CN103951215B - Rare earth ion doped LuI 3devitrified glass and preparation method thereof - Google Patents

Rare earth ion doped LuI 3devitrified glass and preparation method thereof Download PDF

Info

Publication number
CN103951215B
CN103951215B CN201410198018.7A CN201410198018A CN103951215B CN 103951215 B CN103951215 B CN 103951215B CN 201410198018 A CN201410198018 A CN 201410198018A CN 103951215 B CN103951215 B CN 103951215B
Authority
CN
China
Prior art keywords
lui
glass
devitrified glass
rare earth
earth ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410198018.7A
Other languages
Chinese (zh)
Other versions
CN103951215A (en
Inventor
张为欢
张约品
夏海平
欧阳绍业
王倩
杨斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201410198018.7A priority Critical patent/CN103951215B/en
Publication of CN103951215A publication Critical patent/CN103951215A/en
Application granted granted Critical
Publication of CN103951215B publication Critical patent/CN103951215B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention discloses a kind of rare earth ion doped LuI 3devitrified glass and preparation method thereof, its Mole percent consists of P 2o 5: 30-40mol%, B 2o 3: 25-30mol%, BaF 2: 7-15mol%, Lu 2o 3: 5-9mol%, LuI 3: 15-20mol%, LnI 3: 1-4mol%, wherein LnI 3for CeI 3, EuI 3, TbI 3, PrI 3, NdI 3in one, its preparation method first prepares P with scorification 2o 5-B 2o 3-BaF 2-Lu 2o 3-LuI 3-LnI 3be glass, after heat treatment obtain transparent LuI 3devitrified glass, LuI of the present invention 3devitrified glass, energy Deliquescence-resistant, good mechanical property, short wavelength's royal purple light transmission rate are higher, have extremely strong light output, decay soon, the performances such as good energy resolution and temporal resolution.The preparation method of this devitrified glass is simple, and production cost is lower.

