids, where color clusters higher up in the pyramid have their own boundaries defined precisely in the lower levels of the pyramid.
根据摄像机分辨率用下列式子计算最近距离、最远距离、最大高度、最大宽度和确定障碍物高度误差范围:According to the camera resolution, use the following formula to calculate the shortest distance, the longest distance, the maximum height, the maximum width and determine the error range of the obstacle height:
其中Vz为获得的最小尝试范围精度,z为障碍物离摄像机的距离,f为摄像机的焦距,T为两台摄像机间的距离,Vd为视差值。Among them, Vz is the accuracy of the minimum trial range obtained, z is the distance between the obstacle and the camera, f is the focal length of the camera, T is the distance between the two cameras, and Vd is the disparity value.
步骤三:在步骤二计算得到的视差图后,利用步骤一计算得到两个摄像机相对位置关系数据(重投影矩阵)进行视差图三维重构,计算出三维点云。Step 3: After the disparity map calculated in step 2, use the relative position relationship data (reprojection matrix) of the two cameras calculated in step 1 to perform 3D reconstruction of the disparity map to calculate a 3D point cloud.
根据双目立体成像原理,如图2:According to the principle of binocular stereo imaging, as shown in Figure 2:
其中基线距T为两摄像机的投影中心连线的距离;相机焦距为f。The baseline distance T is the distance between the projection centers of the two cameras; the focal length of the camera is f.
经过立体校正后,两摄像机的图像在同一个平面上,基准图像的成像中心为(cx,cy),右图像上的这一点x坐标为c′x,两台摄像机x方向的距离为Tx,刚重投影矩阵职下:After stereo correction, the images of the two cameras are on the same plane, the imaging center of the reference image is (c x , cy ), the x coordinate of this point on the right image is c′ x , and the distance between the two cameras in the x direction is T x , just reproject the matrix under the post:
给定一个二维齐次点的和其关联的视差d,可以将此点投影到三维中:Given a 2D homogeneous point and its associated disparity d, the point can be projected into 3D:
因此,(X/W,Y/W,Z/W)就是视差点d对应的三维坐标。Therefore, (X/W, Y/W, Z/W) is the three-dimensional coordinates corresponding to the parallax point d.
步骤四:根据步骤一获取的摄像机相对地面的位置数据,校正由步骤三计算得出的三维点云,使三维点云中路面点云相对于摄像机高度一致。获取摄像机相对地面的俯仰角后,便可旋转三维点云,使三维点云的路面高度值一致。这里设置双目摄像机与路面平行。Step 4: According to the position data of the camera relative to the ground obtained in step 1, correct the 3D point cloud calculated in step 3, so that the height of the road surface point cloud in the 3D point cloud is consistent with that of the camera. After obtaining the pitch angle of the camera relative to the ground, the 3D point cloud can be rotated to make the road height values of the 3D point cloud consistent. Here the binocular camera is set parallel to the road surface.
步骤五:对步骤四校正后的三维点云进行检测出路面高度(路面相对摄像机的高度),由步骤二计算的分割阈值分割出障碍物、路面和未知点云。Step 5: Detect the road surface height (the height of the road surface relative to the camera) from the 3D point cloud corrected in step 4, and segment obstacles, road surfaces and unknown point clouds by the segmentation threshold calculated in step 2.
假设路面是没有下凹的且高于路平面的物体为障碍物。通过查找步骤四校正后三维点云的小时值,取该值在障碍物高度误差范围内的所有值的平均值,为当前检测到的路面高度,通过与前一次检测的路面高度加权计算得出当前最终的路面高度。在多次检测路面高度后,路面高度值准确性得到提高。It is assumed that the road surface is not concave and the objects higher than the road plane are obstacles. By finding the hourly value of the 3D point cloud corrected in step 4, take the average value of all values within the error range of the obstacle height, which is the currently detected road surface height, which is calculated by weighting with the previously detected road surface height The current final road height. After detecting the road surface height several times, the accuracy of the road surface height value is improved.
步骤六:融合步骤五分割的点云和步骤二对基准图图像分割的图块,确定障碍物、路面和未知区域,并标记显示出来。Step 6: Fusion the point cloud segmented in step 5 and the segmented blocks of the reference map image in step 2, determine obstacles, road surfaces and unknown areas, and mark them out.
三维点云融合颜色信息即对三维点云分割得到不同位置的障碍物点云、路面点云和未知区域点云,对彩色基准图进行按颜色图像分割得到图像块,将分割得到的点云与分割得到的图像块融合对比,图块上出现占比达到一定值后,确定该图块是否为障碍物、路面,确定障碍物、路面和未知区域的位置范围。The 3D point cloud fusion color information is to segment the 3D point cloud to obtain obstacle point cloud, road surface point cloud and unknown area point cloud at different positions, segment the color reference image by color image to obtain image blocks, and combine the segmented point cloud with The image blocks obtained by segmentation are fused and compared. After the proportion of the block reaches a certain value, it is determined whether the block is an obstacle or a road surface, and the location range of the obstacle, road surface, and unknown area is determined.
采用上述方法所设计的基于三维点云分割并融合颜色信息的障碍物自动检测方法,如图1所示,包括双目摄像机标定、双目校正、双目匹配与视差计算、自动估算分割阈值,三维点云路面高度检测,三维点云分割,三维点云融合颜色信息检测障碍物。其中The automatic obstacle detection method based on 3D point cloud segmentation and fusion of color information designed by the above method, as shown in Figure 1, includes binocular camera calibration, binocular correction, binocular matching and disparity calculation, and automatic estimation of segmentation threshold. 3D point cloud road height detection, 3D point cloud segmentation, 3D point cloud fusion color information to detect obstacles. in
双目摄像机标定:标定包括摄像机标定和立体标定。摄像机标定主要计算出切向畸变、径向畸变、焦距和光学中心。立体标定是计算空间上两台摄像机几何关系的过程,依赖于查找两台摄像机之间的旋转矩阵和平移向量。Binocular camera calibration: Calibration includes camera calibration and stereo calibration. Camera calibration mainly calculates tangential distortion, radial distortion, focal length and optical center. Stereo calibration is the process of calculating the geometric relationship between two cameras in space, relying on finding the rotation matrix and translation vector between the two cameras.
