CN103942795B - A kind of structuring synthetic method of image object - Google Patents
A kind of structuring synthetic method of image object Download PDFInfo
- Publication number
- CN103942795B CN103942795B CN201410163775.0A CN201410163775A CN103942795B CN 103942795 B CN103942795 B CN 103942795B CN 201410163775 A CN201410163775 A CN 201410163775A CN 103942795 B CN103942795 B CN 103942795B
- Authority
- CN
- China
- Prior art keywords
- image
- dimensional
- parts
- information
- synthesis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010189 synthetic method Methods 0.000 title claims 4
- 238000000034 method Methods 0.000 claims abstract description 68
- 230000011218 segmentation Effects 0.000 claims abstract description 11
- 230000003993 interaction Effects 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 57
- 238000003786 synthesis reaction Methods 0.000 claims description 57
- 238000012549 training Methods 0.000 claims description 16
- 238000005457 optimization Methods 0.000 claims description 14
- 230000009466 transformation Effects 0.000 claims description 11
- 238000004422 calculation algorithm Methods 0.000 claims description 8
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- 238000003709 image segmentation Methods 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 238000013459 approach Methods 0.000 claims description 2
- 238000009795 derivation Methods 0.000 claims description 2
- 230000008447 perception Effects 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims 2
- 238000013210 evaluation model Methods 0.000 claims 1
- 238000001308 synthesis method Methods 0.000 abstract description 11
- 239000003795 chemical substances by application Substances 0.000 description 22
- 238000010586 diagram Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 7
- 230000002452 interceptive effect Effects 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 239000003086 colorant Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 244000258044 Solanum gilo Species 0.000 description 2
- 235000018650 Solanum gilo Nutrition 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 238000003909 pattern recognition Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 244000141353 Prunus domestica Species 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 235000020004 porter Nutrition 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Landscapes
- Processing Or Creating Images (AREA)
Abstract
本发明公开了一种图像物体的结构化合成方法,包括以下步骤:根据用户的简单交互标定相机参数,结合相机参数和图像物体分割信息生成结构化的三维代理,利用三维代理和接触点信息将来源不同、视点不同的图像部件组合连接成新颖的图像物体,通过智能颜色调整得到结果图像;基于一致分割的图像部件,在特定物体类型的图像数据集上进行统计学习,得到概率图模型;通过在习得的贝叶斯图模型上进行概率推理,对部件类型和式样进行采样得到高概率的组成方案和视点属性,使用视点感知图像物体合成方法生成结果图像。该方法能够合成出大量具照相质量且结构形状变化丰富的新图像物体,同时能够给三维形状建模提供良好的基础和引导。
The invention discloses a structured synthesis method of an image object, comprising the following steps: calibrating camera parameters according to the user's simple interaction, combining camera parameters and image object segmentation information to generate a structured three-dimensional proxy, and using the three-dimensional proxy and contact point information to generate a structured three-dimensional proxy Image components from different sources and different viewpoints are combined and connected into novel image objects, and the resulting image is obtained through intelligent color adjustment; based on consistent segmented image components, statistical learning is performed on image data sets of specific object types to obtain a probabilistic graphical model; through Probabilistic reasoning is performed on the acquired Bayesian graphical model, and component types and styles are sampled to obtain high-probability composition schemes and viewpoint attributes, and the resulting image is generated using a viewpoint-aware image object synthesis method. This method can synthesize a large number of new image objects with photographic quality and rich structural shape changes, and can provide a good foundation and guidance for 3D shape modeling.
Description
技术领域technical field
本发明主要涉及数字媒体领域,尤其涉及图像创建/编辑、工业/艺术设计、虚拟物体/角色创建、三维造型等应用领域。The present invention mainly relates to the field of digital media, in particular to image creation/editing, industrial/art design, virtual object/role creation, three-dimensional modeling and other application fields.
背景技术Background technique
本发明相关的技术背景简述如下:The relevant technical background of the present invention is briefly described as follows:
一、图像合成与综合1. Image synthesis and synthesis
图像合成与综合的主要目的是从多个图像来源中创造视觉上合理可信的新图像。The main purpose of image synthesis and synthesis is to create visually plausible new images from multiple image sources.
对于图像合成,其关注点通常在于将选择的图像内容进行无缝拼接的新颖混合方法。早期工作包括多分辨率样条技术(BURT,P.J.,AND ADELSON,E.H.1983.A multiresolution spline with application to image mosaics.ACM Trans.Graph.2,4(Oct.),217–236.;OGDEN,J.M.,ADELSON,E.H.,BERGEN,J.R.,ANDBURT,P.J.1985.Pyramid-based computer graphics.RCA Engineer30,5,4–15.)和合成操作(PORTER,T.,AND DUFF,T.1984.Compositing digital images.SIGGRAPH Comput.Graph.18,3(Jan.),253–259.)。自从泊松图像编辑技术(P′EREZ,P.,GANGNET,M.,AND BLAKE,A.2003.Poisson image editing.ACMTransactions on Graphics(TOG)22,3,313–318.)出现以后,梯度域的合成方法(JIA,J.,SUN,J.,TANG,C.-K.,AND SHUM,H.-Y.2006.Drag-and-drop pasting.In ACM Transactions on Graphics(TOG),vol.25,ACM,631–637.;FARBMAN,Z.,HOFFER,G.,LIPMAN,Y.,COHEN-OR,D.,AND LISCHINSKI,D.2009.Coordinates for instant image cloning.In ACM Transactions on Graphics(TOG),vol.28,ACM,67.;TAO,M.W.,JOHNSON,M.K.,AND PARIS,S.2010.Error tolerantimage compositing.In Computer Vision–ECCV2010.Springer,31–44.;SUNKAVALLI,K.,JOHNSON,M.K.,MATUSIK,W.,AND PFISTER,H.2010.Multi-scale image harmonization.ACM Transactions on Graphics(TOG)29,4,125.;SZELISKI,R.,UYTTENDAELE,M.,AND STEEDLY,D.2011.Fast poissonblending using multi-splines.In Computational Photography(ICCP),2011IEEEInternational Conference on,IEEE,1–8.)在早年间成为了无缝拼接的标准技术。近来,Xue等人(XUE,S.,AGARWALA,A.,DORSEY,J.,AND RUSHMEIER,H.2012.Understanding and improving the realism of image composites.ACMTransactions on Graphics(TOG)31,4,84.)通过调整合成物体的外观改进了合成的视觉合理性。For image synthesis, the focus is often on novel hybrid methods for seamlessly stitching selected image content together. Early work included multiresolution spline techniques (BURT, P.J., AND ADELSON, E.H. 1983. A multiresolution spline with application to image mosaics. ACM Trans. Graph. 2, 4 (Oct.), 217–236.; OGDEN, J.M. , ADELSON, E.H., BERGEN, J.R., ANDBURT, P.J. 1985. Pyramid-based computer graphics. RCA Engineer 30, 5, 4–15.) and compositing operations (PORTER, T., AND DUFF, T. 1984. Compositing digital images. SIGGRAPH Comput. Graph. 18, 3 (Jan.), 253–259.). Since the emergence of Poisson image editing techniques (P′EREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image editing. ACM Transactions on Graphics (TOG) 22, 3, 313–318.), the synthesis of gradient fields Method (JIA, J., SUN, J., TANG, C.-K., AND SHUM, H.-Y. 2006. Drag-and-drop pasting. In ACM Transactions on Graphics (TOG), vol.25, ACM, 631–637.; FARBMAN, Z., HOFFER, G., LIPMAN, Y., COHEN-OR, D., AND LISCHINSKI, D. 2009. Coordinates for instant image cloning. In ACM Transactions on Graphics (TOG) , vol.28, ACM, 67.; TAO, M.W., JOHNSON, M.K., AND PARIS, S.2010. Error tolerant image compositing. In Computer Vision–ECCV2010. Springer, 31–44.; SUNKAVALLI, K., JOHNSON, M.K. , MATUSIK, W., AND PFISTER, H.2010. Multi-scale image harmonization. ACM Transactions on Graphics (TOG) 29, 4, 125.; SZELISKI, R., UYTTENDAELE, M., AND STEEDLY, D. 2011. Fast poisson blending using multi-splines.In Computational Photography (ICCP), 2011IEEEInternational Conference on, IEEE, 1–8.) became a standard technology for seamless splicing in the early years. Recently, Xue et al. (XUE, S., AGARWALA, A., DORSEY, J., AND RUSHMEIER, H. 2012. Understanding and improving the reality of image composites. ACM Transactions on Graphics (TOG) 31, 4, 84.) Improved visual plausibility of compositing by tweaking the appearance of compositing objects.
