CN103949251A - Oxygen reduction catalyst as well as preparation method and application of oxygen reduction catalyst - Google Patents
Oxygen reduction catalyst as well as preparation method and application of oxygen reduction catalyst Download PDFInfo
- Publication number
- CN103949251A CN103949251A CN201410196011.1A CN201410196011A CN103949251A CN 103949251 A CN103949251 A CN 103949251A CN 201410196011 A CN201410196011 A CN 201410196011A CN 103949251 A CN103949251 A CN 103949251A
- Authority
- CN
- China
- Prior art keywords
- mwcnts
- catalyst
- ceo
- oxygen reduction
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 68
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 43
- 239000001301 oxygen Substances 0.000 title claims abstract description 42
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 36
- 230000003197 catalytic effect Effects 0.000 claims abstract description 15
- 239000002131 composite material Substances 0.000 claims abstract description 11
- 239000000446 fuel Substances 0.000 claims abstract description 11
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 30
- 239000002048 multi walled nanotube Substances 0.000 claims description 15
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 14
- 239000000725 suspension Substances 0.000 claims description 11
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 claims description 9
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 9
- 239000012279 sodium borohydride Substances 0.000 claims description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- CEYULKASIQJZGP-UHFFFAOYSA-L disodium;2-(carboxymethyl)-2-hydroxybutanedioate Chemical compound [Na+].[Na+].[O-]C(=O)CC(O)(C(=O)O)CC([O-])=O CEYULKASIQJZGP-UHFFFAOYSA-L 0.000 claims 2
- 238000001132 ultrasonic dispersion Methods 0.000 claims 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 230000033116 oxidation-reduction process Effects 0.000 claims 1
- 238000001291 vacuum drying Methods 0.000 claims 1
- 238000010792 warming Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 239000012528 membrane Substances 0.000 abstract description 6
- 239000011258 core-shell material Substances 0.000 abstract description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 2
- 239000002041 carbon nanotube Substances 0.000 abstract description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 36
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 19
- 238000006722 reduction reaction Methods 0.000 description 11
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 8
- 238000002484 cyclic voltammetry Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 6
- 229910021397 glassy carbon Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 5
- 238000011946 reduction process Methods 0.000 description 5
- 239000001509 sodium citrate Substances 0.000 description 5
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 229910000420 cerium oxide Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000004832 voltammetry Methods 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000010411 electrocatalyst Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 230000010757 Reduction Activity Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- -1 oxygen ions Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Catalysts (AREA)
Abstract
本发明提供的氧还原催化剂,该催化剂表示为:Ag@Pt/MWCNTs-CeO2,是以碳纳米管(MWCNTs)为载体,CeO2掺杂的核壳型Ag@Pt为活性组分的催化剂,该催化剂是CeO2均匀掺杂在Ag@Pt/MWCNTs中;将该催化剂用作质子交换膜燃料电池阴极催化剂,其催化活性比Ag@Pt/MWCNTs的催化活性提高50-70%,其电化学活性面积达到67.1-100.0m2g-1,催化氧还原的电流密度可以达到4.5-7.0mA·cm-2。本发明所采用的制备方法简便易行,易于工业应用。所制备的Ag@Pt/MWCNTs-CeO2复合催化剂降低了铂的负载量,使催化剂成本大幅度降低。The oxygen reduction catalyst provided by the present invention, the catalyst is expressed as: Ag@Pt/MWCNTs-CeO 2 , which is a catalyst with carbon nanotubes (MWCNTs) as the carrier and CeO 2 doped core-shell Ag@Pt as the active component , the catalyst is uniformly doped with CeO 2 in Ag@Pt/MWCNTs; the catalyst is used as a cathode catalyst for proton exchange membrane fuel cells, and its catalytic activity is 50-70% higher than that of Ag@Pt/MWCNTs. The chemical active area reaches 67.1-100.0m 2 g -1 , and the current density of catalytic oxygen reduction can reach 4.5-7.0mA·cm -2 . The preparation method adopted in the present invention is simple and easy to implement and easy to industrial application. The prepared Ag@Pt/MWCNTs-CeO 2 composite catalyst reduces the loading of platinum and greatly reduces the cost of the catalyst.
Description
技术领域technical field
本发明涉及氧还原催化剂及其制备,具体涉及一种Ag@Pt/MWCNTs-CeO2催化剂及其制备方法,及将该催化剂用于质子交换膜燃料电池阴极催化剂。The invention relates to an oxygen reduction catalyst and its preparation, in particular to an Ag@Pt/MWCNTs- CeO2 catalyst and its preparation method, and the catalyst is used as a proton exchange membrane fuel cell cathode catalyst.