双目校正:摄像机需要矫正和立体校正,矫正是消除切向和径向畸变。立体校正是由于两台摄像机几乎不可能有准确的共面和行对准的成像平面,需要通过立体的标定两个摄像机之间的旋转矩阵和平移向量校正;Binocular correction: The camera needs correction and stereo correction, correction is to eliminate tangential and radial distortion. Stereo correction is because it is almost impossible for two cameras to have accurate coplanar and line-aligned imaging planes, and it is necessary to calibrate the rotation matrix and translation vector correction between the two cameras through stereo;
双目匹配与视差计算:立体匹配主要是通过找出每对图像间的对应关系,根据三角测量原理,得到视差图;在获得了视差信息后,根据投影模型很容易地可以得到原始图像的深度信息和三维信息。立体匹配技术被普遍认为是立体视觉中最困难也是最关键的问题,目前立体匹配算法是计算机视觉中的一个难点和热点,算法很多,但是一般的步骤是:匹配代价计算,匹配代价叠加,视差获取,视差细化;Binocular matching and disparity calculation: Stereo matching is mainly to find out the corresponding relationship between each pair of images, and obtain the disparity map according to the principle of triangulation; after obtaining the disparity information, the depth of the original image can be easily obtained according to the projection model information and three-dimensional information. Stereo matching technology is generally considered to be the most difficult and critical problem in stereo vision. At present, stereo matching algorithm is a difficult and hot spot in computer vision. There are many algorithms, but the general steps are: matching cost calculation, matching cost superposition, parallax Acquisition, parallax refinement;
自动估算分割阈值:在允许的最小深度范围精度内,根据摄像机的分辨率和立体标定得到的两摄像机间距离、焦距计算出离摄像机的最近距离、离摄像机最远距离、最大高度和最大宽度。进而在允许的精度范围内计算出障碍物前后和左右之间的间隔、障碍物高度误差范围。Automatically estimate the segmentation threshold: within the allowable minimum depth range accuracy, calculate the shortest distance from the camera, the furthest distance from the camera, the maximum height and the maximum width according to the distance between the two cameras and the focal length obtained by the camera resolution and stereo calibration. Then, within the allowable accuracy range, the distance between the front, rear and left and right of the obstacle, and the error range of the height of the obstacle are calculated.
三维点云路面高度检测:对三维重构得到的三维点云进行路面高度检测,满足设定误差的高度视为路面高度。在第一次检测路面高度时误差可能会较大,进行多次迭代检测后,路面高度的检测精确度趋向稳定,并随着近几次的高度检测值更新而更新。3D point cloud road height detection: The road height detection is performed on the 3D point cloud obtained by 3D reconstruction, and the height that meets the set error is regarded as the road height. The error may be large when the road height is detected for the first time. After multiple iterative detections, the detection accuracy of the road height tends to be stable, and it will be updated with the recent height detection value updates.
三维点云分割:在三维重构得到较稠密的三维点云后,根据摄像机相对地面的俯仰角度旋转三维点云,使三维点云上路面点云与摄像机处于同一高度。由离摄像机的最近距离、离摄像机最远距离、最大高度、最大宽度路面、点云高度和障碍物高度误差,分割三维点云得到路面点云、障碍物点云和未知区域点云;由障碍物前后和左右之间的间隔,分割障碍物点云得到各个位置的障碍物点云;未知区域点云是由一些匹配计算错误的点云和精度较差的点云构成。3D point cloud segmentation: After 3D reconstruction to obtain a dense 3D point cloud, rotate the 3D point cloud according to the pitch angle of the camera relative to the ground, so that the road point cloud on the 3D point cloud is at the same height as the camera. According to the shortest distance from the camera, the farthest distance from the camera, the maximum height, the maximum width of the road surface, the height of the point cloud and the error of the obstacle height, the 3D point cloud is divided to obtain the point cloud of the road surface, the point cloud of the obstacle and the point cloud of the unknown area; The distance between the front and back and the left and right of the object is divided, and the obstacle point cloud of each position is obtained by segmenting the obstacle point cloud; the point cloud of the unknown area is composed of some point clouds with wrong matching calculations and point clouds with poor accuracy.
三维点云融合颜色信息检测障碍物:三维点云融合颜色信息即对三维点云分割得到不同位置的障碍物点云、路面点云和未知区域点云,对彩色基准图进行按颜色图像分割得到图像块,将分割得到的点云与分割得到的图像块融合对比,判决障碍物和路面的正确性,确定障碍物、路面和未知区域的位置范围,实现高可靠性的障碍物检测。3D point cloud fusion color information to detect obstacles: 3D point cloud fusion color information is to segment the 3D point cloud to obtain obstacle point cloud, road surface point cloud and unknown area point cloud at different positions, and segment the color reference image by color image to obtain Image block, fused and compared the segmented point cloud with the segmented image block to judge the correctness of obstacles and road surfaces, determine the position range of obstacles, road surfaces and unknown areas, and achieve highly reliable obstacle detection.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410146864.4A CN103955920B (en) | 2014-04-14 | 2014-04-14 | Binocular vision obstacle detection method based on three-dimensional point cloud segmentation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410146864.4A CN103955920B (en) | 2014-04-14 | 2014-04-14 | Binocular vision obstacle detection method based on three-dimensional point cloud segmentation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103955920A true CN103955920A (en) | 2014-07-30 |
CN103955920B CN103955920B (en) | 2017-04-12 |
Family
ID=51333189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410146864.4A Expired - Fee Related CN103955920B (en) | 2014-04-14 | 2014-04-14 | Binocular vision obstacle detection method based on three-dimensional point cloud segmentation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103955920B (en) |