另一方面,图像综合(DIAKOPOULOS,N.,ESSA,I.,AND JAIN,R.2004.Content based image synthesis.In Image and Video Retrieval.Springer,299–307.;JOHNSON,M.,BROSTOW,G.J.,SHOTTON,J.,ARANDJELOVIC,O.,KWATRA,V.,AND CIPOLLA,R.2006.Semantic photo synthesis.In Computer GraphicsForum,vol.25,Wiley Online Library,407–413.;LALONDE,J.-F.,HOIEM,D.,EFROS,A.A.,ROTHER,C.,WINN,J.,AND CRIMINISI,A.2007.Photo clip art.In ACM Transactions on Graphics(TOG),vol.26,ACM,3.)主要关注视觉内容的选择和排列。其中一类代表性的工作是图像拼贴,即将多个图像在一定的约束下合成一张图像。这类工作的开创者是交互式数字蒙太奇技术(AGARWALA,A.,DONTCHEVA,M.,AGRAWALA,M.,DRUCKER,S.,COLBURN,A.,CURLESS,B.,SALESIN,D.,AND COHEN,M.2004.Interactive digital photomontage.InACM Transactions on Graphics(TOG),vol.23,ACM,294–302.),之后又陆续涌现出许多后续工作,如数字编制(ROTHER,C.,KUMAR,S.,KOLMOGOROV,V.,AND BLAKE,A.2005.Digital tapestry[automatic image synthesis].In ComputerVision and Pattern Recognition,2005.IEEE Computer Society Conference on,vol.1,IEEE,589–596.),自动拼贴(ROTHER,C.,BORDEAUX,L.,HAMADI,Y.,ANDBLAKE,A.2006.Autocollage.In ACM Transactions on Graphics(TOG),vol.25,ACM,847–852.),图像拼贴(WANG,J.,QUAN,L.,SUN,J.,TANG,X.,ANDSHUM,H.-Y.2006.Picture collage.In Computer Vision and Pattern Recognition,2006IEEE Computer Society Conference on,vol.1,IEEE,347–354.),谜题拼贴(GOFERMAN,S.,TAL,A.,711AND ZELNIK-MANOR,L.2010.Puzzle-likecollage.In Computer Graphics Forum,vol.29,Wiley Online Library,459–468.),Sketch2Photo(CHEN,T.,CHENG,M.-M.,TAN,P.,SHAMIR,A.,AND HU,S.-M.2009.Sketch2photo:Internet image montage.ACM Transactions on Graphics28,5,124:1–10.),PhotoSketcher(EITZ,M.,RICHTER,R.,HILDEBRAND,K.,BOUBEKEUR,T.,AND ALEXA,M.2011.Photosketcher:interactive sketch-basedimage synthesis.Computer Graphics and Applications,IEEE31,6,56–66.),Arcimboldo拼贴(HUANG,H.,ZHANG,L.,AND ZHANG,H.-C.2011.Arcimboldo-like collage using internet images.ACM Transactions on Graphics(TOG)30,6,155.)以及最新的环状打包拼贴(YU,Z.,LU,L.,GUO,Y.,FAN,R.,LIU,M.,AND WANG,W.2013.Content-aware photo collage using circle packing.IEEETransactions on Visualization and Computer Graphics99,PrePrints.)。On the other hand, image synthesis (DIAKOPOULOS, N., ESSA, I., AND JAIN, R. 2004. Content based image synthesis. In Image and Video Retrieval. Springer, 299–307.; JOHNSON, M., BROSTOW, G.J. , SHOTTON, J., ARANDJELOVIC, O., KWATRA, V., AND CIPOLLA, R. 2006. Semantic photo synthesis. In Computer Graphics Forum, vol. 25, Wiley Online Library, 407–413.; LALONDE, J.-F .,HOIEM,D.,EFROS,A.A.,ROTHER,C.,WINN,J.,AND CRIMINISI,A.2007.Photo clip art.In ACM Transactions on Graphics(TOG),vol.26,ACM,3.) Focuses primarily on the selection and arrangement of visual content. One of the representative works is image collage, which combines multiple images into one image under certain constraints. The pioneer of this kind of work is the interactive digital montage technology (AGARWALA, A., DONTCHEVA, M., AGRAWALA, M., DRUCKER, S., COLBURN, A., CURLESS, B., SALESIN, D., AND COHEN ,M.2004.Interactive digital photomontage.InACM Transactions on Graphics(TOG),vol.23,ACM,294–302.), and many follow-up works emerged one after another, such as digital compilation (ROTHER,C.,KUMAR,S .,KOLMOGOROV,V.,AND BLAKE,A.2005.Digital tapestry[automatic image synthesis].In ComputerVision and Pattern Recognition,2005.IEEE Computer Society Conference on,vol.1,IEEE,589–596.), automatic spelling Paste (ROTHER, C., BORDEAUX, L., HAMADI, Y., ANDBLAKE, A.2006. Autocollage. In ACM Transactions on Graphics (TOG), vol.25, ACM, 847–852.), image collage ( WANG,J.,QUAN,L.,SUN,J.,TANG,X.,ANDSHUM,H.-Y.2006.Picture collage.In Computer Vision and Pattern Recognition,2006IEEE Computer Society Conference on,vol.1,IEEE , 347–354.), Puzzle Collage (GOFERMAN, S., TAL, A., 711 AND ZELNIK-MANOR, L. 2010. Puzzle-like collage. In Computer Graphics Forum, vol. 29, Wiley Online Library, 459– 468.), Sketch2Photo (CHEN, T., CHENG, M.-M., TAN, P., SHAMIR, A., AND HU, S.-M. 2009. Sketch2photo: Internet image montage. ACM Transactions on Graphics28, 5,124:1 –10.), PhotoSketcher (EITZ, M., RICHTER, R., HILDEBRAND, K., BOUBEKEUR, T., AND ALEXA, M. 2011. Photosketcher: interactive sketch-based image synthesis. Computer Graphics and Applications, IEEE31, 6 , 56–66.), Arcimboldo collage (HUANG, H., ZHANG, L., AND ZHANG, H.-C. 2011. Arcimboldo-like collage using internet images. ACM Transactions on Graphics (TOG) 30, 6, 155. ) and the latest circle packing collage (YU,Z.,LU,L.,GUO,Y.,FAN,R.,LIU,M.,AND WANG,W.2013.Content-aware photo collage using circle packing . IEEE Transactions on Visualization and Computer Graphics 99, PrePrints.).
以上提到的大多数图像合成和综合算法都隐含了一个假设:即合成内容与源图像具有相同的视点,因此它们不处理相机参数信息。在照片剪贴画技术(LALONDE,J.-F.,HOIEM,D.,EFROS,A.A.,ROTHER,C.,WINN,J.,ANDCRIMINISI,A.2007.Photo clip art.In ACM Transactions on Graphics(TOG),vol.26,ACM,3.)中,作者尝试通过物体高度来推断相机姿态。然而,这个方法无法处理真实三维关系,因此难以进行复杂的旋转变换。在最近的一个工作中,Zheng等人(ZHENG,Y.,CHEN,X.,CHENG,M.-M.,ZHOU,K.,HU,S.-M.,ANDMITRA,N.J.2012.Interactive images:cuboid proxies for smart image manipulation.ACM Trans.Graph.31,4(July),99:1–99:11.)将图像物体表示为三维长方体代理,并显示地优化相机和几何参数。本发明中的方法同样使用三维代理表示,但需要处理更为挑战性的非长方体部件之间的空间关系和结构。Most of the image synthesis and synthesis algorithms mentioned above implicitly assume that the composite content has the same viewpoint as the source image, so they do not process camera parameter information. In photo clip art technology (LALONDE, J.-F., HOIEM, D., EFROS, A.A., ROTHER, C., WINN, J., ANDCRIMINISI, A.2007.Photo clip art.In ACM Transactions on Graphics (TOG ), vol.26, ACM, 3.), the authors try to infer the camera pose from the height of the object. However, this method cannot handle real 3D relationships, so it is difficult to perform complex rotation transformations. In a recent work, Zheng et al. (ZHENG, Y., CHEN, X., CHENG, M.-M., ZHOU, K., HU, S.-M., ANDMITRA, N.J. 2012. Interactive images: cuboid proxies for smart image manipulation. ACM Trans.Graph.31, 4 (July), 99:1–99:11.) represent image objects as 3D cuboid proxies and explicitly optimize camera and geometry parameters. The method in the present invention also uses 3D proxy representation, but needs to deal with the more challenging spatial relationship and structure between non-cuboid parts.