背景技术Background technique
质子交换膜燃料电池(PEMFC)具有寿命长,能量密度高,可在室温下启动,水易排除,环保等优点,在电动汽车、移动电源方面具有广阔的应用前景。目前,铂基电催化剂因具有较高的催化性能而被认为是燃料电池最佳催化剂,然而,铂基电催化剂较高的成本限制了PEMFC的应用。因此,研发低载铂、高性能的催化剂是推动质子交换膜燃料电池发展的关键技术。近期研究发现,当Pt基合金催化剂中掺入其他金属元素如:Ni、Cr、Pd、Ag、Cu、Au等金属时,此类双元或者多元催化剂不仅可以减少催化剂中Pt金属的用量,降低成本,还会因其他金属元素与Pt之间的协同作用改变Pt表面对于氧气以及氧还原过程中间态的吸附能力,从而提高氧还原效率。于是Pt合金、核壳型催化剂等新兴催化剂引起了人们的广泛关注。还有学者研究发现,将金属氧化物与铂系催化剂的掺杂,不仅会降低催化剂中铂的载量,而且还会起到提高催化剂稳定性以及催化活性的作用。由于CeO2价格较低、且存在晶格缺陷,结构中存在氧空位,从而具有较高的储氧能力,因此近年来很多学者们对Pt与CeO2的复合催化剂的性能研究做出了许多工作。Proton exchange membrane fuel cell (PEMFC) has the advantages of long life, high energy density, start-up at room temperature, easy drainage of water, and environmental protection. It has broad application prospects in electric vehicles and mobile power sources. At present, platinum-based electrocatalysts are considered to be the best catalysts for fuel cells due to their high catalytic performance. However, the high cost of platinum-based electrocatalysts limits the application of PEMFCs. Therefore, the development of catalysts with low platinum loading and high performance is the key technology to promote the development of proton exchange membrane fuel cells. Recent studies have found that when Pt-based alloy catalysts are doped with other metal elements such as Ni, Cr, Pd, Ag, Cu, Au and other metals, such binary or multi-element catalysts can not only reduce the amount of Pt metal in the catalyst, but also reduce the The cost will also change the adsorption capacity of the Pt surface for oxygen and the intermediate state of the oxygen reduction process due to the synergistic effect between other metal elements and Pt, thereby improving the oxygen reduction efficiency. Therefore, emerging catalysts such as Pt alloys and core-shell catalysts have attracted widespread attention. Some scholars have found that the doping of metal oxides and platinum-based catalysts will not only reduce the loading of platinum in the catalyst, but also improve the stability and catalytic activity of the catalyst. Due to the low price of CeO 2 and the existence of lattice defects and oxygen vacancies in the structure, it has a high oxygen storage capacity. Therefore, many scholars have done a lot of work on the performance of the composite catalyst of Pt and CeO 2 in recent years. .
文献:Jerzy Chlistunoff et al.,Electrochemical Studies of Novel Pt/Ceria/C Oxygen ReductionCatalysts for Fuel Cells.ECS Transactions,2011.1(41)2341-2348.中,Chlistunoff等人制备了一种Pt-CeO2/C催化剂,通过研究发现,由于CeO2优良的储氧性能,可以提高局部的氧气分压在Pt的氧化电压下,提高其催化氧还原活性。Literature: Jerzy Chlistunoff et al., Electrochemical Studies of Novel Pt/Ceria/C Oxygen Reduction Catalysts for Fuel Cells.ECS Transactions, 2011.1(41) 2341-2348. In, Chlistunoff et al prepared a Pt-CeO 2 /C catalyst , through research, it is found that due to the excellent oxygen storage performance of CeO 2 , the local oxygen partial pressure can be increased under the oxidation voltage of Pt to enhance its catalytic oxygen reduction activity.
文献:Lim D-H et al.,Effect of ceria nanoparticles into the Pt/C catalyst as cathode material onthe electrocatalytic activity and durability for low-temperature fuel cell.Applied Catalysis B:Environmental,20101(94),85-96.中,Lim等人研究发现CeO2本身具有储氧的作用,而分布在Pt附近的CeO2正好可以在氧还原过程中起到氧气缓冲区的作用,补充催化剂氧还原过程中氧气的不足,从而提高了催化剂的催化性能,而不是提供了新的活性位点Literature: Lim DH et al., Effect of ceria nanoparticles into the Pt/C catalyst as cathode material on the electrocatalytic activity and durability for low-temperature fuel cell. Applied Catalysis B: Environmental, 20101(94), 85-96. Lim et al. found that CeO 2 itself has the function of storing oxygen, and CeO 2 distributed near Pt can just act as an oxygen buffer during the oxygen reduction process, supplementing the lack of oxygen in the oxygen reduction process of the catalyst, thereby improving the catalytic performance of the catalyst, rather than providing new active sites
发明内容Contents of the invention
本发明的目的在于提供一种低铂载量且高催化活性的氧还原催化剂及其制备方法,并将该催化剂用作质子交换膜燃料电池阴极催化剂。The object of the present invention is to provide an oxygen reduction catalyst with low platinum loading and high catalytic activity and a preparation method thereof, and use the catalyst as a cathode catalyst of a proton exchange membrane fuel cell.
本发明提供的氧还原催化剂,表示为:Ag@Pt/MWCNTs-CeO2,是以碳纳米管(MWCNTs)为载体,CeO2掺杂的核壳型Ag@Pt为活性组分的催化剂,该催化剂是CeO2均匀掺杂在Ag@Pt/MWCNTs中;将该催化剂用作质子交换膜燃料电池阴极催化剂,其催化活性比Ag@Pt/MWCNTs的催化活性提高50-70%,其电化学活性面积达到67.1-100.0m2g-1,催化氧还原的电流密度可以达到4.5-7.0mA·cm-2。The oxygen reduction catalyst provided by the present invention, expressed as: Ag@Pt/MWCNTs-CeO 2 , is a catalyst with carbon nanotubes (MWCNTs) as the carrier and CeO 2 doped core-shell Ag@Pt as the active component. The catalyst is CeO 2 uniformly doped in Ag@Pt/MWCNTs; the catalyst is used as a proton exchange membrane fuel cell cathode catalyst, and its catalytic activity is 50-70% higher than that of Ag@Pt/MWCNTs, and its electrochemical activity The area reaches 67.1-100.0m 2 g -1 , and the current density of catalytic oxygen reduction can reach 4.5-7.0mA·cm -2 .