Cited By (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104392486A (en) * | 2014-11-25 | 2015-03-04 | 西安理工大学 | Point-cloud scene rebuilding method |
CN104794713A (en) * | 2015-04-15 | 2015-07-22 | 同济大学 | Greenhouse crop digital-imaging method based on ARM and binocular vision |
CN105701961A (en) * | 2014-11-24 | 2016-06-22 | 南京酷派软件技术有限公司 | Walking safety prompting method, system and terminal |
CN105818167A (en) * | 2015-01-22 | 2016-08-03 | 通用汽车环球科技运作有限责任公司 | Method for calibrating an articulated end effector employing a remote digital camera |
CN105955275A (en) * | 2016-05-26 | 2016-09-21 | 华讯方舟科技有限公司 | Robot path programming method and system |
CN106056569A (en) * | 2015-04-17 | 2016-10-26 | 丰田自动车株式会社 | Traveling road surface detection device and traveling road surface detection method |
CN106197452A (en) * | 2016-07-21 | 2016-12-07 | 触景无限科技(北京)有限公司 | A kind of visual pattern processing equipment and system |
CN106197429A (en) * | 2016-07-21 | 2016-12-07 | 触景无限科技(北京)有限公司 | A kind of Multi-information acquisition location equipment and system |
CN106225723A (en) * | 2016-07-25 | 2016-12-14 | 浙江零跑科技有限公司 | A kind of many trains splice angle measuring method based on backsight binocular camera |
CN106558096A (en) * | 2015-09-30 | 2017-04-05 | 株式会社日立大厦系统 | The modeling method of the model building device, program and cage guide of three dimensional point cloud |
CN106650640A (en) * | 2016-12-05 | 2017-05-10 | 浙江大学 | Negative obstacle detection method based on local structure feature of laser radar point cloud |
CN106650708A (en) * | 2017-01-19 | 2017-05-10 | 南京航空航天大学 | Visual detection method and system for automatic driving obstacles |
CN106875472A (en) * | 2017-01-16 | 2017-06-20 | 成都信息工程大学 | A kind of 3D dental imagings modeling method |
CN107016147A (en) * | 2015-10-27 | 2017-08-04 | 光州科学技术院 | Method for searching for installation space of article and computer-readable recording medium having program recorded thereon for the same |
CN107169986A (en) * | 2017-05-23 | 2017-09-15 | 北京理工大学 | A kind of obstacle detection method and system |
CN107367767A (en) * | 2017-06-27 | 2017-11-21 | 上海卓思智能科技股份有限公司 | A kind of vent cabinet window foreign matter detecting method and system and a kind of controller |
CN107818293A (en) * | 2016-09-14 | 2018-03-20 | 北京百度网讯科技有限公司 | Method and apparatus for handling cloud data |
CN107909010A (en) * | 2017-10-27 | 2018-04-13 | 北京中科慧眼科技有限公司 | A kind of road barricade object detecting method and device |
CN107962549A (en) * | 2016-10-20 | 2018-04-27 | 因特利格雷特总部有限责任公司 | 3D-2D vision systems for robot carton unloading |
CN108091161A (en) * | 2016-11-23 | 2018-05-29 | 罗伯特·博世有限公司 | For detecting the method and system for the protrusion object being located in parking lot |
CN108245385A (en) * | 2018-01-16 | 2018-07-06 | 曹醒龙 | A kind of device for helping visually impaired people's trip |
CN108269281A (en) * | 2016-12-30 | 2018-07-10 | 无锡顶视科技有限公司 | Avoidance technical method based on binocular vision |
CN108416834A (en) * | 2018-01-08 | 2018-08-17 | 长春理工大学 | Method, device and system for three-dimensional reconstruction of transparent target surface |
CN108489454A (en) * | 2018-03-22 | 2018-09-04 | 沈阳上博智像科技有限公司 | Depth distance measurement method, device, computer readable storage medium and electronic equipment |
CN108573215A (en) * | 2018-03-16 | 2018-09-25 | 海信集团有限公司 | Reflective road method for detecting area, device and terminal |
CN108648219A (en) * | 2018-04-08 | 2018-10-12 | 浙江大承机器人科技有限公司 | A kind of barrier based on binocular and area of feasible solutions detection method |
CN108885791A (en) * | 2018-07-06 | 2018-11-23 | 深圳前海达闼云端智能科技有限公司 | ground detection method, related device and computer readable storage medium |
CN108986162A (en) * | 2018-06-28 | 2018-12-11 | 四川斐讯信息技术有限公司 | Vegetable and background segment method based on Inertial Measurement Unit and visual information |
CN109060839A (en) * | 2018-08-08 | 2018-12-21 | 广州爱迪绿色印刷科技有限公司 | The three-dimensional detection method and device of paper surface quality morphology |
CN109143215A (en) * | 2018-08-28 | 2019-01-04 | 重庆邮电大学 | It is a kind of that source of early warning and method are cooperateed with what V2X was communicated based on binocular vision |
CN109141364A (en) * | 2018-08-01 | 2019-01-04 | 北京进化者机器人科技有限公司 | Obstacle detection method, system and robot |
CN109190704A (en) * | 2018-09-06 | 2019-01-11 | 中国科学院深圳先进技术研究院 | The method and robot of detection of obstacles |
CN109522847A (en) * | 2018-11-20 | 2019-03-26 | 中车株洲电力机车有限公司 | A kind of track and road barricade object detecting method based on depth map |
CN109598896A (en) * | 2018-11-16 | 2019-04-09 | 佛山市第人民医院(中山大学附属佛山医院) | Sick bed collision early warning method, system and device |
CN109700465A (en) * | 2019-01-07 | 2019-05-03 | 广东体达康医疗科技有限公司 | Mobile three-dimensional wound scanning equipment and working process thereof |
CN109947108A (en) * | 2019-04-01 | 2019-06-28 | 杭州晶一智能科技有限公司 | Road condition predicting method in front of mobile robot |
CN110036370A (en) * | 2016-12-19 | 2019-07-19 | 日立汽车系统株式会社 | Electronic control unit, electronic control system and electronic control method |
CN110109457A (en) * | 2019-04-29 | 2019-08-09 | 北方民族大学 | A kind of intelligent sound blind-guidance robot control method and control system |
CN110197097A (en) * | 2018-02-24 | 2019-09-03 | 北京图森未来科技有限公司 | A kind of port area monitoring method and system, central control system |
CN110488805A (en) * | 2018-05-15 | 2019-11-22 | 武汉小狮科技有限公司 | A kind of unmanned vehicle obstacle avoidance system and method based on 3D stereoscopic vision |