二、数据驱动的三维模型合成2. Data-driven 3D model synthesis
数据驱动的三维模型合成近来吸引了大量图形学领域的研究兴趣。其目的旨在通过组合一批输入三维形状中的部件来自动合成出大量新颖并符合输入形状集合内部结构约束的三维形状。数据驱动的三维建模由Funkhouser等人最早提出(FUNKHOUSER,T.,KAZHDAN,M.,SHILANE,P.,MIN,P.,KIEFER,W.,TAL,A.,RUSINKIEWICZ,S.,AND DOBKIN,D.2004.Modeling by example.ACM Trans.Graph.23,3(Aug.),652–663.),他们的样例建模系统允许用户搜索分割好的三维部件库,然后交互式地组装这些部件来形成新的形状。在后续工作中,有的使用用户输入的草图来搜索部件(SHIN,H.,AND IGARASHI,T.2007.Magic canvas:interactive design of a3-d scene prototype from freehand sketches.InGraphics Interface,63–70.;LEE,J.,AND FUNKHOUSER,T.A.2008.Sketch-basedsearch and composition of3d models.In SBM,97–104.),有的则让用户能够在一小组匹配的形状中互换部件(KREAVOY,V.,JULIUS,D.,AND SHEFFER,A.2007.Model composition from interchangeable components.In Proceedings of the15th Pacific Conference on Computer Graphics and Applications,IEEE ComputerSociety,Washington,DC,USA,PG’07,129–138.)。Chaudhuri等人(CHAUDHURI,S.,AND KOLTUN,V.2010.Data-driven suggestions for creativity support in3dmodeling.ACM Trans.Graph.29,6(Dec.),183:1–183:10.)提出了一种数据驱动的方法来给设计不完整的形状推荐合适的部件,并在之后设计了一种形状结构的概率表示,能给出语义和风格上更为匹配的部件推荐(CHAUDHURI,S.,KALOGERAKIS,E.,GUIBAS,L.,AND KOLTUN,V.2011.Probabilistic reasoningfor assembly-based3d modeling.ACM Trans.Graph.30,4(July),35:1–35:10.)。Kalogerakis等人延续了上述概率推理的方法并将其用于完整形状的合成(KALOGERAKIS,E.,CHAUDHURI,S.,KOLLER,D.,AND KOLTUN,V.2012.A probabilistic model for component-based shape synthesis.ACM Trans.Graph.31,4(July),55:1–55:11.)。Data-driven 3D model synthesis has recently attracted a great deal of research interest in the field of graphics. Its purpose is to automatically synthesize a large number of novel 3D shapes that conform to the internal structural constraints of the input shape collection by combining parts from a batch of input 3D shapes. Data-driven 3D modeling was first proposed by Funkhouser et al. (FUNKHOUSER,T.,KAZHDAN,M.,SHILANE,P.,MIN,P.,KIEFER,W.,TAL,A.,RUSINKIEWICZ,S.,AND DOBKIN , D.2004.Modeling by example.ACM Trans.Graph.23,3(Aug.),652–663.), their example modeling system allows users to search a library of segmented 3D parts and then interactively assemble These parts are used to form new shapes. In follow-up work, some use user-input sketches to search for parts (SHIN, H., AND IGARASHI, T. 2007. Magic canvas: interactive design of a3-d scene prototype from freehand sketches. InGraphics Interface, 63–70. ; LEE, J., AND FUNKHOUSER, T.A. 2008. Sketch-basedsearch and composition of 3d models. In SBM, 97–104.), others enable users to interchange parts within a small set of matching shapes (KREAVOY, V. , JULIUS, D., AND SHEFFER, A. 2007. Model composition from interchangeable components. In Proceedings of the 15th Pacific Conference on Computer Graphics and Applications, IEEE Computer Society, Washington, DC, USA, PG'07, 129–138.). Chaudhuri et al. (CHAUDHURI, S., AND KOLTUN, V.2010. Data-driven suggestions for creativity support in 3dmodeling. ACM Trans. Graph. 29, 6 (Dec.), 183:1–183:10.) proposed a A data-driven approach to recommend suitable parts for incompletely designed shapes, and then design a probabilistic representation of shape structure, which can give more semantically and stylistic part recommendations (CHAUDHURI, S., KALOGERAKIS , E., GUIBAS, L., AND KOLTUN, V. 2011. Probabilistic reasoning for assembly-based 3d modeling. ACM Trans. Graph. 30, 4 (July), 35:1–35:10.). Kalogerakis et al. continued the above method of probabilistic reasoning and used it for the synthesis of complete shapes (KALOGERAKIS, E., CHAUDHURI, S., KOLLER, D., AND KOLTUN, V.2012.A probabilistic model for component-based shape synthesis. ACM Trans. Graph. 31, 4 (July), 55:1–55:11.).
发明内容Contents of the invention
本发明的目的在于针对现有技术的不足,提供一种图像物体的结构化合成方法。该方法在一组给定类型且具不同视角的图像物体的基础上,通过组合图像部件合成出视觉合理逼真的图像物体。The purpose of the present invention is to provide a structured synthesis method of image objects to address the deficiencies of the prior art. Based on a set of image objects of a given type and with different viewing angles, the method synthesizes visually reasonable and realistic image objects by combining image components.
本发明的目的是通过以下技术方案来实现的:一种图像物体的结构化合成方法,包括以下步骤:The object of the present invention is achieved through the following technical solutions: a method for structured synthesis of image objects, comprising the following steps:
(1)图像物体数据的预处理:使用数码或网络设备收集特定类型物体的图像集合,要求物体结构清晰完整,并使用图像分割和标记工具得到物体组成部件的一致分割区域;(1) Preprocessing of image object data: use digital or network equipment to collect image collections of specific types of objects, requiring clear and complete object structures, and using image segmentation and marking tools to obtain consistent segmentation regions of object components;
(2)视点感知的图像物体合成方法:根据用户的简单交互标定单幅图像的相机参数,并结合相机参数和图像物体分割信息生成结构化的三维代理,然后利用三维代理和接触点信息将图像部件组合连接成新颖的图像物体,最后通过智能颜色调整得到结果图像;(2) Viewpoint-aware image object synthesis method: calibrate the camera parameters of a single image according to the user's simple interaction, and combine the camera parameters and image object segmentation information to generate a structured 3D proxy, and then use the 3D proxy and contact point information to convert the image The components are combined and connected to form a novel image object, and finally the resulting image is obtained through intelligent color adjustment;
(3)贝叶斯概率图模型的训练和综合方法:基于一致分割的图像部件,在特定物体类型的图像数据集上进行统计学习,得到一个能表达形状风格、物体结构、部件类别和相机参数之间复杂依赖关系的概率图模型;并通过在习得的贝叶斯图模型上进行概率推理,对部件类型和式样等进行采样得到高概率图像物体的组成方案和视点属性,最后通过步骤2中的方法合成出结果图像;(3) The training and synthesis method of the Bayesian probabilistic graph model: Based on consistent segmented image components, statistical learning is performed on image datasets of specific object types to obtain a model that can express shape style, object structure, component category and camera parameters A probabilistic graphical model of complex dependencies between them; and by performing probabilistic reasoning on the acquired Bayesian graphical model, sampling component types and styles to obtain the composition scheme and viewpoint attributes of high-probability image objects, and finally through step 2 The method in synthesizes the resulting image;
(4)图像物体合成结果的导出:将步骤2和步骤3得到的结果图像,包括步骤2得到的相机参数和三维代理数据,以通用格式导出与存储。(4) Export of image object synthesis results: export and store the resulting images obtained in steps 2 and 3, including the camera parameters and 3D proxy data obtained in step 2, in a common format.
本发明的有益效果是:对图像物体进行视点感知的部件层面合成,可将来自不同视点图像的部件连接合成为视点一致且结构正确的新颖图像物体。同时,本发明首次提出了一种基于坐标框架的单视点相机标定方法,适用于一般性的没有明显或完整几何线索的单幅图像相机标定;提出了一种结构感知的三维代理构建方法,适用于图像物体部件层的长方体代理构建;提出了一种三维代理引导的图像部件结构化合成方法;提出了基于给定样例图像物体合成出大批量形状和风格变化丰富的图像物体的应用;提出了集成图像视点信息的贝叶斯概率图模型,适用于表征图像物体集合的视点、结构和形状变化。相比现有的三维形状合成技术,此方法能够充分利用现有图像数据数量庞大、容易获取、颜色外观信息丰富的优势,合成出大量具照相质量且结构形状变化丰富的新图像物体,满足许多图像编辑相关应用的要求,同时能够给三维形状建模提供良好的基础和引导。The beneficial effect of the invention is that: the viewpoint-aware component-level synthesis is performed on the image object, and the components from different viewpoint images can be connected and synthesized into a novel image object with consistent viewpoint and correct structure. At the same time, the present invention proposes a single-view camera calibration method based on a coordinate frame for the first time, which is suitable for general single-image camera calibration without obvious or complete geometric clues; a structure-aware 3D proxy construction method is proposed, which is applicable to Based on the cuboid proxy construction of the image object component layer; a 3D proxy-guided structural synthesis method for image components is proposed; the application of synthesizing a large number of image objects with rich shapes and styles based on a given sample image object is proposed; A Bayesian probabilistic graphical model integrating image viewpoint information is proposed, which is suitable for representing the viewpoint, structure and shape changes of image object collections. Compared with the existing 3D shape synthesis technology, this method can make full use of the advantages of large amount of existing image data, easy acquisition, and rich color appearance information, and synthesize a large number of new image objects with photographic quality and rich structural shape changes, satisfying many It meets the requirements of image editing related applications, and can provide a good foundation and guidance for 3D shape modeling.