该氧还原催化剂具体制备步骤如下:The specific preparation steps of the oxygen reduction catalyst are as follows:
A将硝酸银、柠檬酸钠和多壁碳纳米管分散在去离子水中配制悬浊液A,使其中硝酸银的摩尔浓度为1-6mmol/L,柠檬酸钠的摩尔浓度为20-50mmol/L,多壁碳纳米管的质量浓度是1-3g/L,再向其中滴加与悬浊液A体积比为1:30-60的硼氢化钠/乙醇溶液,过滤,干燥,得到Ag/MWCNTs;硼氢化钠/乙醇溶液中硼氢化钠的含量为100-300mmol/L;A disperses silver nitrate, sodium citrate and multi-wall carbon nanotubes in deionized water to prepare suspension A, so that the molar concentration of silver nitrate is 1-6mmol/L, and the molar concentration of sodium citrate is 20-50mmol/L L, the mass concentration of multi-walled carbon nanotubes is 1-3g/L, then dropwise to it and the sodium borohydride/ethanol solution that the volume ratio of suspension A is 1:30-60, filter, dry, obtain Ag/ MWCNTs; the content of sodium borohydride in sodium borohydride/ethanol solution is 100-300mmol/L;
将制得的Ag/MWCNTs按1-3g/L分散在乙二醇溶液中配制悬浊液B,超声分散1-4h,加入占悬浊液B体积份数0.5-1%的氯铂酸溶液,再用2-10%的KOH/乙二醇溶液调节pH=5-10,升温至60-120℃反应3-6h,过滤,干燥,得到Ag@Pt/MWCNTs;Disperse the prepared Ag/MWCNTs in ethylene glycol solution at 1-3g/L to prepare suspension B, disperse by ultrasonic for 1-4h, add chloroplatinic acid solution accounting for 0.5-1% by volume of suspension B , then use 2-10% KOH/ethylene glycol solution to adjust the pH=5-10, raise the temperature to 60-120°C for 3-6h, filter and dry to obtain Ag@Pt/MWCNTs;
B.将浓度为0.1-1.0mmol/L的硝酸铈溶液用0.1mol L-1氨水或0.1mol L-1氢氧化钠溶液调节pH=7-11,加入高温高压反应釜中,先在60-90℃,反应2-6h,再在110-160℃反应3-6h,经过滤、洗涤,干燥得到CeO2;B. Adjust the cerium nitrate solution with a concentration of 0.1-1.0mmol/L to 0.1mol L -1 ammonia water or 0.1mol L -1 sodium hydroxide solution to adjust pH=7-11, add it to a high-temperature and high-pressure reactor, and React at 90°C for 2-6 hours, then react at 110-160°C for 3-6 hours, filter, wash, and dry to obtain CeO 2 ;
C.将步骤A制得的Ag@Pt/MWCNTs与步骤B得到的CeO2以4-8:1的质量比加入到乙醇溶液中,超声分散1-4h,过滤,在50-80℃的真空干燥箱中干燥5-15h,得到Ag@Pt/MWCNTs-CeO2复合催化剂。C. Add Ag@Pt/MWCNTs prepared in step A and CeO 2 obtained in step B to the ethanol solution at a mass ratio of 4-8:1, ultrasonically disperse for 1-4h, filter, and vacuum at 50-80°C Dry in a drying oven for 5-15 hours to obtain the Ag@Pt/MWCNTs-CeO 2 composite catalyst.
图1是实施例1制备的CeO2和Ag@Pt/MWCNTs-CeO2的XRD谱图。在a,b两条曲线中,2θ=26℃时所对应的第一个强峰均为载体多壁碳纳米管的特征衍射峰。将曲线b与标准卡片(PDF card04-0802)相对照,在2θ=39.8°,46.2°,67.4°和81.3°所对应的为面心立方结构Pt的特征衍射峰,所对应的晶面分别为(111),(200),(220),(311)。曲线b为Ag@Pt/MWCNTs-CeO2催化剂的XRD谱图,曲线b金属Ag的特征衍射峰并没有出现,说明金属Ag已经成为内核,被金属Pt壳包裹在了其内部。从图中可以看出,复合结构中各特征峰出峰明显,结构良好。Figure 1 is the XRD spectrum of CeO 2 and Ag@Pt/MWCNTs-CeO 2 prepared in Example 1. In the two curves a and b, the first strong peak corresponding to 2θ=26°C is the characteristic diffraction peak of the carrier multi-walled carbon nanotubes. Comparing the curve b with the standard card (PDF card04-0802), at 2θ=39.8°, 46.2°, 67.4° and 81.3°, the characteristic diffraction peaks of Pt with a face-centered cubic structure, and the corresponding crystal planes are (111), (200), (220), (311). Curve b is the XRD spectrum of the Ag@Pt/MWCNTs-CeO 2 catalyst. The characteristic diffraction peaks of metal Ag in curve b do not appear, indicating that the metal Ag has become the core and is wrapped in the metal Pt shell. It can be seen from the figure that the characteristic peaks in the composite structure are obvious, and the structure is good.