CN110610501A (en) * | 2019-09-18 | 2019-12-24 | 中国大恒(集团)有限公司北京图像视觉技术分公司 | Point cloud segmentation method and device |
CN110667474A (en) * | 2018-07-02 | 2020-01-10 | 北京四维图新科技股份有限公司 | General obstacle detection method and device and automatic driving system |
CN110703753A (en) * | 2019-10-16 | 2020-01-17 | 北京京东乾石科技有限公司 | Path planning method and device, electronic equipment and storage medium |
CN110893617A (en) * | 2018-09-13 | 2020-03-20 | 深圳市优必选科技有限公司 | Obstacle detection method and device and storage device |
CN110928301A (en) * | 2019-11-19 | 2020-03-27 | 北京小米智能科技有限公司 | Method, device and medium for detecting tiny obstacles |
CN111047636A (en) * | 2019-10-29 | 2020-04-21 | 轻客智能科技(江苏)有限公司 | Obstacle avoidance system and method based on active infrared binocular vision |
CN111149067A (en) * | 2017-03-23 | 2020-05-12 | Abb瑞士股份有限公司 | Detecting robot positioning in a workspace via fiducials |
CN111160233A (en) * | 2019-12-27 | 2020-05-15 | 中国科学院苏州纳米技术与纳米仿生研究所 | Human face in-vivo detection method, medium and system based on three-dimensional imaging assistance |
CN111260773A (en) * | 2020-01-20 | 2020-06-09 | 深圳市普渡科技有限公司 | Three-dimensional reconstruction method, detection method and detection system for small obstacles |
CN111260715A (en) * | 2020-01-20 | 2020-06-09 | 深圳市普渡科技有限公司 | Depth map processing method, small obstacle detection method and system |
WO2020118623A1 (en) * | 2018-12-13 | 2020-06-18 | Continental Automotive Gmbh | Method and system for generating an environment model for positioning |
CN111366917A (en) * | 2020-03-13 | 2020-07-03 | 北京百度网讯科技有限公司 | Method, device and equipment for detecting travelable area and computer readable storage medium |
CN111368607A (en) * | 2018-12-26 | 2020-07-03 | 北京欣奕华科技有限公司 | Robot, obstacle detection method and detection device |
CN111374597A (en) * | 2018-12-28 | 2020-07-07 | 珠海市一微半导体有限公司 | Method and device for avoiding line of cleaning robot, storage medium and cleaning robot |
CN111667540A (en) * | 2020-06-09 | 2020-09-15 | 中国电子科技集团公司第五十四研究所 | Multi-camera system calibration method based on pedestrian head recognition |
CN111735433A (en) * | 2019-03-25 | 2020-10-02 | 杭州海康威视数字技术股份有限公司 | Method and device for establishing two-dimensional map |
CN111742242A (en) * | 2019-06-11 | 2020-10-02 | 深圳市大疆创新科技有限公司 | Point cloud processing method, system, device and storage medium |
CN111797929A (en) * | 2020-07-07 | 2020-10-20 | 金陵科技学院 | An obstacle feature detection method for binocular robot based on CNN and PSO |
CN111862234A (en) * | 2020-07-22 | 2020-10-30 | 中国科学院上海微系统与信息技术研究所 | Binocular camera self-calibration method and system |
CN111890358A (en) * | 2020-07-01 | 2020-11-06 | 浙江大华技术股份有限公司 | Binocular obstacle avoidance method and device, storage medium and electronic device |
US10861177B2 (en) | 2015-11-11 | 2020-12-08 | Zhejiang Dahua Technology Co., Ltd. | Methods and systems for binocular stereo vision |
US10882468B1 (en) | 2019-10-29 | 2021-01-05 | Deere & Company | Work vehicle composite panoramic vision systems |
CN112418103A (en) * | 2020-11-24 | 2021-02-26 | 中国人民解放军火箭军工程大学 | A safety anti-collision system and method for bridge crane hoisting based on dynamic binocular vision |
CN112487916A (en) * | 2020-11-25 | 2021-03-12 | 上海电力大学 | Binocular three-dimensional identification system for electrical equipment |
CN112784799A (en) * | 2021-02-01 | 2021-05-11 | 三一机器人科技有限公司 | AGV (automatic guided vehicle) backward pallet and obstacle identification method and device and AGV |
CN112818999A (en) * | 2021-02-10 | 2021-05-18 | 桂林电子科技大学 | Complex scene 3D point cloud semantic segmentation method based on convolutional neural network |
CN112884845A (en) * | 2021-01-14 | 2021-06-01 | 济南浪潮高新科技投资发展有限公司 | Indoor robot obstacle positioning method based on single camera |
CN113343745A (en) * | 2021-02-26 | 2021-09-03 | 北京中科慧眼科技有限公司 | Binocular camera-based remote target detection method and system and intelligent terminal |
CN113409242A (en) * | 2021-02-23 | 2021-09-17 | 杭州哲域智能科技有限公司 | Intelligent monitoring method for point cloud of rail intersection bow net |
CN113470049A (en) * | 2021-07-06 | 2021-10-01 | 吉林省田车科技有限公司 | Complete target extraction method based on structured color point cloud segmentation |
CN113610741A (en) * | 2021-08-18 | 2021-11-05 | 梅卡曼德(北京)机器人科技有限公司 | Point cloud processing method and device based on laser line scanning |
CN114049307A (en) * | 2021-10-21 | 2022-02-15 | 北京中科慧眼科技有限公司 | Method, system and intelligent terminal for road height detection based on binocular stereo vision |
CN114418851A (en) * | 2022-01-18 | 2022-04-29 | 长沙慧联智能科技有限公司 | Multi-view 3D panoramic all-around viewing system and splicing method |
CN114898072A (en) * | 2022-06-14 | 2022-08-12 | 中国农业大学 | A crop water stress detection method based on 3D temperature characteristics |
WO2023179405A1 (en) * | 2022-03-21 | 2023-09-28 | 深圳市正浩创新科技股份有限公司 | Obstacle identification method, device and storage medium |
CN116912403A (en) * | 2023-07-03 | 2023-10-20 | 上海鱼微阿科技有限公司 | XR equipment and obstacle information sensing method thereof |
CN118298287A (en) * | 2024-04-17 | 2024-07-05 | 华能澜沧江水电股份有限公司 | Method for monitoring limnoperna fortunei of underwater structure |
CN118537566A (en) * | 2024-07-26 | 2024-08-23 | 成都航维智芯科技有限公司 | 3D point cloud segmentation method |
CN119048531A (en) * | 2024-11-01 | 2024-11-29 | 成都市双流区中医医院 | Ear-nose-throat examination image segmentation method and system |