附图说明Description of drawings
图1是本发明中的视点感知图像物体合成方法的流程示意图;FIG. 1 is a schematic flow chart of a viewpoint-aware image object synthesis method in the present invention;
图2是本发明中单视点相机标定和结构化三维代理构建的示意图,图中,(a)为输入图像与相机标定的用户交互示意图,(b)为基于相机参数得到的物体各部件初始三维代理示意图,(c)为基于物体结构约束进行三维代理的优化示意图,(d)为结构优化后的结果;Fig. 2 is a schematic diagram of single-view camera calibration and structured 3D proxy construction in the present invention, in which (a) is a schematic diagram of user interaction between an input image and camera calibration, and (b) is an initial 3D view of each part of an object obtained based on camera parameters Schematic diagram of agent, (c) is a schematic diagram of optimization of 3D agent based on object structure constraints, (d) is the result of structural optimization;
图3是本发明中的图像物体合成过程中用到的关键元素,图中,(a)为三维代理及其连接槽,(b)为图像物体的分割部件,(c)为图像边界上的用于图像弯曲变形的二维引用点,(d)为用于图像部件连接的二维接触点;Fig. 3 is the key element used in the synthesis process of the image object among the present invention, among the figure, (a) is three-dimensional agent and its connection groove, (b) is the segmentation part of image object, (c) is on the boundary of the image A two-dimensional reference point for image bending deformation, (d) is a two-dimensional contact point for image component connection;
图4是本发明中图像物体的部件颜色优化过程的示意图;Fig. 4 is a schematic diagram of the component color optimization process of an image object in the present invention;
图5是本发明中基于概率图模型进行图像物体训练和综合的总流程示意图;Fig. 5 is a schematic diagram of the general flow of image object training and synthesis based on the probability graph model in the present invention;
图6是本发明中基于椅子图像集合得到的结构化合成结果图;Fig. 6 is the structured synthesis result figure obtained based on the chair image set in the present invention;
图7是本发明中基于杯子图像集合得到的结构化合成结果图;Fig. 7 is the result map of the structured synthesis obtained based on the cup image set in the present invention;
图8是本发明中基于台灯图像集合得到的结构化合成结果图;Fig. 8 is the structured synthesis result figure obtained based on the table lamp image set in the present invention;
图9是本发明中基于玩具飞机图像集合得到的结构化合成结果图;Fig. 9 is a structured synthesis result diagram obtained based on a collection of toy airplane images in the present invention;
图10是本发明中基于机器人图像集合得到的结构化合成结果图;Fig. 10 is a structured synthesis result diagram obtained based on a robot image collection in the present invention;
图11是本发明中对基于实验所得合成图像物体的新颖度进行用户评价的结果图;FIG. 11 is a result diagram of user evaluation based on the novelty of the experimentally obtained synthetic image object in the present invention;
图12是本发明中对椅子进行直接合成与视点感知图像物体合成的结果对比图;Fig. 12 is a comparison diagram of the results of direct synthesis of chairs and synthesis of viewpoint-aware image objects in the present invention;
图13是本发明中对玩具飞机进行直接合成与视点感知图像物体合成的结果对比图。Fig. 13 is a comparison diagram of the results of the direct synthesis of the toy airplane and the synthesis of viewpoint-aware image objects in the present invention.
具体实施方式detailed description
本发明的核心是基于图像物体集合进行部件层面的结构感知且具有丰富的形状和风格变化的图像物体合成方法。本发明的核心方法主要分为如下四个部分:图像物体数据的预处理、视点感知的图像物体合成、贝叶斯概率图模型的训练和综合、图像物体合成结果的导出。The core of the present invention is an image object synthesis method based on the image object collection for component-level structure perception and rich shape and style changes. The core method of the present invention is mainly divided into the following four parts: preprocessing of image object data, viewpoint-aware image object synthesis, Bayesian probability map model training and synthesis, and image object synthesis result derivation.
1.图像物体数据的预处理:使用数码设备或网络收集某一特定类型物体的图像集合,要求物体的部件结构清晰完整,并使用图像分割工具得到图像中各部件的区域,同时作好语义标记。1. Preprocessing of image object data: use digital devices or networks to collect image collections of a certain type of object, requiring clear and complete structure of object parts, and use image segmentation tools to obtain the regions of each part in the image, and make semantic marks at the same time .
1.1图像物体集合的获取1.1 Acquisition of image object collection
本方法应用于普通的数字图像。作为输入数据,本方法要求收集一定数量的同类物体图像,并缩放裁剪到统一大小。由于本方法是一种部件层面的结构化合成,因此本步骤要求所收集的图像物体的部件结构清晰完整。This method is applied to ordinary digital images. As input data, this method requires collecting a certain number of images of similar objects, and scaling and cropping them to a uniform size. Since this method is a structural synthesis at the component level, this step requires that the component structures of the collected image objects be clear and complete.
1.2用户辅助交互1.2 User Assisted Interaction
由于图像中物体各部件的内容及边界存在着复杂的形态特征,很难鲁棒地进行自动识别与分割,因此本方法依赖适量的用户交互对图像物体集合进行预处理以便后续步骤的进行。通过采用Lazy Snapping技术(LI,Y.,SUN,J.,TANG,C.-K.,AND SHUM,H.-Y.2004.Lazy snapping.ACM Transactions on Graphics(ToG)23,3,303–308.)分割整个物体区域,接着采用LabelMe技术(RUSSELL,B.C.,TORRALBA,A.,MURPHY,K.P.,AND FREEMAN,W.T.2008.LabelMe:adatabase and web-based tool for image annotation.International journal of computervision77,1-3,157–173.)分割并标记物体的每个部件区域。对于受到遮挡的图像部件,采用PatchMatch技术(BARNES,C.,SHECHTMAN,E.,FINKELSTEIN,A.,AND GOLDMAN,D.2009.PatchMatch:a randomized correspondence algorithmfor structural image editing.ACM Transactions on Graphics(TOG)28,3,24:1–11.)来补全被遮挡区域。Due to the complex morphological features of the content and boundaries of the object parts in the image, it is difficult to automatically identify and segment robustly. Therefore, this method relies on an appropriate amount of user interaction to preprocess the image object set for subsequent steps. By adopting Lazy Snapping technology (LI, Y., SUN, J., TANG, C.-K., AND SHUM, H.-Y. 2004. Lazy snapping. ACM Transactions on Graphics (ToG) 23, 3, 303–308. ) to segment the entire object area, and then use LabelMe technology (RUSSELL, B.C., TORRALBA, A., MURPHY, K.P., AND FREEMAN, W.T.2008.LabelMe: adatabase and web-based tool for image annotation.International journal of computervision77,1-3,157 –173.) Segment and label each part region of an object. For occluded image parts, use PatchMatch technology (BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLDMAN, D.2009. PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Transactions on Graphics (TOG) 28,3,24:1–11.) to complete the occluded area.
2.视点感知的图像物体合成2. Viewpoint-aware image object synthesis
本图像物体合成方法使用同一类的图像物体集合(如椅子)作为输入,半自动地分析它们的结构并提取相机参数。然后根据底层结构拟合三维长方体代理来表示图像物体。图像物体的部件可以在三维代理的引导下连接合成为新颖且透视正确的完整图像物体。This image object synthesis method uses a collection of image objects (such as chairs) of the same class as input, analyzes their structure and extracts camera parameters semi-automatically. A 3D cuboid proxy is then fitted according to the underlying structure to represent the image object. The components of image objects can be connected and synthesized into novel and perspective-correct complete image objects under the guidance of 3D agents.
2.1图像物体表示2.1 Image Object Representation
基于步骤1.1和1.2的处理结果,构建一个表征图像物体的语义部件之间关系的结构化表示。每一个图像物体可表示为一个图G={V,E},其中V是图中的结点集合,E是图中边的集合。每一个部件Ci是V中的一个结点。当两结点Ci和Cj相连时,E中存在边eij。其中,Ci={Pi,Si,cl,Bi},Pi为属于部件Ci的区域像素点,Si为其分割边界,cl为部件像素点中由k-means方法抽取的主色(k=2),Bi为其相应的三维长方体代理(由后续步骤2.2得到)。此结构化表示在后续步骤中将会频繁使用。Based on the processing results of steps 1.1 and 1.2, construct a structured representation that characterizes the relationship between semantic components of image objects. Each image object can be expressed as a graph G={V,E}, where V is the set of nodes in the graph, and E is the set of edges in the graph. Each component C i is a node in V. When two nodes C i and C j are connected, there is an edge e ij in E. Among them, C i ={P i , S i ,cl,B i }, P i is the area pixel belonging to component C i , S i is its segmentation boundary, cl is the component pixel extracted by k-means method The main color (k=2), B i is its corresponding three-dimensional cuboid proxy (obtained from the subsequent step 2.2). This structured representation will be used frequently in subsequent steps.
2.2图像三维代理的生成:根据用户的简单交互标定每幅图像的相机参数,并结合相机参数和图像物体的部件分割信息生成结构化的三维代理。2.2 Generation of image 3D proxy: calibrate the camera parameters of each image according to the user's simple interaction, and combine the camera parameters and the part segmentation information of the image object to generate a structured 3D proxy.
2.2.1基于坐标轴系统的相机标定2.2.1 Camera Calibration Based on Coordinate Axis System
本方法使用一个二维顶点和三个二维向量(三维坐标系统原点和坐标轴的图像投影)作为输入,与已有的单视点相机标定方法比较,此方法更适合一般性的图像(物体上的几何线索较少)。This method uses a two-dimensional vertex and three two-dimensional vectors (the origin of the three-dimensional coordinate system and the image projection of the coordinate axis) as input. Compared with the existing single-view camera calibration method, this method is more suitable for general images (on the object) less geometric clues).
相机投影矩阵M3×4可表示为:The camera projection matrix M 3×4 can be expressed as:
其中K为相机内参矩阵,{u,v}设为图像中心,焦距f作为可变量,R为采用欧拉角参数化的正交矩阵,t是平移向量,共7个可变参数。Among them, K is the internal reference matrix of the camera, {u, v} is set as the center of the image, the focal length f is used as a variable, R is an orthogonal matrix parameterized with Euler angles, t is a translation vector, and there are 7 variable parameters in total.