图2(a)是实施例2制备的Ag@Pt/MWCNTs催化剂的电镜图片。从图中可以看出,Ag@Pt纳米颗粒均匀得分布在了MWCNTs的表面。图2(b)为实施例2制备的Ag@Pt/MWCNT-CeO2的复合结构催化剂。图中CeO2为直径约600nm的块状颗粒,并插入到了Ag@Pt/MWCNT之间形成了一个均匀的复合结构。Figure 2(a) is an electron micrograph of the Ag@Pt/MWCNTs catalyst prepared in Example 2. It can be seen from the figure that Ag@Pt nanoparticles are uniformly distributed on the surface of MWCNTs. Figure 2(b) is the Ag@Pt/MWCNT-CeO 2 composite structure catalyst prepared in Example 2. In the figure, CeO 2 is a blocky particle with a diameter of about 600 nm, which is inserted between Ag@Pt/MWCNT to form a uniform composite structure.
用循环伏安曲线法和线性伏安扫描法对燃料电池催化剂进行电化学性能的表征,结果见图3和4,由图3、4可见:Ag@Pt/MWCNTs-CeO2的催化活性要显著高于Ag@Pt/MWCNTs,其电化学活性面积可达到97.2m2·g-1,且掺杂了CeO2的催化剂具有明显的高极限电流,说明在氧化铈的存在下,增加了局部氧气的浓度。在氧还原过程中,氧化铈作为O的供应来源维持了较高的反应速率。The electrochemical performance of fuel cell catalysts was characterized by cyclic voltammetry and linear voltammetry scanning. The results are shown in Figures 3 and 4. It can be seen from Figures 3 and 4 that the catalytic activity of Ag@Pt/MWCNTs-CeO 2 is significantly Higher than Ag@Pt/MWCNTs, its electrochemical active area can reach 97.2m 2 ·g -1 , and the catalyst doped with CeO 2 has a significantly high limiting current, indicating that in the presence of cerium oxide, the local oxygen concentration. During the oxygen reduction process, cerium oxide as the supply source of O maintains a high reaction rate.
有益效果:本发明所制备的Ag@Pt/MWCNTs-CeO2复合催化剂不仅降低了铂的负载量,降低了催化剂成本,同时,掺杂的CeO2在氧化或还原条件下,CeO2/Ce2O3之间的氧化还原反应的循环发生,易于摄取和释放O,且在该过程中会产生不稳定的氧空位,体相氧物种有相对较高的移动性,而氧空位的循环产生和湮灭促使氧离子流动,可以促进氧还原反应过程中氧的吸附与解离,促进氧还原反应的发生,从而提高催化剂的催化活性。其电化学活性面积可以达到97.2m2g-1,催化氧还原的电流密度可以达到4.8mA·cm-2。所采用的制备方法简便易行,易于工业应用。Beneficial effects: the Ag @Pt/ MWCNTs -CeO 2 composite catalyst prepared by the present invention not only reduces the loading capacity of platinum, but also reduces the cost of the catalyst . A cycle of redox reactions between O 3 occurs, which is easy to take up and release O, and in the process will generate unstable oxygen vacancies, bulk oxygen species have relatively high mobility, and the cycle of oxygen vacancies and Annihilation promotes the flow of oxygen ions, which can promote the adsorption and dissociation of oxygen in the process of oxygen reduction reaction, and promote the occurrence of oxygen reduction reaction, thereby improving the catalytic activity of the catalyst. Its electrochemical active area can reach 97.2m 2 g -1 , and the current density of catalytic oxygen reduction can reach 4.8mA·cm -2 . The adopted preparation method is simple and practicable, and is easy for industrial application.
附图说明Description of drawings
图1是实施例1制备的CeO2和Ag@Pt/MWCNTs-CeO2的XRD谱图。其中a为CeO2的XRD曲线,b为Ag@Pt/MWCNTs-CeO2的XRD曲线。Figure 1 is the XRD spectrum of CeO 2 and Ag@Pt/MWCNTs-CeO 2 prepared in Example 1. Where a is the XRD curve of CeO 2 and b is the XRD curve of Ag@Pt/MWCNTs-CeO 2 .
图2是实施例2制备的Ag@Pt/MWCNTs和Ag@Pt/MWCNTs-CeO2的扫描电镜照片。a为Ag@Pt/MWCNTs的扫描电镜照片,b为Ag@Pt/MWCNTs-CeO2的扫描电镜照片。Fig. 2 is a scanning electron micrograph of Ag@Pt/MWCNTs and Ag@Pt/MWCNTs-CeO 2 prepared in Example 2. a is the SEM image of Ag@Pt/MWCNTs, b is the SEM image of Ag@Pt/MWCNTs- CeO2 .
图3是实施例3制备的Ag@Pt/MWCNTs和Ag@Pt/MWCNTs-CeO2的循环伏安曲线。a为Ag@Pt/MWCNTs的循环伏安曲线,b为Ag@Pt/MWCNTs-CeO2的循环伏安曲线。Figure 3 is the cyclic voltammetry curves of Ag@Pt/MWCNTs and Ag@Pt/MWCNTs-CeO 2 prepared in Example 3. a is the cyclic voltammetry curve of Ag@Pt/MWCNTs, b is the cyclic voltammetry curve of Ag@Pt/MWCNTs-CeO 2 .