CN119048531B (en) * | 2024-11-01 | 2025-02-18 | 成都市双流区中医医院 | A method and system for segmenting ENT examination images |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107909009B (en) * | 2017-10-27 | 2021-09-17 | 北京中科慧眼科技有限公司 | Obstacle detection method and device based on road surface learning |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070071311A1 (en) * | 2005-09-28 | 2007-03-29 | Deere & Company, A Delaware Corporation | Method for processing stereo vision data using image density |
CN101887589A (en) * | 2010-06-13 | 2010-11-17 | 东南大学 | A Real-Shot Low-Texture Image Reconstruction Method Based on Stereo Vision |
CN101976455A (en) * | 2010-10-08 | 2011-02-16 | 东南大学 | Color image three-dimensional reconstruction method based on three-dimensional matching |
-
2014
- 2014-04-14 CN CN201410146864.4A patent/CN103955920B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070071311A1 (en) * | 2005-09-28 | 2007-03-29 | Deere & Company, A Delaware Corporation | Method for processing stereo vision data using image density |
CN101887589A (en) * | 2010-06-13 | 2010-11-17 | 东南大学 | A Real-Shot Low-Texture Image Reconstruction Method Based on Stereo Vision |
CN101976455A (en) * | 2010-10-08 | 2011-02-16 | 东南大学 | Color image three-dimensional reconstruction method based on three-dimensional matching |
Non-Patent Citations (2)
Title |
---|
COSMIN D. PANTILIE ETAL: ""Real-time Obstacle Detection in Complex Scenarios Using Dense"", 《2010 13TH INTERNATIONAL IEEE ANNUAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS MADEIRA ISLAND, PORTUGAL, SEPTEMBER 19-22,2010》 * |
曾日金,袁华: ""双目立体视觉的障碍物检测方法综述"", 《大众科技》 * |
Cited By (125)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105701961A (en) * | 2014-11-24 | 2016-06-22 | 南京酷派软件技术有限公司 | Walking safety prompting method, system and terminal |
CN104392486A (en) * | 2014-11-25 | 2015-03-04 | 西安理工大学 | Point-cloud scene rebuilding method |
CN104392486B (en) * | 2014-11-25 | 2017-07-28 | 西安理工大学 | One kind point cloud scene reconstruction method |
CN105818167A (en) * | 2015-01-22 | 2016-08-03 | 通用汽车环球科技运作有限责任公司 | Method for calibrating an articulated end effector employing a remote digital camera |
CN105818167B (en) * | 2015-01-22 | 2018-10-23 | 通用汽车环球科技运作有限责任公司 | The method that hinged end effector is calibrated using long distance digital camera |
CN104794713A (en) * | 2015-04-15 | 2015-07-22 | 同济大学 | Greenhouse crop digital-imaging method based on ARM and binocular vision |
CN104794713B (en) * | 2015-04-15 | 2017-07-11 | 同济大学 | Chamber crop digitalized image method based on ARM and binocular vision |
CN106056569B (en) * | 2015-04-17 | 2019-03-29 | 丰田自动车株式会社 | Track detection device and track detection method |
CN106056569A (en) * | 2015-04-17 | 2016-10-26 | 丰田自动车株式会社 | Traveling road surface detection device and traveling road surface detection method |
CN106558096A (en) * | 2015-09-30 | 2017-04-05 | 株式会社日立大厦系统 | The modeling method of the model building device, program and cage guide of three dimensional point cloud |
CN106558096B (en) * | 2015-09-30 | 2019-05-21 | 株式会社日立大厦系统 | Model building device, storage medium and the cage guide modeling method of three dimensional point cloud |
CN107016147A (en) * | 2015-10-27 | 2017-08-04 | 光州科学技术院 | Method for searching for installation space of article and computer-readable recording medium having program recorded thereon for the same |
CN107016147B (en) * | 2015-10-27 | 2020-11-24 | 光州科学技术院 | Set up space search method and computer readable recording medium |
US10861177B2 (en) | 2015-11-11 | 2020-12-08 | Zhejiang Dahua Technology Co., Ltd. | Methods and systems for binocular stereo vision |
CN105955275A (en) * | 2016-05-26 | 2016-09-21 | 华讯方舟科技有限公司 | Robot path programming method and system |
CN105955275B (en) * | 2016-05-26 | 2021-07-13 | 华讯方舟科技有限公司 | Robot path planning method and system |
CN106197429A (en) * | 2016-07-21 | 2016-12-07 | 触景无限科技(北京)有限公司 | A kind of Multi-information acquisition location equipment and system |
CN106197452A (en) * | 2016-07-21 | 2016-12-07 | 触景无限科技(北京)有限公司 | A kind of visual pattern processing equipment and system |
CN106225723B (en) * | 2016-07-25 | 2019-03-29 | 浙江零跑科技有限公司 | A kind of hinged angle measuring method of multiple row vehicle based on backsight binocular camera |
CN106225723A (en) * | 2016-07-25 | 2016-12-14 | 浙江零跑科技有限公司 | A kind of many trains splice angle measuring method based on backsight binocular camera |
CN107818293A (en) * | 2016-09-14 | 2018-03-20 | 北京百度网讯科技有限公司 | Method and apparatus for handling cloud data |
US10460172B2 (en) | 2016-09-14 | 2019-10-29 | Beijing Baidu Netcom Science and Technology Co., Ltd | Method and apparatus for labeling point cloud data |
CN107962549A (en) * | 2016-10-20 | 2018-04-27 | 因特利格雷特总部有限责任公司 | 3D-2D vision systems for robot carton unloading |
CN115401677A (en) * | 2016-10-20 | 2022-11-29 | 因特利格雷特总部有限责任公司 | 3D-2D vision system for robotic carton unloading |
CN108091161A (en) * | 2016-11-23 | 2018-05-29 | 罗伯特·博世有限公司 | For detecting the method and system for the protrusion object being located in parking lot |
CN108091161B (en) * | 2016-11-23 | 2022-02-01 | 罗伯特·博世有限公司 | Method and system for detecting protruding objects located in a parking lot |
CN106650640A (en) * | 2016-12-05 | 2017-05-10 | 浙江大学 | Negative obstacle detection method based on local structure feature of laser radar point cloud |
CN106650640B (en) * | 2016-12-05 | 2020-03-03 | 浙江大学 | Negative obstacle detection method based on laser radar point cloud local structure characteristics |