三维坐标系统的原点和点(0,0,1)的图像投影点Po和Pup可表示为齐次坐标:The image projection points P o and P up of the origin and point (0,0,1) of the three-dimensional coordinate system can be expressed as homogeneous coordinates:
而三维坐标轴{x,y,z}的投影点{lx,ly,lz}可表示为:And the projection point {l x , l y , l z } of the three-dimensional coordinate axis {x, y, z} can be expressed as:
根据射影几何理论,可建立以下方程组:According to the theory of projective geometry, the following equations can be established:
展开后得到以下7个方程:After expansion, the following seven equations are obtained:
(fc1c2-us2)lx1+(fc2s1-vs2)lx2-s2=0(fc 1 c 2 -us 2 )l x1 +(fc 2 s 1 -vs 2 )l x2 -s 2 =0
(fc1s2s3-fc3s1+uc2s3)ly1+(fc1c3+fs1s2s3+vc2s3)ly2+c2s3=0(fc 1 s 2 s 3 -fc 3 s 1 +uc 2 s 3 )l y1 +(fc 1 c 3 +fs 1 s 2 s 3 +vc 2 s 3 )l y2 +c 2 s 3 =0
(fs1s3+fc1c3s2+uc2c3)lz1+(fc3s1s2-fc1s3+vc2c3)lz2+c2c3=0(fs 1 s 3 +fc 1 c 3 s 2 +uc 2 c 3 )l z1 +(fc 3 s 1 s 2 -fc 1 s 3 +vc 2 c 3 )l z2 +c 2 c 3 =0
ft1+ut3-o1t3=0ft 1 +ut 3 -o 1 t 3 =0
ft2+vt3-o2t3=0ft 2 +vt 3 -o 2 t 3 =0
fs1s3+fc1c3s2+uc2c3+ft1+ut3-z1c2c3-z1t3=0fs 1 s 3 +fc 1 c 3 s 2 +uc 2 c 3 +ft 1 +ut 3 -z 1 c 2 c 3 -z 1 t 3 =0
fc3s1s2-fc1s3+vc2c3+ft2+vt3-z2c2c3-z2t3=0fc 3 s 1 s 2 -fc 1 s 3 +vc 2 c 3 +ft 2 +vt 3 -z 2 c 2 c 3 -z 2 t 3 =0
本方法通过非线性优化求解以上方程组得到相机参数。In this method, the camera parameters are obtained by solving the above equations through nonlinear optimization.
2.2.2结构感知的三维代理拟合2.2.2 Structure-aware 3D proxy fitting
基于步骤2.2.1中得到的相机投影矩阵M,本方法采用交互式图像技术(ZHENG,Y.,CHEN,X.,CHENG,M.-M.,ZHOU,K.,HU,S.-M.,AND MITRA,N.J.2012.Interactive images:cuboid proxies for smart image manipulation.ACMTrans.Graph.31,4(July),99:1–99:11.)初始化坐标轴对齐的长方体。由于没有结构关系,这些独立初始化的长方体各自分散在空间中,因此,本方法进行全局优化以重建这些部件之间的结构关系,优化的目标是使得部件在符合图像边界的同时满足三维空间中的几何结构关系,其能量方程如下:Based on the camera projection matrix M obtained in step 2.2.1, this method uses interactive image technology (ZHENG, Y., CHEN, X., CHENG, M.-M., ZHOU, K., HU, S.-M ., AND MITRA, N.J. 2012. Interactive images: cuboid proxies for smart image manipulation. ACMTrans. Graph. 31, 4 (July), 99:1–99:11.) Initializing axis-aligned cuboids. Since there is no structural relationship, these independently initialized cuboids are scattered in space. Therefore, this method performs global optimization to reconstruct the structural relationship between these parts. The goal of optimization is to make the parts meet the three-dimensional space while conforming to the image boundary. Geometric structure relationship, its energy equation is as follows:
E(B1,B2,...,BN)=Efitting+Eunary+Epair E(B 1 ,B 2 ,...,B N )=E fitting +E unary +E pair
其中,第一项Efitting惩罚优化结果与初始长方体的偏离程度,表示为优化后长方体与初始长方体的顶点的二维投影点的累计距离:Among them, the degree of deviation between the first E fitting penalty optimization result and the initial cuboid is expressed as the cumulative distance between the two-dimensional projection points of the optimized cuboid and the vertices of the initial cuboid:
其中N是部件数目,vk和分别是优化后长方体Bi和初始长方体的顶点,此处使用归一化的齐次坐标进行计算。where N is the number of parts, v k and are the optimized cuboid B i and the initial cuboid The vertices of are calculated here using normalized homogeneous coordinates.
一元约束项Eunary惩罚单个代理上的结构约束的偏离程度。其中主要包括两种结构约束{Globreflection,OnGround}来确保部件和相机参数之间的正确关系。Globreflection表示一个长方体关于某全局坐标平面反射对称,而OnGround表示长方体必须放置于地面之上。此项定义为:The unary constraint term E unary penalizes how far the structural constraints on a single agent deviate. It mainly includes two structural constraints {Globreflection, OnGround} to ensure the correct relationship between parts and camera parameters. Globreflection means that a cuboid is reflectively symmetrical about a global coordinate plane, and OnGround means that the cuboid must be placed on the ground. This entry is defined as:
OnGround约束的长方体集合。dist是点到平面的距离函数,是z值最小的长方体表面的顶点。 A collection of cuboids constrained by OnGround. dist is the distance function from point to plane, is the vertex of the cuboid surface with the smallest z value.
二元约束项Epair惩罚两个代理之间的结构约束的偏离程度。其中主要包括三种结构约束{Symmetry,On,Side}来确保长方体两两之间的结构关系。Symmetry表示两个长方体之间关于某全局坐标平面反射对称,而On和Side分别表示一个长方体放置于另一个长方体之上或者靠在侧面。此项定义为:The binary constraint term E pair penalizes the deviation of the structural constraints between the two agents. It mainly includes three structural constraints {Symmetry, On, Side} to ensure the structural relationship between two cuboids. Symmetry means that two cuboids are reflectively symmetrical about a global coordinate plane, while On and Side mean that a cuboid is placed on top of another cuboid or leaning against the side. This entry is defined as:
其中是两两间满足反射对称约束的长方体集合,和Sp分别是满足两两间On和Side约束的长方体集合。rf函数根据平面p计算一个点的镜像位置,ci是长方体Bi的中心点。上式中的第一项通过要求几何代理的中心点关于平面反射对称来确保反射对称约束,而后两项惩罚一个长方体的面中心点和另一个长方体的顶面或侧面的距离来确保On和Side约束。bci是Bi的底面中心,tpj是Bj的顶面;类似地,sci是Bi的侧面中心而spj是Bj的侧面。in is a set of cuboids that satisfy the reflective symmetry constraints in pairs, and S p are cuboid sets satisfying pairwise On and Side constraints respectively. The rf function calculates the mirror image position of a point according to the plane p, and c i is the center point of cuboid B i . The first term in the above formula ensures the reflective symmetry constraint by requiring the center point of the geometric agent to be reflectively symmetric about the plane, while the latter two penalize the distance between the face center point of one cuboid and the top or side of another cuboid to ensure On and Side constraint. bci is the center of the base of B i and tp j is the top of B j ; similarly sc i is the center of the side of B i and sp j is the side of B j .
本方法中长方体是坐标轴对齐的,每个长方体只需优化6个参数,即每个长方体的尺度和中心位置{lx,ly,lz,cx,cy,cz}。本方法采用非线性优化方法Levenberg-Marquardt(LOURAKIS,M.,2004.levmar:Levenberg-marquardtnonlinear least squares algorithms in C/C++.[webpage]http://www.ics.forth.gr/~lourakis/levmar/.)来最小化总能量。In this method, the cuboids are aligned with the coordinate axes, and only six parameters need to be optimized for each cuboid, that is, the scale and center position {l x , l y , l z , c x , c y , c z } of each cuboid. This method uses the nonlinear optimization method Levenberg-Marquardt (LOURAKIS, M., 2004.levmar:Levenberg-marquardtnonlinear least squares algorithms in C/C++.[webpage]http://www.ics.forth.gr/~lourakis/levmar /.) to minimize the total energy.
2.3代理引导的部件合成:估算相机参数和构造三维代理之后,通过在三维空间中平移和缩放每个三维代理,然后基于变换后的代理进行二维图像弯曲和粘合来将所有选择的部件合成一个单独的图像物体。2.3 Proxy-guided part synthesis: After estimating camera parameters and constructing 3D proxies, all selected parts are composited by translating and scaling each 3D proxy in 3D space, followed by 2D image warping and gluing based on the transformed proxies A single image object.