图4是实施例2制备的制备的Ag@Pt/MWCNTs和Ag@Pt/MWCNTs-CeO2的极化曲线。a为Ag@Pt/MWCNTs的极化曲线,b为Ag@Pt/MWCNTs-CeO2的极化曲线。Figure 4 is the polarization curves of Ag@Pt/MWCNTs and Ag@Pt/MWCNTs-CeO 2 prepared in Example 2. a is the polarization curve of Ag@Pt/MWCNTs, b is the polarization curve of Ag@Pt/MWCNTs-CeO 2 .
具体实施方式Detailed ways
实施例1Example 1
A.将100mg的硝酸银、1.0g柠檬酸钠和100mg多壁碳纳米管分散在去离子水中,超声1h得到均一的黑色悬浊液,然后向其中滴加10ml的100mmol/L硼氢化钠/乙醇溶液,得到Ag/MWCNTs;将制得的Ag/MWCNTs分散在20ml乙二醇溶液中,超声分散1h,加入2ml的氯铂酸溶液,用2%的KOH/乙二醇溶液调节pH=5,升温至60℃反应3h,得到Ag@Pt/MWCNTs。A. Disperse 100 mg of silver nitrate, 1.0 g of sodium citrate and 100 mg of multi-walled carbon nanotubes in deionized water, ultrasonically obtain a uniform black suspension for 1 h, then add 10 ml of 100 mmol/L sodium borohydride/ Ethanol solution to obtain Ag/MWCNTs; disperse the prepared Ag/MWCNTs in 20ml ethylene glycol solution, ultrasonically disperse for 1h, add 2ml chloroplatinic acid solution, adjust pH=5 with 2% KOH/ethylene glycol solution , heated to 60°C for 3h to obtain Ag@Pt/MWCNTs.
B.将0.1mmol/L的硝酸铈溶液用0.1mol L-1氨水溶液调节pH=7,将溶液倒入高温高压反应釜中,先在60℃,反应2h,再在110℃反应3h。然后经抽滤、洗涤,干燥得CeO2。B. Adjust the pH of 0.1mmol/L cerium nitrate solution to 7 with 0.1mol L -1 ammonia solution, pour the solution into a high temperature and high pressure reactor, and react at 60°C for 2h, then at 110°C for 3h. Then it was filtered, washed and dried to obtain CeO 2 .
C.将步骤A制得的Ag@Pt/MWCNTs与CeO2以4:1的质量比例加入到乙醇溶液中,超声分散1h,以后抽滤,在50℃的真空干燥箱中干燥5h得到Ag@Pt/MWCNTs-CeO2复合催化剂。C. Add the Ag@Pt/MWCNTs and CeO 2 prepared in step A to the ethanol solution at a mass ratio of 4:1, ultrasonically disperse for 1 h, then filter with suction, and dry in a vacuum oven at 50°C for 5 h to obtain Ag@ Pt/MWCNTs-CeO 2 composite catalyst.
实施例2Example 2
A.将150mg的硝酸银、2.0g柠檬酸钠和120mg多壁碳纳米管分散在去离子水中,超声2h得到均一的黑色悬浊液,然后向其中滴加20ml的200mmol/L硼氢化钠/乙醇溶液,得到Ag/MWCNTs;将制得的Ag/MWCNTs分散在60ml乙二醇溶液中,超声分散2h,加入5ml的氯铂酸溶液,用7%的KOH/乙二醇溶液调节pH=8,升温至90℃反应4h,得到Ag@Pt/MWCNTs。A. Disperse 150mg of silver nitrate, 2.0g of sodium citrate and 120mg of multi-walled carbon nanotubes in deionized water, ultrasonically obtain a uniform black suspension for 2h, then add 20ml of 200mmol/L sodium borohydride/ Ethanol solution to obtain Ag/MWCNTs; disperse the prepared Ag/MWCNTs in 60ml ethylene glycol solution, ultrasonically disperse for 2h, add 5ml chloroplatinic acid solution, adjust pH=8 with 7% KOH/ethylene glycol solution , heated to 90°C for 4h to obtain Ag@Pt/MWCNTs.
B.将0.5mmol/L的硝酸铈溶液用0.1mol L-1氨水溶液调节pH=9,将溶液倒入高温高压反应釜中,先在70℃,反应4h,再在130℃反应4h。然后经抽滤、洗涤,干燥得CeO2。B. Adjust 0.5mmol/L cerium nitrate solution to pH=9 with 0.1mol L -1 ammonia solution, pour the solution into a high-temperature and high-pressure reactor, and react at 70°C for 4h, then at 130°C for 4h. Then it was filtered, washed and dried to obtain CeO 2 .
C.将步骤A制得的Ag@Pt/MWCNTs与CeO2以5:1的质量比例加入到乙醇溶液中,超声分散2h,以后抽滤,在60℃的真空干燥箱中干燥10h得到Ag@Pt/MWCNTs-CeO2复合催化剂。C. Add the Ag@Pt/MWCNTs and CeO2 prepared in step A to the ethanol solution at a mass ratio of 5:1, ultrasonically disperse for 2 hours, then filter with suction, and dry in a vacuum oven at 60°C for 10 hours to obtain Ag@Pt /MWCNTs-CeO 2 composite catalyst.