Description

Rare earth ion doped LuI 3devitrified glass and preparation method thereof
Technical field
The present invention relates to a kind of rare earth ion doped devitrified glass, especially relate to a kind of rare earth ion doped LuI being used as scintillation material 3devitrified glass and preparation method thereof.
Background technology
Scintillation material is a kind of optical function material that can send visible ray under the exciting of energetic ray or other radioactive particle, is widely used in the fields such as the researchs of nuclear medicine diagnostic, high energy physics and nuclear physics experiment, industry and geological prospecting.The requirement of difference to scintillator according to Application Areas is also not quite similar, but generally scintillation material should possess following properties: the features such as luminous efficiency is high, fluorescence decay is fast, density is comparatively large, cost is low and radiation resistance is good.Scintillation crystal generally has the advantage such as resistance to irradiation, fast decay, High Light Output, but scintillation crystal also exists following serious shortcoming: preparation difficulty, expensive.And although rare earth ion doped scintillation glass cost is low, easily prepare large-size glass, it is difficult compared with crystal in light output, multiplicity etc., and therefore its application is also very limited.
LuI 3crystal be a kind of can the scintillation crystal matrix of doping with rare-earth ions, Ce 3+the LuI of doping 3it is high that crystal has light output, decays soon, good energy resolution, temporal resolution and linear response, has than rare earth ion doped crystal of fluoride and the higher luminous efficiency of oxide crystal, scintillation detectors efficiency can be made greatly to improve.Eu 3+, Tb 3+doping LuI 3the scintillation properties of crystal is also more excellent, can be used for the field such as safety check, blinking screen.But LuI 3crystal is deliquescence very easily, and mechanical property is poor, easy cleavage slabbing, large-size crystals growth difficulty, and expensively have impact on its practical application.
Summary of the invention
The technical problem to be solved in the present invention is to provide a kind of Deliquescence-resistant, good mechanical property, has extremely strong light output, fast decay, energy resolution and the good rare earth ion doped LuI of temporal resolution 3devitrified glass and preparation method thereof.
The present invention solves the problems of the technologies described above adopted technical scheme: rare earth ion doped LuI 3devitrified glass, its Mole percent consists of:
P 2O 5:30-40mol%B 2O 3:25-30mol%BaF 2:7-15mol%
Lu 2O 3:5-9mol%LuI 3:15-20mol%LnI 3:1-4mol%
Wherein LnI 3for CeI 3, EuI 3, TbI 3, PrI 3, NdI 3in one.
This flicker devitrified glass material component is: P 2o 5: 30mol%, B 2o 3: 30mol%, BaF 2: 15mol%, Lu 2o 3: 5mol%, LuI 3: 19mol%, CeI 3: 1mol%.
This flicker devitrified glass material component is: P 2o 5: 35mol%, B 2o 3: 28mol%, BaF 2: 7mol%, Lu 2o 3: 6mol%, LuI 3: 20mol%, EuI 3: 4mol%.
This flicker devitrified glass material component is: P 2o 5: 40mol%, B 2o 3: 25mol%, BaF 2: 9mol%, Lu 2o 3: 9mol%, LuI 3: 15mol%, TbI 3: 2mol%.
Described rare earth ion doped LuI 3the preparation method of devitrified glass, comprises the steps:
(1) P 2o 5-B 2o 3-BaF 2-Lu 2o 3-LuI 3-LnI 3be founding of glass:
Take analytically pure each raw material by material component, respectively add the NH accounting for raw material gross weight 5% 4hF 2, NH 4hI 2raw material is mixed, then pour in quartz crucible or corundum crucible and melt, temperature of fusion 1200-1350 DEG C, be incubated and after 1-2 hour, glass melt poured in pig mold, then be placed in retort furnace to anneal, after 1 hour, be cooled to 50 DEG C with the speed of 10 DEG C/h in glass transformation temperature Tg temperature, close retort furnace power supply and be automatically cooled to room temperature, take out glass sample, for micritization thermal treatment.
(2) LuI 3prepared by devitrified glass:
According to thermal analyses (DTA) experimental data of glass, obtained glass is placed in nitrogen fine annealing stove heat-treated 4 ~ 6 hours near its first crystallization peak, and then be cooled to 50 DEG C with the speed of 5 DEG C/h, close fine annealing stove power supply, automatically be cooled to room temperature, obtain transparent rare earth ion doped LuI 3devitrified glass.
Compared with prior art, the invention has the advantages that: this devitrified glass is made up of fluorine iodine oxygen compound, the through performance of short wavelength is good, has LuI 3the feature that the superior scintillation properties of crystalline host material and the physical strength of oxide glass, stability and being easy to is processed, overcomes LuI 3single crystal is the shortcoming such as deliquescence, poor, the easy cleavage slabbing of mechanical property very easily; The experiment proved that: by formula of the present invention and preparation method, separate out rare earth ion doped to LuI 3crystalline phase, obtained rare earth ion doped LuI 3devitrified glass is transparent, and energy Deliquescence-resistant, good mechanical property, short wavelength's royal purple light transmission rate are higher, and have extremely strong light output, decay soon, the performances such as good energy resolution and temporal resolution, can make scintillation detectors efficiency greatly improve.The preparation method of this devitrified glass is simple, and it is lower that dirt produces cost.
Accompanying drawing explanation
Fig. 1 is X-ray diffraction (XRD) figure of sample after the thermal treatment of embodiment one micritization.
Fig. 2 is the Ce:LuI of embodiment one excitation of X-rays 3the fluorescence spectrum of devitrified glass.
Fig. 3 is the Eu:LuI of embodiment two excitation of X-rays 3the fluorescence spectrum of devitrified glass.