2.3.1部件的连接2.3.1 Connection of components
本方法使用“连接槽”(KALOGERAKIS,E.,CHAUDHURI,S.,KOLLER,D.,AND KOLTUN,V.2012.A probabilistic model for component-based shape synthesis.ACM Trans.Graph.31,4(July),55:1–55:11.;SHEN,C.-H.,FU,H.,CHEN,K.,AND HU,S.-M.2012.Structure recovery by part assembly.ACM Transactions onGraphics(TOG)31,6,180.)来连接物体部件。在构建三维代理之后,相互连接的部件之间会生成一个连接槽对,其中每个槽包含:a)与槽所属部件相连接的目标部件;b)两部件间相互连接的接触点;c)连接目标部件的尺度大小。本方法采用如下策略生成三维接触点:如果两个代理相交,则取相交部分中点;反之,则取体积较小代理中距离体积较大代理最近面的中点。二维接触点为相互连接的部件在图像边界上距离较近(给定阈值之内,本方法采用5像素点)的点。This method uses "connection slots" (KALOGERAKIS, E., CHAUDHURI, S., KOLLER, D., AND KOLTUN, V.2012.A probabilistic model for component-based shape synthesis. ACM Trans.Graph.31,4(July ), 55:1–55:11.; SHEN, C.-H., FU, H., CHEN, K., AND HU, S.-M. 2012. Structure recovery by part assembly. ACM Transactions on Graphics (TOG )31,6,180.) to connect object parts. After building the 3D proxy, a connection slot pair will be generated between the connected parts, where each slot contains: a) the target part connected to the part to which the slot belongs; b) the contact point between the two parts connected to each other; c) The scale size of the connection target part. This method adopts the following strategy to generate three-dimensional contact points: if two agents intersect, take the midpoint of the intersecting part; otherwise, take the midpoint of the closest surface of the agent with a smaller volume to the agent with a larger volume. A two-dimensional contact point is a point where the connected parts are relatively close to each other on the image boundary (within a given threshold, this method uses 5 pixels).
(1)连接三维代理(1) Connect to 3D Proxy
本方法在代理连接关系的约束下优化每个代理Bi的位置和大小。ci,li和分别代表代理Bi的中心,大小和连接槽k的三维接触点。定义转换Bi和的刚体变换:其中Λi=diag(si),si和ti分别为刚体变换中缩放和平移的部分。作用于Bi的变换需要受到与之连接的代理的大小和位置的限制,因此定义为在原始训练图像中与Bi通过槽k连接的目标代理的大小。本方法定义接触能量函数项Ec如下:This method optimizes the position and size of each agent B i under the constraints of the agent connection relationship. c i , l i and represent the center, size, and 3D contact point of the connecting slot k of agent Bi, respectively. Define transformation B i and The rigid body transformation of : Wherein Λ i =diag(s i ), s i and t i are the scaling and translation parts in the rigid body transformation respectively. The transformation applied to B i needs to be constrained by the size and position of the agent connected to it, so the definition is the size of the target agent connected to Bi through slot k in the original training image. This method defines the contact energy function term E c as follows:
其中为通过连接槽匹配上的代理对集合,mi和mj为匹配的连接槽在各自所属代理中的索引。此能量函数项能将匹配的接触点相互连接在一起,并使得相互连接的代理具有相匹配的大小。此外,本方法采用两个保持形状的能量函数项Es和Et来避免优化过程中产生过大的变形:in is the set of agent pairs matched by connection slots, and m i and m j are the indexes of the matching connection slots in their respective agents. This energy function term connects matching contact points together and makes the connected agents have matching sizes. In addition, this method uses two shape-preserving energy function terms E s and E t to avoid excessive deformation during optimization:
本方法通过最小化以下能量函数来获得每个代理Bi的最优变换 This method obtains the optimal transformation for each agent B i by minimizing the following energy function
其中,本方法使用参数ωc=1,ωs=0.5和ωt=0.1。Wherein, this method uses parameters ω c =1, ω s =0.5 and ω t =0.1.
(2)弯曲二维图像部件(2) Bending two-dimensional image parts
在连接三维代理之后,本方法计算并弯曲三维代理相应的二维图像部件。当步骤2.2中构建图像的三维代理时,本方法会在每个代理Bi的图像边界上均匀采样ni个二维参考点并将投影到代理的可见面上得到相应的三维参考点(去除代理二维投影边界之外的点)。本方法所有实验中ni=200。After connecting the 3D proxy, the method computes and warps the corresponding 2D image component of the 3D proxy. When constructing the 3D proxy of the image in step 2.2, the method uniformly samples n i 2D reference points on the image boundary of each proxy B i and will The corresponding 3D reference points are obtained by projecting onto the visible surface of the agent (points outside the boundary of the 2D projection of the agent are removed). n i =200 in all experiments of this method.
本方法将上述三维参考点通过(1)步中计算得到的最优变换得到相应的三维目标点,然后再将三维目标点投影到合成场景的二维平面得到二维目标点 In this method, the above three-dimensional reference point is obtained through the optimal transformation calculated in step (1) to obtain the corresponding three-dimensional target point, and then the three-dimensional target point is projected onto the two-dimensional plane of the synthetic scene to obtain the two-dimensional target point
由于三维代理的有限视点变化,本方法采用二维仿射变换来进行图像弯曲。通过最小化弯曲后的二维参考点与二维目标点之间的距离得到最优仿射变换矩阵 Due to the limited viewpoint variation of 3D proxies, this method employs 2D affine transformations for image warping. The optimal affine transformation matrix is obtained by minimizing the distance between the curved 2D reference point and the 2D target point
然后使用对每个部件进行图像弯曲。then use Image warp each part.
(3)连接二维图像部件(3) Connect two-dimensional image components
本方法在(2)步之后,会同样使用将每个部件i的每个连接槽k中的二维接触点进行变换得到二维接触点的当前坐标。然后采用广度优先搜索策略移动图像部件。最大的部件会被作为基准置入队列。每当从队列中弹出一个部件,所有与此部件相连接且未被访问的部件会根据连接槽中的当前二维接触点信息进行移动,然后被依次置入队列。所有部件都已被访问后,搜索即终结,得到二维图像部件连接之后的合成图像物体。其中,在将部件i向部件j移动时(其匹配的连接槽为mi和mj),采用首先使得的中心和的中心对齐、然后将中位于部件j的分割边界之外的点不断向边界上的最近点移动的策略。This method will also be used after step (2) The two-dimensional contact points in each connection slot k of each component i Perform transformation to obtain the current coordinates of the two-dimensional contact point. The image parts are then moved using a breadth-first search strategy. The largest part is queued as the reference. Whenever a component is popped from the queue, all components connected to this component and not accessed will be moved according to the current two-dimensional contact point information in the connection slot, and then put into the queue in turn. After all components have been accessed, the search is terminated, resulting in the composite image object after the connection of the two-dimensional image components. Among them, when moving part i to part j (its matching connecting slots are m i and m j ), firstly make center and Align the center of the , and then align the A strategy in which points located outside the segmentation boundary of component j continuously move towards the closest point on the boundary.
2.3.2颜色的优化2.3.2 Color optimization
在合成结果之上,本方法基于颜色匹配度模型(O’DONOVAN,P.,AGARWALA,A.,AND HERTZMANN,A.2011.Color compatibility from largedatasets.ACM Transactions on Graphics(TOG)30,4,63.)和数据驱动调色板进行颜色的优化。在步骤1之后,本方法通过k-means从图像数据集的每个图像中抽取5色调色板,然后再用k-means从所有这些颜色中抽取一个40色的调色板作为数据调色板。在合成的图像中,最大部件的主颜色中的色调被赋予数据调色板(配合方差参数σ)来生成新的调色板。接着,本方法采用与Yu等人的工作(YU,L.-F.,YEUNG,S.K.,TERZOPOULOS,D.,AND CHAN,T.F.2012.DressUp!:Outfit synthesis through automatic optimization.ACM Transactions onGraphics31,6,134:1–134:14.)中相似的颜色优化策略来从新调色板中选择拥有最大颜色匹配度的颜色集合,并通过颜色转移方法(REINHARD,E.,ADHIKHMIN,M.,GOOCH,B.,AND SHIRLEY,P.2001.Color transfer betweenimages.Computer Graphics and Applications,IEEE21,5,34–41.)将之赋予每个部件。On top of the synthetic results, this method is based on a color matching model (O'DONOVAN, P., AGARWALA, A., AND HERTZMANN, A. 2011. Color compatibility from large datasets. ACM Transactions on Graphics (TOG) 30, 4, 63 .) and data-driven palettes for color optimization. After step 1, this method uses k-means to extract a palette of 5 colors from each image in the image dataset, and then uses k-means to extract a palette of 40 colors from all these colors as the data palette . In the synthesized image, the hues in the dominant colors of the largest components are assigned to the data palette (fitted with a variance parameter σ) to generate a new palette. Next, the present method is adapted from the work of Yu et al. (YU, L.-F., YEUNG, S.K., TERZOPOULOS, D., AND CHAN, T.F. 2012. DressUp!: Outfit synthesis through automatic optimization. ACM Transactions on Graphics 31, 6, 134: 1–134:14.) to select the color set with the greatest color matching from the new palette, and through the color transfer method (REINHARD, E., ADHIKHMIN, M., GOOCH, B., AND SHIRLEY, P. 2001. Color transfer between images. Computer Graphics and Applications, IEEE21, 5, 34–41.) assign it to each component.