分别将步骤A得到的Ag/MWCNTs及步骤C得到的Ag@Pt/MWCNTs-CeO2采用循环伏安法进行电化学性能对比测试The Ag/MWCNTs obtained in step A and the Ag@Pt/MWCNTs-CeO 2 obtained in step C were compared for electrochemical performance by cyclic voltammetry
玻碳电极预处理:分别将5mgAg/MWCNTs与Ag@Pt/MWCNTs-CeO2用0.9ml无水乙醇和0.1ml5%Nafion溶液配成溶液,之后在超声波清洗器中超声1h,使催化剂均匀分散在混合溶液中;用移液枪移取10μl催化剂溶液于玻碳电极表面,室温下晾干。Glassy carbon electrode pretreatment: 5mgAg/MWCNTs and Ag@Pt/MWCNTs-CeO 2 were made into solutions with 0.9ml absolute ethanol and 0.1ml5% Nafion solution respectively, and then ultrasonicated in an ultrasonic cleaner for 1h to disperse the catalyst evenly in the In the mixed solution; use a pipette gun to pipette 10 μl of the catalyst solution on the surface of the glassy carbon electrode, and dry it at room temperature.
测试在三电极体系中进行,用上述表面含催化剂的玻碳电极作工作电极(d=5mm),参比电极为Ag/AgCl电极,对电极为铂丝,用0.5mol/L的H2SO4溶液做电解液。通过对所得到的循环伏安曲线中的氢的吸附峰或脱附峰进行积分,求出催化剂催化反应的电化学活性表面积(ESA),公式如下:The test was carried out in a three-electrode system, using the above-mentioned glassy carbon electrode with catalyst on the surface as the working electrode (d=5mm), the reference electrode was Ag/AgCl electrode, the counter electrode was platinum wire, and 0.5mol/L H 2 SO 4 solution as electrolyte. By integrating the adsorption peak or desorption peak of hydrogen in the obtained cyclic voltammetry curve, the electrochemically active surface area (ESA) of the catalytic reaction of the catalyst is calculated, and the formula is as follows:
ESA=QH/(2.1×Pt)ESA= QH /(2.1×Pt)
式中QH(C·m-2)是每平方米铂表面脱附氢的电量,Pt(g·m-2)为覆盖在玻碳电极上催化剂中Pt的含量。ESA的单位为m2/g,是衡量催化剂的性能重要指标之一。结果见图3、In the formula, Q H (C·m -2 ) is the amount of hydrogen desorbed per square meter of platinum surface, and Pt (g·m -2 ) is the content of Pt in the catalyst covering the glassy carbon electrode. The unit of ESA is m 2 /g, which is one of the important indicators to measure the performance of the catalyst. The results are shown in Figure 3,
由图3可见,Ag@Pt/MWCNTs-CeO2的催化活性要显著高于Ag@Pt/MWCNTs,Ag@Pt/MWCNTs-CeO2的电化学活性面积可以达到97.2m2·g-1,Ag@Pt/MWCNTs的电化学活性面积为66.15m2·g-1 It can be seen from Figure 3 that the catalytic activity of Ag@Pt/MWCNTs-CeO 2 is significantly higher than that of Ag@Pt/MWCNTs, and the electrochemical active area of Ag@Pt/MWCNTs-CeO 2 can reach 97.2m 2 ·g -1 . The electrochemically active area of @Pt/MWCNTs is 66.15m 2 ·g -1
实施例3Example 3
A.将200mg的硝酸银、3.6g柠檬酸钠和300mg多壁碳纳米管分散在去离子水中,超声3h得到均一的黑色悬浊液,然后向其中滴加40ml的300mmol/L硼氢化钠/乙醇溶液,得到Ag/MWCNTs;将制得的Ag/MWCNTs分散在100ml乙二醇溶液中,超声分散4h,加入10ml的氯铂酸溶液,用10%的KOH/乙二醇溶液调节pH=10,升温至120℃反应6h,得到Ag@Pt/MWCNTs。A. Disperse 200mg of silver nitrate, 3.6g of sodium citrate and 300mg of multi-walled carbon nanotubes in deionized water, ultrasonically obtain a uniform black suspension for 3h, then add 40ml of 300mmol/L sodium borohydride/ Ethanol solution to obtain Ag/MWCNTs; disperse the prepared Ag/MWCNTs in 100ml ethylene glycol solution, ultrasonically disperse for 4h, add 10ml chloroplatinic acid solution, adjust pH=10 with 10% KOH/ethylene glycol solution , the temperature was raised to 120°C for 6 h to obtain Ag@Pt/MWCNTs.
B.将1.0mmol/L的硝酸铈溶液用0.1mol L-1氢氧化钠溶液调节pH=11,将溶液倒入高温高压反应釜中,先在90℃,反应6h,再在160℃反应6h。然后经抽滤、洗涤,干燥得CeO2。B. Adjust the 1.0mmol/L cerium nitrate solution to pH=11 with 0.1mol L -1 sodium hydroxide solution, pour the solution into a high-temperature and high-pressure reactor, first react at 90°C for 6h, and then react at 160°C for 6h . Then it was filtered, washed and dried to obtain CeO 2 .
C.将步骤A制得的Ag@Pt/MWCNTs与CeO2以8:1的质量比例加入到乙醇溶液中,超声分散4h,以后抽滤,在80℃的真空干燥箱中干燥15h得到Ag@Pt/MWCNTs-CeO2复合催化剂。C. Add the Ag@Pt/MWCNTs and CeO2 prepared in step A to the ethanol solution at a mass ratio of 8:1, ultrasonically disperse for 4 hours, then filter with suction, and dry in a vacuum oven at 80°C for 15 hours to obtain Ag@ Pt/MWCNTs-CeO 2 composite catalyst.
采用线性伏安扫描法对步骤A、C得到的样品进行电化学性能对比测试Adopt the linear voltammetry scanning method to carry out electrochemical performance contrast test to the sample that steps A, C obtain
玻碳电极预处理同循环伏安法。Glassy carbon electrode pretreatment is the same as cyclic voltammetry.
测试在三电极体系中进行,用上述表面含催化剂的玻碳电极作工作电极(d=5mm),参比电极为Ag/AgCl电极,对电极为铂丝,在0.5mol/L的H2SO4溶液中持续不断的通入氧气,待溶液中氧气的浓度达到饱和后,开始线性伏安扫描测试,测试过程中保持氧气的供给。扫描速度为5mV/s,测试电压的范围为-0.2-0.8V,旋转圆盘的转速为1600rpm/min。测试结果见图4The test was carried out in a three-electrode system, using the above-mentioned glassy carbon electrode with catalyst on the surface as the working electrode (d=5mm), the reference electrode was an Ag/AgCl electrode, and the counter electrode was a platinum wire. 4. Continuously inject oxygen into the solution. After the concentration of oxygen in the solution reaches saturation, start the linear voltammetry scanning test, and keep the supply of oxygen during the test. The scanning speed is 5mV/s, the test voltage range is -0.2-0.8V, and the rotation speed of the rotating disk is 1600rpm/min. The test results are shown in Figure 4
由图4可见Ag@Pt/MWCNTs-CeO2相对于Ag@Pt/MWCNTs的氧还原起始电位正移了40mV。Ag@Pt/MWCNTs-CeO2曲线的极限电流密度显著高于Ag@Pt/MWCNTs。掺杂了CeO2的催化剂具有明显的高极限电流,说明在氧化铈的存在下,增加了局部氧气的浓度。在氧还原过程中,氧化铈作为O的供应来源维持了较高的反应速率。It can be seen from Fig. 4 that the oxygen reduction onset potential of Ag@Pt/MWCNTs-CeO 2 is positively shifted by 40mV relative to Ag@Pt/MWCNTs. The limiting current density of the Ag@Pt/MWCNTs-CeO 2 curve is significantly higher than that of Ag@Pt/MWCNTs. The catalyst doped with CeO2 has a significantly high limiting current, indicating that in the presence of ceria, the local oxygen concentration is increased. During the oxygen reduction process, cerium oxide as the supply source of O maintains a high reaction rate.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410196011.1A CN103949251A (en) | 2014-05-09 | 2014-05-09 | Oxygen reduction catalyst as well as preparation method and application of oxygen reduction catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410196011.1A CN103949251A (en) | 2014-05-09 | 2014-05-09 | Oxygen reduction catalyst as well as preparation method and application of oxygen reduction catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103949251A true CN103949251A (en) | 2014-07-30 |
Family
ID=51326677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410196011.1A Pending CN103949251A (en) | 2014-05-09 | 2014-05-09 | Oxygen reduction catalyst as well as preparation method and application of oxygen reduction catalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103949251A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105244511A (en) * | 2015-09-29 | 2016-01-13 | 北京化工大学 | Alloy electrocatalyst and preparation method thereof |
CN105797726A (en) * | 2016-04-10 | 2016-07-27 | 郑叶芳 | Method for preparing Pt/WO3-CNTs (carbon nanotubes) catalyst by adopting hydro-thermal synthesis |
CN105797725A (en) * | 2016-04-10 | 2016-07-27 | 刘义林 | Pt/WO3-CNTs (carbon nanotubes) catalyst prepared with hydro-thermal synthesis method |
CN105797724A (en) * | 2016-04-10 | 2016-07-27 | 刘义林 | Pt/WO3-CNTs (carbon nanotubes) catalyst |
CN108428904A (en) * | 2018-04-04 | 2018-08-21 | 北京航空航天大学 | One kind hydrotalcite oxygen reduction catalyst of silver-based containing cerium and the preparation method and application thereof |
CN108923049A (en) * | 2018-07-19 | 2018-11-30 | 深圳大学 | A kind of oxygen reduction reaction catalyst and preparation method and application |
CN114530608A (en) * | 2021-12-17 | 2022-05-24 | 深圳航天科技创新研究院 | Catalyst for fuel cell, preparation method thereof and fuel cell |
CN115739156A (en) * | 2022-11-24 | 2023-03-07 | 中汽创智科技有限公司 | Catalyst carrier and preparation method and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102723504A (en) * | 2012-05-09 | 2012-10-10 | 北京化工大学 | Multi-wall carbon nano-tube carried core-shell silver-platinum cathode catalyst and preparation method |
-
2014
- 2014-05-09 CN CN201410196011.1A patent/CN103949251A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102723504A (en) * | 2012-05-09 | 2012-10-10 | 北京化工大学 | Multi-wall carbon nano-tube carried core-shell silver-platinum cathode catalyst and preparation method |
Non-Patent Citations (5)
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105244511A (en) * | 2015-09-29 | 2016-01-13 | 北京化工大学 | Alloy electrocatalyst and preparation method thereof |
CN105797726A (en) * | 2016-04-10 | 2016-07-27 | 郑叶芳 | Method for preparing Pt/WO3-CNTs (carbon nanotubes) catalyst by adopting hydro-thermal synthesis |
CN105797725A (en) * | 2016-04-10 | 2016-07-27 | 刘义林 | Pt/WO3-CNTs (carbon nanotubes) catalyst prepared with hydro-thermal synthesis method |
CN105797724A (en) * | 2016-04-10 | 2016-07-27 | 刘义林 | Pt/WO3-CNTs (carbon nanotubes) catalyst |
CN108428904A (en) * | 2018-04-04 | 2018-08-21 | 北京航空航天大学 | One kind hydrotalcite oxygen reduction catalyst of silver-based containing cerium and the preparation method and application thereof |
CN108428904B (en) * | 2018-04-04 | 2020-05-08 | 北京航空航天大学 | A kind of cerium-containing silver-based hydrotalcite oxygen reduction catalyst and preparation method and application thereof |
CN108923049A (en) * | 2018-07-19 | 2018-11-30 | 深圳大学 | A kind of oxygen reduction reaction catalyst and preparation method and application |
CN108923049B (en) * | 2018-07-19 | 2021-07-20 | 深圳大学 | A kind of oxygen reduction reaction catalyst and preparation method and application |
CN114530608A (en) * | 2021-12-17 | 2022-05-24 | 深圳航天科技创新研究院 | Catalyst for fuel cell, preparation method thereof and fuel cell |
CN114530608B (en) * | 2021-12-17 | 2023-07-07 | 深圳航天科技创新研究院 | Catalyst for fuel cell, preparation method thereof, and fuel cell |
CN115739156A (en) * | 2022-11-24 | 2023-03-07 | 中汽创智科技有限公司 | Catalyst carrier and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction | |
Wang et al. | Citrulline-induced mesoporous CoS/CoO heterojunction nanorods triggering high-efficiency oxygen electrocatalysis in solid-state Zn-air batteries | |
CN103949251A (en) | Oxygen reduction catalyst as well as preparation method and application of oxygen reduction catalyst | |
Guo et al. | Sr, Fe co-doped perovskite oxides with high performance for oxygen evolution reaction | |
Zhan et al. | Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxidation of ethanol in alkaline media | |
Askari et al. | Construction of Co3O4-Ni3S4-rGO ternary hybrid as an efficient nanoelectrocatalyst for methanol and ethanol oxidation in alkaline media | |
Noroozifar et al. | Enhanced electrocatalytic properties of Pt–chitosan nanocomposite for direct methanol fuel cell by LaFeO3 and carbon nanotube | |
CN111001428B (en) | A kind of metal-free carbon-based electrocatalyst and preparation method and application | |
CN110354884A (en) | A kind of difunctional oxygen precipitation-hydrogen reduction catalysis material CoFe@NC and its preparation method and application | |
CN103041823B (en) | Core-shell type ultralow palladium-platinum fuel-cell catalyst and preparation method | |
CN101944620A (en) | Fuel cell catalyst taking multi-element compound as carrier and preparation method thereof | |
CN105289687A (en) | Nitrogen-doped graphene-supported iron-based nanoparticle composite catalyst and preparation method thereof | |
CN101161341A (en) | A method for preparing direct methanol fuel cell anode multicomponent catalyst | |
Zhao et al. | Galvanic exchange-formed ultra-low Pt loading on synthesized unique porous Ag-Pd nanotubes for increased active sites toward oxygen reduction reaction | |
Nasim et al. | Confinement of CoOx-CoP nanoparticles inside nitrogen doped CNTs: A low-cost ORR electrocatalyst | |
Zhang et al. | CeO2C2 Nanoparticles with Oxygen‐Enriched Vacancies In‐site Self‐embedded in Fe, N Co‐doped Carbon Nanofibers as Efficient Oxygen Reduction Catalyst for Zn‐Air Battery | |
Li et al. | Fe nanoparticles encapsulated in N-doped porous carbon for efficient oxygen reduction in alkaline media | |
Zhang et al. | Efficiently catalyzed sea urchin-like mixed phase SmMn2O5/MnO2 for oxygen reduction reaction in zinc-air battery | |
CN106268795A (en) | The preparation method of metal-oxide cerium catalyst and the application in carbon dioxide electro-catalysis is reduced thereof | |
Zhao et al. | Oxygen-vacancy Ce-MoO3 nanosheets loaded Pt nanoparticles for super-efficient photoelectrocatalytic oxidation of methanol | |
Zhong et al. | Co-doped Ni–Fe spinels for electrocatalytic oxidation over glycerol | |
Baladi et al. | Preparation of PrCoO3/CuO nanocomposites on the g-C3N4 substrate for performance comparison of hydrogen storage capacity | |
CN109659572B (en) | NiMoW nano material and preparation method thereof, hydrogen electrocatalytic oxidation catalyst electrode material and preparation method thereof | |
CN105655603B (en) | A kind of fuel-cell catalyst and preparation method thereof | |
Mao et al. | Facile preparation of Cu@ Pt/rGO hybrids and their electrocatalytic activities for methanol oxidation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140730 |