Fig. 4 is the Tb:LuI of embodiment three excitation of X-rays 3the fluorescence spectrum of devitrified glass.
Embodiment
Below in conjunction with accompanying drawing embodiment, the present invention is described in further detail.
Embodiment one: table 1 is glass formula and the first recrystallization temperature value of embodiment one.
Table 1
Concrete preparation process is as follows: the first step, weighs 50 grams of analytical pure raw materials by the formula in table 1, adds 2.5 grams of NH 4hF 2, 2.5 grams of NH 4hI 2pour in quartz crucible after raw material is mixed and melt, temperature of fusion 1200 DEG C, be incubated 2 hours, glass melt poured in pig mold, be then placed in retort furnace and anneal, in glass transformation temperature Tg temperature after 1 hour, be cooled to 50 DEG C with the speed of 10 DEG C/h, close retort furnace power supply and be automatically cooled to room temperature, take out glass; Second step, according to thermal analyses (DTA) experimental data of glass, obtain the first recrystallization temperature 670 DEG C, obtained glass is placed in fine annealing stove 690 DEG C of thermal treatments 6 hours, and then be cooled to 50 DEG C with the speed of 5 DEG C/h, close fine annealing stove power supply and be automatically cooled to room temperature, obtain transparent Ce 3+the LuI of doping 3devitrified glass.
To the LuI of preparation 3devitrified glass carries out X-ray diffraction test, and obtain the XRD figure of glass after micritization process as shown in Figure 1, its result is as follows: the XRD diffraction peak of the sample obtained through Overheating Treatment and LuI 3the main diffraction peak of the standard x RD figure of crystalline phase all conforms to, and the material therefore obtained is LuI 3the devitrified glass of crystallization phase.And the Ce of excitation of X-rays 3+ion doping LuI 3as shown in Figure 2, fluorescence peak intensity is very large for the fluorescence spectrum of devitrified glass.Mix Ce 3+ion LuI 3devitrified glass light output can reach 45000ph/MeV, and fall time is 28ns, and its light output is high as seen, and fall time is short.
Embodiment two: table 2 is glass formula and the first recrystallization temperature value of embodiment two.
Table 2
Concrete preparation process is as follows: the first step, weighs 50 grams of analytical pure raw materials by the formula in table 2, adds 2.5 grams of NH 4hF 2, 2.5 grams of NH 4hI 2pour in corundum crucible after raw material is mixed and melt, temperature of fusion 1300 DEG C, be incubated 1 hour, glass melt poured in pig mold, be then placed in retort furnace and anneal, in glass transformation temperature Tg temperature after 1 hour, be cooled to 50 DEG C with the speed of 10 DEG C/h, close retort furnace power supply and be automatically cooled to room temperature, take out glass; Second step, according to thermal analyses (DTA) experimental data of glass, obtain the first recrystallization temperature 680 DEG C, obtained glass is placed in fine annealing stove 695 DEG C of thermal treatments 5 hours, and then be cooled to 50 DEG C with the speed of 5 DEG C/h, close fine annealing stove power supply and be automatically cooled to room temperature, obtain transparent Eu 3+the LuI of ion doping 3devitrified glass.
To the LuI of preparation 3the spectral quality test of devitrified glass, the Eu of excitation of X-rays 3+ion doping LuI 3as shown in Figure 3, its result shows to produce Eu:LuI after Overheating Treatment the fluorescence spectrum of devitrified glass 3crystallite luminous intensity compared with corresponding glass basis is significantly improved, and Eu:LuI is described 3the luminosity of devitrified glass is better; Be expected to very much the scintillator be used as in safety check.
Embodiment three: table 3 is glass formula and the first recrystallization temperature value of embodiment three.
Table 3
Concrete preparation process is as follows: the first step, weighs 50 grams of analytical pure raw materials by the formula in table 3, adds 2.5 grams of NH 4hF 2, 2.5 grams of NH 4hI 2pour in quartz crucible after raw material is mixed and melt, temperature of fusion 1350 DEG C, be incubated 1.5 hours, glass melt poured in pig mold, be then placed in retort furnace and anneal, in glass transformation temperature Tg temperature after 1 hour, be cooled to 50 DEG C with the speed of 10 DEG C/h, close retort furnace power supply and be automatically cooled to room temperature, take out glass.Second step, according to thermal analyses (DTA) experimental data of glass, obtain the first recrystallization temperature 690 DEG C, obtained glass is placed in nitrogen fine annealing stove 710 DEG C of thermal treatments 4 hours, and then be cooled to 50 DEG C with the speed of 5 DEG C/h, close fine annealing stove power supply and be automatically cooled to room temperature, obtain transparent Tb 3+the LuI of ion doping 3devitrified glass.
To the LuI of preparation 3the spectral quality test of devitrified glass, the Tb of excitation of X-rays 3+ion doping LuI 3as shown in Figure 4, its result shows to produce Tb:LuI after Overheating Treatment the fluorescence spectrum of devitrified glass 3crystallite luminous intensity compared with corresponding glass basis is significantly improved, and Tb:LuI is described 3the luminosity of devitrified glass is better; The rare earth ion doped LuI obtained by above-mentioned preparation process 3devitrified glass is transparent and physical and chemical performance is excellent.
Embodiment 4
Substantially the same manner as Example 1, difference is material component difference: P 2o 5: 40mol%, B 2o 3: 25mol%, BaF 2: 9mol%, Lu 2o 3: 9mol%, LuI 3: 15mol%, PrI 3: 2mol%.
Embodiment 5
Substantially the same manner as Example 1, difference is material component difference: P 2o 5: 70mol%, BaF 2: 10mol%, Lu 2o 3: 9mol%, LuI 3: 10mol%, NdI 3: 1mol%.
Embodiment 4,5 also can obtain LuI rare earth ion doped preferably 3devitrified glass, concrete flicker devitrified glass spectrum does not just provide one by one.