3.贝叶斯概率图模型的训练和综合3. Training and Synthesis of Bayesian Probabilistic Graphical Models
在此步骤中,首先基于一致分割的图像部件,在特定物体类型的图像数据集上进行统计学习,得到一个能表达形状风格、物体结构、部件类别和相机参数之间复杂依赖关系的概率图模型,然后通过在习得的概率图模型上进行概率推理,对部件类型和式样等进行采样得到高概率图像物体的组成方案和视点属性,最后利用视点感知图像物体合成方法生成所有的结果图像。In this step, statistical learning is first performed on an object-type-specific image dataset based on consistently segmented image parts to obtain a probabilistic graphical model that can express complex dependencies among shape style, object structure, part category, and camera parameters , and then perform probabilistic reasoning on the acquired probabilistic graphical model, and sample the component types and styles to obtain the composition scheme and viewpoint attributes of high-probability image objects, and finally use the viewpoint-aware image object synthesis method to generate all the resulting images.
3.1贝叶斯概率图模型的训练3.1 Training of Bayesian Probabilistic Graphical Model
本方法采用类似于Kalogerakis等人的工作(KALOGERAKIS,E.,CHAUDHURI,S.,KOLLER,D.,AND KOLTUN,V.2012.A probabilistic model forcomponent-based shape synthesis.ACM Trans.Graph.31,4(July),55:1–55:11.)中所使用的概率图模型对特定类型图像物体集合进行建模,其中的隐含变量表示物体的总体结构和部件风格,而观测变量表示部件类别、几何特征以及他们之间的相邻关系。本方法的特点是引入额外的观测变量来表征图像的视点信息。This method is similar to the work of Kalogerakis et al. (KALOGERAKIS, E., CHAUDHURI, S., KOLLER, D., AND KOLTUN, V.2012. A probabilistic model for component-based shape synthesis. ACM Trans.Graph.31,4 (July), 55:1–55:11.) to model collections of certain types of image objects, where hidden variables represent the overall structure and part style of objects, and observed variables represent part categories , geometric features and their adjacency relations. The feature of this method is to introduce additional observation variables to represent the viewpoint information of the image.
3.1.1贝叶斯概率图模型的表示3.1.1 Representation of Bayesian Probabilistic Graphical Models
上表列举了本方法采用的概率图模型中的随机变量。其中V是视点参数,由步骤2.2.1中得到的相机参数进行Mean Shift聚类(半径设为0.2)获得,表示为类别索引的整数值。几何特征向量Cl包含l类别部件的三维长方体代理的大小和图像二维轮廓的点分布模型特征向量(COOTES,T.F.,TAYLOR,C.J.,COOPER,599D.H.,GRAHAM,J.,ET AL.1995.Active shape models-theirtraining and application.Computer vision and image understanding61,1,38–59.)。点分布模型的计算根据不同的视点类别分别进行。隐含变量R和S从训练数据中习得。The above table lists the random variables in the probabilistic graphical model used in this method. Where V is the viewpoint parameter, which is obtained by Mean Shift clustering (with a radius of 0.2) on the camera parameters obtained in step 2.2.1, expressed as an integer value of the category index. The geometric feature vector C l contains the size of the three-dimensional cuboid agent of the l category part and the point distribution model feature vector of the two-dimensional contour of the image (COOTES, TF, TAYLOR, CJ, COOPER, 599 D.H., GRAHAM, J., ET AL. 1995. Active shape models-their training and application. Computer vision and image understanding61,1,38–59.). The calculation of the point distribution model is performed separately according to different viewpoint categories. Hidden variables R and S are learned from the training data.
整个联合概率分布可以分解为一组条件概率的乘积:The entire joint probability distribution can be decomposed into the product of a set of conditional probabilities:
3.1.2贝叶斯概率图模型的训练3.1.2 Bayesian probabilistic graphical model training
在步骤1和2之后,从训练数据(数据量为K)的图像中抽取出特征向量集合其中Ok={Vk,Nk,Ck,Dk}。本方法通过最大化以下似然率函数J来学习概率图的结构和参数:After steps 1 and 2, a set of feature vectors is extracted from the image of the training data (the amount of data is K) where O k = {V k , N k , C k , D k }. This method learns the structure and parameters of the probability graph by maximizing the following likelihood function J:
其中使用贝叶斯信息准则的评价分数(SCHWARZ,G.1978.Estimating thedimension of a model.The annals of statistics6,2,461–464.)来选择最优的概率图结构G(定义域范围)。是G中参数的最大后验概率估计(MAP),mθ是独立参数的数目,而K是数据的数目。本方法使用最大期望(EM)算法来计算最大似然率相应的参数 Among them, the evaluation score of Bayesian information criterion (SCHWARZ, G.1978. Estimating the dimension of a model. The annals of statistics6,2,461–464.) is used to select the optimal probability graph structure G (defined domain range). is the maximum a posteriori probability estimate (MAP) of the parameters in G, m θ is the number of independent parameters, and K is the number of data. This method uses the Expectation Maximum (EM) algorithm to calculate the parameters corresponding to the maximum likelihood
其中P(θ|G)是参数θ的先验概率分布。在EM算法的M步骤中,条件概率表参数(离散随机变量)R,V,Sl,Dl和条件线性高斯分布参数(连续随机变量)Cl的计算方法与Kalogerakis等人的方法(KALOGERAKIS,E.,CHAUDHURI,S.,KOLLER,D.,AND KOLTUN,V.2012.A probabilistic model for component-basedshape synthesis.ACM Trans.Graph.31,4(July),55:1–55:11.)中的形式一致。而在E步骤中,使用以下公式计算隐含变量R和S在观测变量Ok下的条件概率:where P(θ|G) is the prior probability distribution for the parameter θ. In the M step of the EM algorithm, the calculation method of the conditional probability table parameters (discrete random variable) R, V, S l , D l and the conditional linear Gaussian distribution parameter (continuous random variable) C l is the same as that of Kalogerakis et al. (KALOGERAKIS ,E.,CHAUDHURI,S.,KOLLER,D.,AND KOLTUN,V.2012.A probabilistic model for component-basedshape synthesis.ACM Trans.Graph.31,4(July),55:1–55:11. ) in the same form. In step E, the conditional probabilities of the hidden variables R and S under the observed variable O k are calculated using the following formula:
其中l是部件类别标记。本方法根据下式计算联合概率P(R,Sl,Ok):where l is the part class flag. This method calculates the joint probability P(R,S l ,O k ) according to the following formula:
本方法通过逐渐增长隐含变量R和S的定义域范围(离散变量的可选值)的贪心策略来搜寻J最大的图结构G。This method searches for the graph structure G with the largest J through the greedy strategy of gradually increasing the domain ranges of hidden variables R and S (optional values of discrete variables).
3.2贝叶斯概率图模型的综合3.2 Synthesis of Bayesian Probabilistic Graphical Models
图像物体的综合可分为三个步骤。首先,确定用于综合的图像部件集合。然后,将这些部件连接合成为一个单独的图像物体。最后,优化合成物体的颜色。其中,后两步可由步骤2中的视点感知图像物体合成技术实现。The synthesis of image objects can be divided into three steps. First, a set of image components for synthesis is determined. These parts are then concatenated into a single image object. Finally, optimize the color of the composited object. Among them, the last two steps can be realized by the viewpoint-aware image object synthesis technology in step 2.
3.2.1部件集合的综合3.2.1 Synthesis of component assemblies
在数学意义上,不同的部件集合可被视为概率模型的不同采样点。因此,本方法采用深度优先搜索策略来搜索图像物体的形状空间。从根节点变量R开始,搜索路径上的每个随机变量都被分别赋予其可能的取值。与Kalogerakis等人的工作(KALOGERAKIS,E.,CHAUDHURI,S.,KOLLER,D.,AND KOLTUN,V.2012.A probabilistic model for component-based shape synthesis.ACM Trans.Graph.31,4(July),55:1–55:11.)中的确定性算法一致,本方法对于概率小于一定阈值(实现中采用10-10)的变量取值情况进行剪枝。为确保搜索可行性,连续变量Cl仅会被赋予训练数据中已出现部件的相应值。在搜索程序最终找到的有效采样点中,变量Cl的取值决定了用于合成的部件集合。In a mathematical sense, different sets of components can be regarded as different sampling points of the probabilistic model. Therefore, this method adopts a depth-first search strategy to search the shape space of image objects. Starting from the root node variable R, each random variable on the search path is assigned its possible value. With the work of Kalogerakis et al. (KALOGERAKIS, E., CHAUDHURI, S., KOLLER, D., AND KOLTUN, V.2012. A probabilistic model for component-based shape synthesis. ACM Trans.Graph.31, 4 (July) , 55:1–55:11.) is consistent with the deterministic algorithm, and this method prunes the values of variables whose probability is less than a certain threshold (10 -10 is used in the implementation). To ensure search feasibility, the continuous variable C l will only be assigned values corresponding to components that have appeared in the training data. Among the effective sampling points finally found by the search program, the value of the variable C l determines the set of components used for synthesis.
4.图像物体合成结果的导出:将上述步骤的图像物体合成结果以通用格式导出与存储,使其能够用于其他数字媒体类产品及应用。4. Export of image object synthesis results: export and store the image object synthesis results of the above steps in a common format, so that it can be used in other digital media products and applications.