CN110036370B (en) * | 2016-12-19 | 2022-04-12 | 日立安斯泰莫株式会社 | Electronic control device, electronic control system, and electronic control method |
CN110036370A (en) * | 2016-12-19 | 2019-07-19 | 日立汽车系统株式会社 | Electronic control unit, electronic control system and electronic control method |
US11318929B2 (en) | 2016-12-19 | 2022-05-03 | Hitachi Astemo, Ltd. | Electronic control apparatus, electronic control system, and electronic control method |
CN108269281A (en) * | 2016-12-30 | 2018-07-10 | 无锡顶视科技有限公司 | Avoidance technical method based on binocular vision |
CN106875472A (en) * | 2017-01-16 | 2017-06-20 | 成都信息工程大学 | A kind of 3D dental imagings modeling method |
CN106650708B (en) * | 2017-01-19 | 2023-08-11 | 南京航空航天大学 | Automatic driving obstacle vision detection method and system |
CN106650708A (en) * | 2017-01-19 | 2017-05-10 | 南京航空航天大学 | Visual detection method and system for automatic driving obstacles |
CN111149067A (en) * | 2017-03-23 | 2020-05-12 | Abb瑞士股份有限公司 | Detecting robot positioning in a workspace via fiducials |
CN107169986B (en) * | 2017-05-23 | 2019-09-17 | 北京理工大学 | A kind of obstacle detection method and system |
CN107169986A (en) * | 2017-05-23 | 2017-09-15 | 北京理工大学 | A kind of obstacle detection method and system |
CN107367767A (en) * | 2017-06-27 | 2017-11-21 | 上海卓思智能科技股份有限公司 | A kind of vent cabinet window foreign matter detecting method and system and a kind of controller |
CN107909010B (en) * | 2017-10-27 | 2022-03-18 | 北京中科慧眼科技有限公司 | Road obstacle detection method and device |
CN107909010A (en) * | 2017-10-27 | 2018-04-13 | 北京中科慧眼科技有限公司 | A kind of road barricade object detecting method and device |
CN108416834A (en) * | 2018-01-08 | 2018-08-17 | 长春理工大学 | Method, device and system for three-dimensional reconstruction of transparent target surface |
CN108245385A (en) * | 2018-01-16 | 2018-07-06 | 曹醒龙 | A kind of device for helping visually impaired people's trip |
CN110197097B (en) * | 2018-02-24 | 2024-04-19 | 北京图森智途科技有限公司 | Harbor district monitoring method and system and central control system |
CN110197097A (en) * | 2018-02-24 | 2019-09-03 | 北京图森未来科技有限公司 | A kind of port area monitoring method and system, central control system |
CN108573215B (en) * | 2018-03-16 | 2021-08-03 | 海信集团有限公司 | Road reflective area detection method and device and terminal |
CN108573215A (en) * | 2018-03-16 | 2018-09-25 | 海信集团有限公司 | Reflective road method for detecting area, device and terminal |
CN108489454A (en) * | 2018-03-22 | 2018-09-04 | 沈阳上博智像科技有限公司 | Depth distance measurement method, device, computer readable storage medium and electronic equipment |
CN108648219A (en) * | 2018-04-08 | 2018-10-12 | 浙江大承机器人科技有限公司 | A kind of barrier based on binocular and area of feasible solutions detection method |
CN108648219B (en) * | 2018-04-08 | 2022-02-22 | 浙江大承机器人科技有限公司 | Binocular-based obstacle and feasible area detection method |
CN110488805A (en) * | 2018-05-15 | 2019-11-22 | 武汉小狮科技有限公司 | A kind of unmanned vehicle obstacle avoidance system and method based on 3D stereoscopic vision |
CN108986162B (en) * | 2018-06-28 | 2022-02-22 | 杭州吉吉知识产权运营有限公司 | Dish and background segmentation method based on inertial measurement unit and visual information |
CN108986162A (en) * | 2018-06-28 | 2018-12-11 | 四川斐讯信息技术有限公司 | Vegetable and background segment method based on Inertial Measurement Unit and visual information |
CN110667474A (en) * | 2018-07-02 | 2020-01-10 | 北京四维图新科技股份有限公司 | General obstacle detection method and device and automatic driving system |
CN110667474B (en) * | 2018-07-02 | 2021-02-26 | 北京四维图新科技股份有限公司 | General obstacle detection method and device and automatic driving system |
CN108885791A (en) * | 2018-07-06 | 2018-11-23 | 深圳前海达闼云端智能科技有限公司 | ground detection method, related device and computer readable storage medium |
CN109141364A (en) * | 2018-08-01 | 2019-01-04 | 北京进化者机器人科技有限公司 | Obstacle detection method, system and robot |
CN109141364B (en) * | 2018-08-01 | 2020-11-03 | 北京进化者机器人科技有限公司 | Obstacle detection method and system and robot |
CN109060839A (en) * | 2018-08-08 | 2018-12-21 | 广州爱迪绿色印刷科技有限公司 | The three-dimensional detection method and device of paper surface quality morphology |
CN109060839B (en) * | 2018-08-08 | 2021-01-29 | 广州爱迪绿色印刷科技有限公司 | Three-dimensional detection method and device for paper surface morphology and quality |
CN109143215A (en) * | 2018-08-28 | 2019-01-04 | 重庆邮电大学 | It is a kind of that source of early warning and method are cooperateed with what V2X was communicated based on binocular vision |
CN109190704A (en) * | 2018-09-06 | 2019-01-11 | 中国科学院深圳先进技术研究院 | The method and robot of detection of obstacles |
CN110893617A (en) * | 2018-09-13 | 2020-03-20 | 深圳市优必选科技有限公司 | Obstacle detection method and device and storage device |
CN109598896A (en) * | 2018-11-16 | 2019-04-09 | 佛山市第人民医院(中山大学附属佛山医院) | Sick bed collision early warning method, system and device |
CN109522847A (en) * | 2018-11-20 | 2019-03-26 | 中车株洲电力机车有限公司 | A kind of track and road barricade object detecting method based on depth map |
WO2020118623A1 (en) * | 2018-12-13 | 2020-06-18 | Continental Automotive Gmbh | Method and system for generating an environment model for positioning |
CN111368607B (en) * | 2018-12-26 | 2023-06-02 | 北京欣奕华科技有限公司 | Robot, obstacle detection method and detection device |
CN111368607A (en) * | 2018-12-26 | 2020-07-03 | 北京欣奕华科技有限公司 | Robot, obstacle detection method and detection device |
CN111374597A (en) * | 2018-12-28 | 2020-07-07 | 珠海市一微半导体有限公司 | Method and device for avoiding line of cleaning robot, storage medium and cleaning robot |
CN111374597B (en) * | 2018-12-28 | 2021-08-24 | 珠海市一微半导体有限公司 | Method and device for avoiding line of cleaning robot, storage medium and cleaning robot |
CN109700465A (en) * | 2019-01-07 | 2019-05-03 | 广东体达康医疗科技有限公司 | Mobile three-dimensional wound scanning equipment and working process thereof |
CN111735433A (en) * | 2019-03-25 | 2020-10-02 | 杭州海康威视数字技术股份有限公司 | Method and device for establishing two-dimensional map |
CN109947108A (en) * | 2019-04-01 | 2019-06-28 | 杭州晶一智能科技有限公司 | Road condition predicting method in front of mobile robot |
CN109947108B (en) * | 2019-04-01 | 2021-11-26 | 深圳市祺丰智能机器人科技有限公司 | Method for predicting road condition in front of mobile robot |
CN110109457A (en) * | 2019-04-29 | 2019-08-09 | 北方民族大学 | A kind of intelligent sound blind-guidance robot control method and control system |
CN111742242A (en) * | 2019-06-11 | 2020-10-02 | 深圳市大疆创新科技有限公司 | Point cloud processing method, system, device and storage medium |
CN110610501B (en) * | 2019-09-18 | 2022-04-29 | 中国大恒(集团)有限公司北京图像视觉技术分公司 | Point cloud segmentation method and device |
CN110610501A (en) * | 2019-09-18 | 2019-12-24 | 中国大恒(集团)有限公司北京图像视觉技术分公司 | Point cloud segmentation method and device |
CN110703753B (en) * | 2019-10-16 | 2022-11-08 | 北京京东乾石科技有限公司 | Path planning method and device, electronic equipment and storage medium |
CN110703753A (en) * | 2019-10-16 | 2020-01-17 | 北京京东乾石科技有限公司 | Path planning method and device, electronic equipment and storage medium |
US10882468B1 (en) | 2019-10-29 | 2021-01-05 | Deere & Company | Work vehicle composite panoramic vision systems |
CN111047636A (en) * | 2019-10-29 | 2020-04-21 | 轻客智能科技(江苏)有限公司 | Obstacle avoidance system and method based on active infrared binocular vision |
CN111047636B (en) * | 2019-10-29 | 2024-04-09 | 轻客小觅机器人科技(成都)有限公司 | Obstacle avoidance system and obstacle avoidance method based on active infrared binocular vision |
CN110928301B (en) * | 2019-11-19 | 2023-06-30 | 北京小米智能科技有限公司 | Method, device and medium for detecting tiny obstacle |
CN110928301A (en) * | 2019-11-19 | 2020-03-27 | 北京小米智能科技有限公司 | Method, device and medium for detecting tiny obstacles |
CN111160233B (en) * | 2019-12-27 | 2023-04-18 | 中国科学院苏州纳米技术与纳米仿生研究所 | Human face in-vivo detection method, medium and system based on three-dimensional imaging assistance |
CN111160233A (en) * | 2019-12-27 | 2020-05-15 | 中国科学院苏州纳米技术与纳米仿生研究所 | Human face in-vivo detection method, medium and system based on three-dimensional imaging assistance |
CN111260715A (en) * | 2020-01-20 | 2020-06-09 | 深圳市普渡科技有限公司 | Depth map processing method, small obstacle detection method and system |
CN111260773A (en) * | 2020-01-20 | 2020-06-09 | 深圳市普渡科技有限公司 | Three-dimensional reconstruction method, detection method and detection system for small obstacles |
CN111260773B (en) * | 2020-01-20 | 2023-10-13 | 深圳市普渡科技有限公司 | Three-dimensional reconstruction method, detection method and detection system for small obstacle |
CN111260715B (en) * | 2020-01-20 | 2023-09-08 | 深圳市普渡科技有限公司 | Depth map processing method, small obstacle detection method and system |
WO2021147548A1 (en) * | 2020-01-20 | 2021-07-29 | 深圳市普渡科技有限公司 | Three-dimensional reconstruction method, detection method and system for small obstacle, and robot and medium |
CN111366917A (en) * | 2020-03-13 | 2020-07-03 | 北京百度网讯科技有限公司 | Method, device and equipment for detecting travelable area and computer readable storage medium |
CN111366917B (en) * | 2020-03-13 | 2022-07-15 | 北京百度网讯科技有限公司 | Method, device and equipment for detecting travelable area and computer readable storage medium |
CN111667540A (en) * | 2020-06-09 | 2020-09-15 | 中国电子科技集团公司第五十四研究所 | Multi-camera system calibration method based on pedestrian head recognition |
CN111667540B (en) * | 2020-06-09 | 2023-04-18 | 中国电子科技集团公司第五十四研究所 | Multi-camera system calibration method based on pedestrian head recognition |
CN111890358B (en) * | 2020-07-01 | 2022-06-14 | 浙江大华技术股份有限公司 | Binocular obstacle avoidance method and device, storage medium and electronic device |
CN111890358A (en) * | 2020-07-01 | 2020-11-06 | 浙江大华技术股份有限公司 | Binocular obstacle avoidance method and device, storage medium and electronic device |
CN111797929A (en) * | 2020-07-07 | 2020-10-20 | 金陵科技学院 | An obstacle feature detection method for binocular robot based on CNN and PSO |
CN111797929B (en) * | 2020-07-07 | 2023-08-22 | 金陵科技学院 | A detection method for binocular robot obstacle features based on CNN and PSO |
CN111862234A (en) * | 2020-07-22 | 2020-10-30 | 中国科学院上海微系统与信息技术研究所 | Binocular camera self-calibration method and system |
CN111862234B (en) * | 2020-07-22 | 2023-10-20 | 中国科学院上海微系统与信息技术研究所 | Binocular camera self-calibration method and system |
CN112418103A (en) * | 2020-11-24 | 2021-02-26 | 中国人民解放军火箭军工程大学 | A safety anti-collision system and method for bridge crane hoisting based on dynamic binocular vision |
CN112487916A (en) * | 2020-11-25 | 2021-03-12 | 上海电力大学 | Binocular three-dimensional identification system for electrical equipment |
CN112487916B (en) * | 2020-11-25 | 2022-08-23 | 上海电力大学 | Binocular three-dimensional identification system for electrical equipment |
CN112884845A (en) * | 2021-01-14 | 2021-06-01 | 济南浪潮高新科技投资发展有限公司 | Indoor robot obstacle positioning method based on single camera |
CN112784799A (en) * | 2021-02-01 | 2021-05-11 | 三一机器人科技有限公司 | AGV (automatic guided vehicle) backward pallet and obstacle identification method and device and AGV |
CN112818999A (en) * | 2021-02-10 | 2021-05-18 | 桂林电子科技大学 | Complex scene 3D point cloud semantic segmentation method based on convolutional neural network |
CN113409242A (en) * | 2021-02-23 | 2021-09-17 | 杭州哲域智能科技有限公司 | Intelligent monitoring method for point cloud of rail intersection bow net |
CN113343745B (en) * | 2021-02-26 | 2024-06-18 | 北京中科慧眼科技有限公司 | Long-distance target detection method, system and intelligent terminal based on binocular camera |
CN113343745A (en) * | 2021-02-26 | 2021-09-03 | 北京中科慧眼科技有限公司 | Binocular camera-based remote target detection method and system and intelligent terminal |
CN113470049B (en) * | 2021-07-06 | 2022-05-20 | 吉林省田车科技有限公司 | Complete target extraction method based on structured color point cloud segmentation |
CN113470049A (en) * | 2021-07-06 | 2021-10-01 | 吉林省田车科技有限公司 | Complete target extraction method based on structured color point cloud segmentation |
CN113610741A (en) * | 2021-08-18 | 2021-11-05 | 梅卡曼德(北京)机器人科技有限公司 | Point cloud processing method and device based on laser line scanning |
CN114049307A (en) * | 2021-10-21 | 2022-02-15 | 北京中科慧眼科技有限公司 | Method, system and intelligent terminal for road height detection based on binocular stereo vision |
CN114418851A (en) * | 2022-01-18 | 2022-04-29 | 长沙慧联智能科技有限公司 | Multi-view 3D panoramic all-around viewing system and splicing method |
WO2023179405A1 (en) * | 2022-03-21 | 2023-09-28 | 深圳市正浩创新科技股份有限公司 | Obstacle identification method, device and storage medium |
CN114898072B (en) * | 2022-06-14 | 2024-05-31 | 中国农业大学 | A crop water stress detection method based on 3D temperature features |
CN114898072A (en) * | 2022-06-14 | 2022-08-12 | 中国农业大学 | A crop water stress detection method based on 3D temperature characteristics |
CN116912403B (en) * | 2023-07-03 | 2024-05-10 | 玩出梦想(上海)科技有限公司 | XR equipment and obstacle information sensing method thereof |
CN116912403A (en) * | 2023-07-03 | 2023-10-20 | 上海鱼微阿科技有限公司 | XR equipment and obstacle information sensing method thereof |
CN118298287A (en) * | 2024-04-17 | 2024-07-05 | 华能澜沧江水电股份有限公司 | Method for monitoring limnoperna fortunei of underwater structure |
CN118537566A (en) * | 2024-07-26 | 2024-08-23 | 成都航维智芯科技有限公司 | 3D point cloud segmentation method |
CN119048531A (en) * | 2024-11-01 | 2024-11-29 | 成都市双流区中医医院 | Ear-nose-throat examination image segmentation method and system |
CN119048531B (en) * | 2024-11-01 | 2025-02-18 | 成都市双流区中医医院 | A method and system for segmenting ENT examination images |
Also Published As
Publication number | Publication date |
---|---|
CN103955920B (en) | 2017-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103955920B (en) | Binocular vision obstacle detection method based on three-dimensional point cloud segmentation | |
CN110322702B (en) | Intelligent vehicle speed measuring method based on binocular stereo vision system | |
WO2021004312A1 (en) | Intelligent vehicle trajectory measurement method based on binocular stereo vision system | |
Häne et al. | Obstacle detection for self-driving cars using only monocular cameras and wheel odometry | |
CN104700414B (en) | A kind of road ahead pedestrian's fast ranging method based on vehicle-mounted binocular camera | |
CN101894366B (en) | Method and device for acquiring calibration parameters and video monitoring system | |
CN104197928B (en) | Multi-camera collaboration-based method for detecting, positioning and tracking unmanned aerial vehicle | |
US11521311B1 (en) | Collaborative disparity decomposition | |
CN102967305B (en) | Multi-rotor unmanned aerial vehicle pose acquisition method based on markers in shape of large and small square | |
CN108665499B (en) | Near distance airplane pose measuring method based on parallax method | |
CN104484648A (en) | Variable-viewing angle obstacle detection method for robot based on outline recognition | |
CN110334678A (en) | A Pedestrian Detection Method Based on Vision Fusion | |
CN104463899A (en) | Target object detecting and monitoring method and device | |
CN105286871A (en) | Video processing-based body height measurement method | |
Xu et al. | LiDAR–camera calibration method based on ranging statistical characteristics and improved RANSAC algorithm | |
CN109685855A (en) | A kind of camera calibration optimization method under road cloud monitor supervision platform | |
CN106920276A (en) | A kind of three-dimensional rebuilding method and system | |
Li et al. | Easy calibration of a blind-spot-free fisheye camera system using a scene of a parking space | |
Kuschk | Large scale urban reconstruction from remote sensing imagery | |
CN113869422B (en) | Multi-camera target matching method, system, electronic device and readable storage medium | |
CN106203429A (en) | Based on the shelter target detection method under binocular stereo vision complex background | |
CN107590444A (en) | Detection method, device and the storage medium of static-obstacle thing | |
Alcantarilla et al. | Large-scale dense 3D reconstruction from stereo imagery | |
David et al. | Orientation descriptors for localization in urban environments | |
Ke et al. | Roadway surveillance video camera calibration using standard shipping container |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170412 Termination date: 20190414 |
|
CF01 | Termination of patent right due to non-payment of annual fee |