Claims (5)

1. a rare earth ion doped LuI 3devitrified glass, its Mole percent consists of:
P 2O 5:30-40mol%B 2O 3:25-30mol%BaF 2:7-15mol%
Lu 2O 3:5-9mol%LuI 3:15-20mol%LnI 3:1-4mol%
Wherein LnI 3for CeI 3, EuI 3, TbI 3, PrI 3, NdI 3in one.
2. rare earth ion doped LuI according to claim 1 3devitrified glass, is characterized in that this devitrified glass material component is: P 2o 5: 30mol%, B 2o 3: 30mol%, BaF 2: 15mol%, Lu 2o 3: 5mol%, LuI 3: 19mol%, CeI 3: 1mol%.
3. rare earth ion doped LuI according to claim 1 3devitrified glass, is characterized in that this devitrified glass material component is: P 2o 5: 35mol%, B 2o 3: 28mol%, BaF 2: 7mol%, Lu 2o 3: 6mol%, LuI 3: 20mol%, EuI 3: 4mol%.
4. rare earth ion doped LuI according to claim 1 3devitrified glass, is characterized in that this devitrified glass material component is: P 2o 5: 40mol%, B 2o 3: 25mol%, BaF 2: 9mol%, Lu 2o 3: 9mol%, LuI 3: 15mol%, TbI 3: 2mol%.
5. rare earth ion doped LuI according to claim 1 3the preparation method of devitrified glass, is characterized in that comprising following concrete steps:
(1) P 2o 5-B 2o 3-BaF 2-Lu 2o 3-LuI 3-LnI 3be founding of glass: take analytically pure each raw material by material component, respectively add the NH accounting for raw material gross weight 5% 4hF 2, NH 4hI 2raw material is mixed, then pour in quartz crucible or corundum crucible and melt, temperature of fusion 1200-1350 DEG C, be incubated and after 1-2 hour, glass melt poured in pig mold, then be placed in retort furnace to anneal, after 1 hour, be cooled to 50 DEG C with the speed of 10 DEG C/h in glass transformation temperature Tg temperature, close retort furnace power supply and be automatically cooled to room temperature, take out glass, for micritization thermal treatment;
(2) LuI 3the preparation of devitrified glass: according to the DTA thermal analysis experiment data of glass, obtained glass is placed in nitrogen fine annealing stove heat-treated 4 ~ 6 hours near its first crystallization peak, and then be cooled to 50 DEG C with the speed of 5 DEG C/h, close fine annealing stove power supply, automatically be cooled to room temperature, obtain transparent rare earth ion doped LuI 3devitrified glass.
CN201410198018.7A 2014-05-08 2014-05-08 Rare earth ion doped LuI 3devitrified glass and preparation method thereof Expired - Fee Related CN103951215B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410198018.7A CN103951215B (en) 2014-05-08 2014-05-08 Rare earth ion doped LuI 3devitrified glass and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410198018.7A CN103951215B (en) 2014-05-08 2014-05-08 Rare earth ion doped LuI 3devitrified glass and preparation method thereof

Publications (2)

Publication Number Publication Date
CN103951215A CN103951215A (en) 2014-07-30
CN103951215B true CN103951215B (en) 2016-04-27

Family

ID=51328607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410198018.7A Expired - Fee Related CN103951215B (en) 2014-05-08 2014-05-08 Rare earth ion doped LuI 3devitrified glass and preparation method thereof

Country Status (1)

Country Link
CN (1) CN103951215B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105314854A (en) * 2015-11-16 2016-02-10 宁波大学 Glass containing rare earth ion doped lutetium iodide micro-crystals and preparation method of glass film
CN105314856A (en) * 2015-11-27 2016-02-10 宁波大学 Rare earth ion doped LuI3 glass ceramics and preparation method thereof
CN105314870A (en) * 2015-11-27 2016-02-10 宁波大学 Rare earth ion-doped YI3 glass ceramic and preparation method thereof
CN105314878A (en) * 2015-11-27 2016-02-10 宁波大学 Rare earth ion-doped LuBr3 glass ceramic and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196381A (en) * 1990-01-16 1993-03-23 E. I. Du Pont De Nemours And Company Metaphosphate glass composition
JP2011046602A (en) * 2009-07-31 2011-03-10 Ohara Inc Glass granular powder and slurry-like mixture containing the same

Also Published As

Publication number Publication date
CN103951215A (en) 2014-07-30

Similar Documents

Publication Publication Date Title
CN103951209B (en) Rare earth ion doped LaI 3devitrified glass and preparation method thereof
CN103951215B (en) Rare earth ion doped LuI 3devitrified glass and preparation method thereof
CN103951258A (en) Rare-earth-ion-doped SrI2 microcrystalline glass and preparation method thereof
CN103951222B (en) Rare earth ion doped SrBr 2devitrified glass and preparation method thereof
CN103951221B (en) Rare earth ion doped CaI 2devitrified glass and preparation method thereof
CN103951224B (en) Rare earth ion doped LiI devitrified glass and preparation method thereof
CN103951212A (en) Rare earth ion doped LaBr3 glass ceramics and preparation method thereof
CN103951213B (en) Rare earth ion doped LuCl 3devitrified glass and preparation method thereof
CN103951253B (en) Rare earth ion doped LiGdCl 4devitrified glass and preparation method thereof
CN103951246B (en) Rare earth ion doped Cs 2liLuBr 6devitrified glass and preparation method thereof
CN103951245B (en) Rare earth ion doped Cs2LiLuCl6Devitrified glass and preparation method thereof
CN103951216B (en) Rare earth ion doped GdI 3devitrified glass and preparation method thereof
CN103951219B (en) Rare earth ion doped K 2laI 5devitrified glass and preparation method thereof
CN103951199B (en) Rare earth ion doped LiLuI 4devitrified glass and preparation method thereof
CN103951251B (en) Rare earth ion doped LiBaBr 3devitrified glass and preparation method thereof
CN103951234B (en) Rare earth ion doped K 2luBr 5devitrified glass and preparation method thereof
CN103951220A (en) Rare-earth-ion-doped BaBr2 microcrystalline glass and preparation method thereof
CN103951236A (en) Rare-earth-ion-doped RbGd2Cl7 microcrystalline glass and preparation method thereof
CN103951244B (en) Rare earth ion doped Cs 2liYI 6devitrified glass and preparation method thereof
CN103951227B (en) Rare earth ion doped Ba 2gdCl 7devitrified glass and preparation method thereof
CN103951214B (en) Rare earth ion doped LuBr 3devitrified glass and preparation method thereof
CN103951229B (en) Rare earth ion doped Sr 2luCl 7devitrified glass and preparation method thereof
CN103951218B (en) Rare earth ion doped K2LaBr5Devitrified glass and preparation method thereof
CN103951211B (en) Rare earth ion doped LaCl 3devitrified glass and preparation method thereof
CN103951256B (en) Rare earth ion doped LiLuCl 4devitrified glass and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160427

Termination date: 20190508

CF01 Termination of patent right due to non-payment of annual fee