4.1结果的导出4.1 Export of results
本方法的步骤2和3能合成出大批新物体的图像数据。为与业界的通用数据格式相兼容,具体可以将合成图像存储为相关文件格式作为本方法的最终结果导出形式。另一方面,步骤2对图像物体构建了部件的三维代理,可以将训练图像物体进行分析所得的三维代理连同其部件结构、分割区域、纹理图像一起导出为清晰易读的文件格式,以供需要的技术或应用使用。Steps 2 and 3 of the method can synthesize a large number of image data of new objects. In order to be compatible with the general data format in the industry, specifically, the synthesized image can be stored in a related file format as the final result export form of this method. On the other hand, step 2 constructs a 3D proxy of the parts for the image object, and the 3D proxy obtained by analyzing the training image object together with its part structure, segmented area, and texture image can be exported into a clear and easy-to-read file format for the needs technology or application use.
4.2结果的应用4.2 Application of results
作为通用的图像表示形式,本方法的导出结果可以应用于所有已有的图像编辑/设计系统中。As a general image representation form, the derived results of this method can be applied to all existing image editing/design systems.
实施实例Implementation example
发明人在一台配备了Intel Core2Quad Q9400中央处理器,4GB内存和Win7操作系统的机器上实现了本发明的所有实施实例。发明人采用在具体实施方式中列出的所有参数值,得到了附图中所示的所有实验结果。The inventor has realized all implementation examples of the present invention on a machine equipped with Intel Core2Quad Q9400 central processing unit, 4GB internal memory and Win7 operating system. The inventors obtained all the experimental results shown in the accompanying drawings using all parameter values listed in the detailed description.
图12和图13展示了直接合成与本方法合成所得图像物体的比较。其中直接合成结果往往会产生明显的扭曲和不自然,而本发明中的视点感知合成方法能够生成视觉上更为合理逼真的新颖图像物体。Figure 12 and Figure 13 show the comparison of the image objects synthesized by direct synthesis and our method. The direct synthesis results often produce obvious distortion and unnaturalness, but the viewpoint-aware synthesis method in the present invention can generate novel image objects that are visually more reasonable and realistic.
发明人邀请了一些用户来测试本方法中贝叶斯概率图模型的综合算法所生成的合成结果(图6至图10)。评价结果表明,与原始图像集合中的物体相比,用户认为合成的图像物体在视觉上完全合理,且确实是新颖的物体。其中,总共48%的选择认为合成物体是视觉合理的(与选择训练数据的52%相比没有明显差异);而对于每个类别的合成新颖性(见图11),最高90%的用户认为机器人集合的结果是新物体,最低79%的用户认为台灯集合的结果是新物体。The inventors invited some users to test the synthetic results generated by the synthesis algorithm of Bayesian probabilistic graphical models in this method (Figs. 6-10). Evaluation results show that users perceive the synthesized image objects to be visually perfectly plausible and indeed novel objects compared to objects in the original image collection. Among them, a total of 48% of the choices considered the synthetic object to be visually plausible (no significant difference compared with 52% of the selected training data); while for each category of synthetic novelty (see Figure 11), the highest 90% of the users believed The result of the robot assembly is a new object, and the lowest 79% of users think the result of the table lamp assembly is a new object.
在贝叶斯概率图模型的训练时间上,椅子集合(42副图像,6个部件类别,共243个部件)大致需要20分钟,杯子集合(22副图像,3个部件类别,共44个部件)大致需要5分钟,台灯集合(30副图像,3个部件类别,共90个部件)大致需要12分钟,机器人集合(23副图像,5个部件类别,共130个部件)大致需要15分钟,玩具飞机集合(15副图像,4个部件类别,共63个部件)大致需要3分钟。在图像物体的合成时间上,列举出合成所需的部件集合平均需要20秒到1分钟不等;而每副图像中部件的连接过程平均需要4秒,颜色优化则平均需要1秒。In terms of training time for the Bayesian probabilistic graphical model, the chair set (42 images, 6 part categories, 243 parts in total) takes about 20 minutes, and the cup set (22 images, 3 part categories, 44 parts in total) takes about 20 minutes. ) takes about 5 minutes, lamp collection (30 images, 3 parts categories, 90 parts in total) takes about 12 minutes, robot collection (23 images, 5 parts categories, 130 parts in total) takes about 15 minutes, Toy airplane assembly (15 images, 4 part categories, 63 parts in total) takes approximately 3 minutes. In terms of the synthesis time of image objects, it takes an average of 20 seconds to 1 minute to enumerate the set of components required for synthesis; while the connection process of the components in each image takes an average of 4 seconds, and the color optimization takes an average of 1 second.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410163775.0A CN103942795B (en) | 2014-04-22 | 2014-04-22 | A kind of structuring synthetic method of image object |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410163775.0A CN103942795B (en) | 2014-04-22 | 2014-04-22 | A kind of structuring synthetic method of image object |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103942795A CN103942795A (en) | 2014-07-23 |
CN103942795B true CN103942795B (en) | 2016-08-24 |
Family
ID=51190446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410163775.0A Active CN103942795B (en) | 2014-04-22 | 2014-04-22 | A kind of structuring synthetic method of image object |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103942795B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104376332A (en) * | 2014-12-09 | 2015-02-25 | 深圳市捷顺科技实业股份有限公司 | License plate recognition method and device |
CN104850633B (en) * | 2015-05-22 | 2018-10-12 | 中山大学 | A kind of three-dimensional model searching system and method based on the segmentation of cartographical sketching component |
US11244502B2 (en) * | 2017-11-29 | 2022-02-08 | Adobe Inc. | Generating 3D structures using genetic programming to satisfy functional and geometric constraints |
US10755112B2 (en) * | 2018-03-13 | 2020-08-25 | Toyota Research Institute, Inc. | Systems and methods for reducing data storage in machine learning |
CN111524589B (en) * | 2020-04-14 | 2021-04-30 | 重庆大学 | Health care big data quality control system and terminal based on CDA shared documents |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7729531B2 (en) * | 2006-09-19 | 2010-06-01 | Microsoft Corporation | Identifying repeated-structure elements in images |
CN102800129A (en) * | 2012-06-20 | 2012-11-28 | 浙江大学 | Hair modeling and portrait editing method based on single image |
CN103251431A (en) * | 2012-01-16 | 2013-08-21 | 佳能株式会社 | Information processing apparatus, information processing method, and storage medium |
-
2014
- 2014-04-22 CN CN201410163775.0A patent/CN103942795B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7729531B2 (en) * | 2006-09-19 | 2010-06-01 | Microsoft Corporation | Identifying repeated-structure elements in images |
CN103251431A (en) * | 2012-01-16 | 2013-08-21 | 佳能株式会社 | Information processing apparatus, information processing method, and storage medium |
CN102800129A (en) * | 2012-06-20 | 2012-11-28 | 浙江大学 | Hair modeling and portrait editing method based on single image |
Non-Patent Citations (2)
Title |
---|
"A Probabilistic Model for Component-Based Shape Synthesis";Evangelos Kalogerakis et al.;《ACM Transactions on Graphics(TOG)-Proceedings of ACM SIGGRAPH 2012》;20120630;第31卷(第4期);第2节最后1段-第3节第4段,第4节第1-7段,第5-5.2节 * |
"语义驱动的三维形状分析及建模";徐凯;《中国博士学位论文全文数据库 信息科技辑》;20120715(第7期);第6.1-6.2节 * |
Also Published As
Publication number | Publication date |
---|---|
CN103942795A (en) | 2014-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | Learning to stylize novel views | |
Cheng et al. | Intelligent visual media processing: When graphics meets vision | |
JP6878011B2 (en) | Rebuilding 3D modeled objects | |
Xu et al. | Photo-inspired model-driven 3D object modeling | |
Chen et al. | Deformable model for estimating clothed and naked human shapes from a single image | |
CN103942795B (en) | A kind of structuring synthetic method of image object | |
CN103729885A (en) | Hand-drawn scene three-dimensional modeling method combining multi-perspective projection with three-dimensional registration | |
Li et al. | Advances in 3d generation: A survey | |
Chen et al. | Autosweep: Recovering 3d editable objects from a single photograph | |
Alexiadis et al. | Fast deformable model-based human performance capture and FVV using consumer-grade RGB-D sensors | |
Wang et al. | A survey of deep learning-based mesh processing | |
Feng et al. | Fdgaussian: Fast gaussian splatting from single image via geometric-aware diffusion model | |
Liao et al. | Advances in 3D Generation: A Survey | |
Tian et al. | 3D reconstruction with auto-selected keyframes based on depth completion correction and pose fusion | |
Kazmi et al. | Efficient sketch‐based creation of detailed character models through data‐driven mesh deformations | |
Wu et al. | Photogrammetric reconstruction of free-form objects with curvilinear structures | |
Niu et al. | Overview of image-based 3D reconstruction technology | |
CN104091318B (en) | A kind of synthetic method of Chinese Sign Language video transition frame | |
Kim et al. | Category-specific upright orientation estimation for 3D model classification and retrieval | |
Xu et al. | APES: Articulated part extraction from sprite sheets | |
Dhondse et al. | Generative adversarial networks as an advancement in 2D to 3D reconstruction techniques | |
Wang et al. | Diffusion Models in 3D Vision: A Survey | |
Moeini et al. | Expression-invariant three-dimensional face reconstruction from a single image by facial expression generic elastic models | |
Liu et al. | Symmetry-aware depth estimation using deep neural networks | |
Qu et al. | Realistic texture extraction for 3D face models robust to self-occlusion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |