CN103942620A - 采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法 - Google Patents
采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法 Download PDFInfo
- Publication number
- CN103942620A CN103942620A CN201410158376.5A CN201410158376A CN103942620A CN 103942620 A CN103942620 A CN 103942620A CN 201410158376 A CN201410158376 A CN 201410158376A CN 103942620 A CN103942620 A CN 103942620A
- Authority
- CN
- China
- Prior art keywords
- data
- wind power
- short
- support vector
- kernel function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000012706 support-vector machine Methods 0.000 title claims abstract description 24
- 239000002131 composite material Substances 0.000 title abstract 4
- 238000012549 training Methods 0.000 claims abstract description 34
- 238000012544 monitoring process Methods 0.000 claims description 22
- 230000005611 electricity Effects 0.000 claims description 14
- 238000001914 filtration Methods 0.000 claims description 9
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 238000013507 mapping Methods 0.000 claims description 6
- 238000005457 optimization Methods 0.000 claims description 6
- 238000007781 pre-processing Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 230000007547 defect Effects 0.000 abstract description 3
- 238000009434 installation Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000005619 thermoelectricity Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Wind Motors (AREA)
Abstract
本发明公开了采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法,主要包括:采用基于径向基核函数支持向量机的复合数据源,对待测风电功率进行模型训练;基于待测风电功率的模型训练结果,对待测风电功率进行短期预测。本发明所述采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法,可以克服现有技术中风电功率预测精度低的缺陷,以实现高精度的风电功率短期预测的优点。
Description
技术领域
本发明涉及新能源发电过程中风电功率预测技术领域,具体地,涉及采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法。
背景技术
我国风电进入规模化发展阶段以后所产生的大型新能源基地多数位于“三北地区”(西北、东北、华北),大型新能源基地一般远离负荷中心,其电力需要经过长距离、高电压输送到负荷中心进行消纳。由于风、光资源的间歇性、随机性和波动性,导致大规模新能源基地的风电、光伏发电出力会随之发生较大范围的波动,进一步导致输电网络充电功率的波动,给电网运行安全带来一系列问题。
截至2013年12月,甘肃电网并网风电装机容量已达702万千瓦,约占甘肃电网总装机容量的22%,成为仅次于火电的第二大主力电源;光伏发电装机容量已达到435万千瓦,约占甘肃电网总装机容量的13%,同时甘肃成为我国光伏发电装机规模最大的省份。目前,甘肃电网风电、光伏发电装机超过甘肃电网总装机容量的1/3。随着新能源并网规模的不断提高,风电、光伏发电不确定性和不可控性给电网的安全稳定经济运行带来诸多问题。准确预估可利用的发电风资源是对大规模风电优化调度的基础。对风力发电及光伏发电过程中的风电功率及光伏发电功率进行预测,可为新能源发电实时调度、新能源发电日前计划、新能源发电月度计划、新能源发电能力评估和弃风/弃光电量估计提供关键信息。
在实现本发明的过程中,发明人发现现有风电功率短期预测精度低等缺陷。
发明内容
本发明的目的在于,针对上述问题,提出采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法,以实现高精度的风电功率短期预测的优点。
为实现上述目的,本发明采用的技术方案是:采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法,主要包括:
a、采用基于径向基核函数支持向量机的复合数据源,对待测风电功率进行模型训练;
b、基于待测风电功率的模型训练结果,对待测风电功率进行短期预测。
进一步地,所述步骤a,具体包括:
步骤a1、模型训练基础数据输入;
步骤a2、数据预处理;
步骤a3、SVM分类器训练;
步骤a4、得到SVM模型。
进一步地,所述步骤a1,具体包括:
风功率预报系统模型训练所需输入数据,包括风电场基础信息、历史风速数据、历史功率数据,以及包含风电场/风机坐标、测风塔坐标、升压站坐标的地理信息系统(GIS)数据;其中,GIS数据主要用于功率预测时根据各风电场的上下游关系进行短期预测结果的优化,将基础数据输入到预测模型中进行模型训练。
进一步地,所述步骤a2,具体包括:
将风速数据和功率数据首先进行包含数据对齐及归一化的预处理,GIS数据通过预处理确定电站上下游关系。
进一步地,所述步骤a3,具体包括:
SVM分类器是一个包含一个隐层的多层感知器,通过算法经训练过程自动确定隐层节点数;
基于SVM分类器的非线性风电功率短期预测模型表示为:
其中,x是与风电功率密切相关的影响因素,如数值天气预报NWP数据、历史功率、风电场上下游关系;d是输入变量的维度;f(x)是待预测的功率值;是从输入空间到高维空间的非线性映射,即核函数;w是模型参数,b是预测残差项;
定义惩罚函数即优化目标为:
其中,ei是误差项,r为正则化参数,N为样本数;
引入拉格朗日乘子λ后,将基于SVM分类器的非线性预测模型表达式转化为:
其中,λi(i=1,2,...,N)和b为模型系数,K(·)表示从输入空间(非线性空间)到高位特征空间(线性空间)的非线性映射;
核函数K(·)采用径向基函数(RBF)形式,为:
K(x,xi)=exp(-||x-xi||2/σ2);
其中,xi(i=1,2,...,N)为输入的训练样本,σ为核函数参数,为正常数;采用这种方法训练得到SVM分类器每个基函数中心对应一个支持向量。
进一步地,所述步骤a4,具体包括:
通过输入样本数据的训练,确定函数参数,即得到SVM预测模型。
进一步地,所述步骤b,具体包括:
步骤b1、功率预测基础数据输入;
步骤b2、噪声滤波及数据预处理;
步骤b3、基于SVM的短期功率预测;
步骤b4、预测结果输出及展示。
进一步地,在所述步骤b1中,风电功率预测所需输入数据包括资源监测系统数据和运行监测系统数据两部分,其中,资源监测系统数据包含风资源监测数据、风能预测数据以及数值天气预报NWP数据;运行监测系统数据包括风机监测数据、升压站监测数据和数据采集与监视控制系统SCADA;
和/或,
在所述步骤b2中,采用噪声滤波模块对实时监测系统采集得到的带有噪声的进行滤波处理,去除坏数据和奇异值;采用数据预处理模块对数据进行包含对齐、归一化处理和分类筛选的操作,使得输入的数据可以为模型所用。
进一步地,所述步骤b3,具体包括:
功率预测过程是将风资源数据及风电运行监测数据输入SVM模型,得到预测结果的输出;
和/或,
所述步骤b4,具体包括:
对预测结果进行输出,并通过图形和表格等形式对预测结果进行展示。
本发明各实施例的采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法,由于主要包括:采用基于径向基核函数支持向量机的复合数据源,对待测风电功率进行模型训练;基于待测风电功率的模型训练结果,对待测风电功率进行短期预测;从而可以克服现有技术中风电功率预测精度低的缺陷,以实现高精度的风电功率短期预测的优点。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法的流程示意图。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
含大规模风电的电力系统运行依赖庞大的、准确的数据集,而风电功率预测若能将这些数据有效融合利用则可有效提高预测精度。与常规电力系统SCADA监测不同,在各类电气、机械和热力等数据之外,风电监测数据还包含大量的资源监测、运行监测及地理信息等。
根据本发明实施例,如图1所示,提供了采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法。
本实施例的采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法,可分为两个阶段:模型训练阶段和功率预测阶段。具体如下:
阶段1:模型训练
步骤1.1:模型训练基础数据输入
风功率预报系统模型训练所需输入数据包括,风电场基础信息、历史风速数据、历史功率数据,地理信息系统(GIS)数据(风电场/风机坐标、测风塔坐标、升压站坐标等),其中GIS数据主要用于功率预测时根据各风电场的上下游关系进行短期预测结果的优化。将基础数据输入到预测模型中进行模型训练。
步骤1.2:数据预处理
将风速数据和功率数据首先进行数据对齐及归一化等预处理,GIS数据通过预处理确定电站上下游关系。
步骤1.3:SVM分类器训练
SVM分类器是一个包含一个隐层的多层感知器,隐层节点数是通过算法经训练过程自动确定的,SVM相比神经网络的优点在于SVM不会陷入局部极小点。
基于SVM分类器的非线性风电功率短期预测模型可以表示为:
其中,x是与风电功率密切相关的影响因素,如数值天气预报(NWP)数据、历史功率、风电场上下游关系等;d是输入变量的维度;f(x)是待预测的功率值; 是从输入空间到高维空间的非线性映射,即核函数;w是模型参数,b是预测残差项。
定义惩罚函数即优化目标为:
其中,ei是误差项,r为正则化参数,N为样本数。
引入拉格朗日乘子λ后,可以将基于SVM分类器的非线性预测模型表达式转化为:
其中,λi(i=1,2,...,N)和b为模型系数,K(·)表示从输入空间(非线性空间)到高位特征空间(线性空间)的非线性映射。
核函数K(·)可以采用径向基函数(RBF)形式,为:
K(x,xi)=exp(-||x-xi||2/σ2);
其中,xi(i=1,2,...,N)为输入的训练样本,σ为核函数参数,为正常数。采用这种方法训练得到SVM分类器每个基函数中心对应一个支持向量。
步骤1.4:得到SVM模型
通过输入样本数据的训练,确定函数参数,即得到SVM预测模型。
阶段2:功率预测
步骤2.1:功率预测基础数据输入
风电功率预测所需输入数据包括资源监测系统数据和运行监测系统数据两部分,其中,资源监测系统数据包含风资源监测数据、风能预测数据以及数值天气预报(NWP)数据;运行监测系统数据包括风机监测数据、升压站监测数据和数据采集与监视控制系统(SCADA)等。
步骤2.2:噪声滤波及数据预处理
噪声滤波模块对实时监测系统采集得到的带有噪声的进行滤波处理,去除坏数据和奇异值;数据预处理模块对数据进行对齐、归一化处理和分类筛选等操作,以便使得输入的数据可以为模型所用。
步骤2.3:基于SVM的短期功率预测
功率预测过程是将风资源数据及风电运行监测数据输入SVM模型,从而得到预测结果的输出。
步骤2.4:预测结果输出及展示
首先对预测结果进行输出,并通过图形和表格等形式对预测结果进行展示。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明, 尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (9)
1.采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法,其特征在于,主要包括:
a、采用基于径向基核函数支持向量机的复合数据源,对待测风电功率进行模型训练;
b、基于待测风电功率的模型训练结果,对待测风电功率进行短期预测。
2.根据权利要求1所述的采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法,其特征在于,所述步骤a,具体包括:
步骤a1、模型训练基础数据输入;
步骤a2、数据预处理;
步骤a3、SVM分类器训练;
步骤a4、得到SVM模型。
3.根据权利要求2所述的采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法,其特征在于,所述步骤a1,具体包括:
风功率预报系统模型训练所需输入数据,包括风电场基础信息、历史风速数据、历史功率数据,以及包含风电场/风机坐标、测风塔坐标、升压站坐标的地理信息系统(GIS)数据;其中,GIS数据主要用于功率预测时根据各风电场的上下游关系进行短期预测结果的优化,将基础数据输入到预测模型中进行模型训练。
4.根据权利要求2所述的采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法,其特征在于,所述步骤a2,具体包括:
将风速数据和功率数据首先进行包含数据对齐及归一化的预处理,GIS数据通过预处理确定电站上下游关系。
5.根据权利要求2所述的采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法,其特征在于,所述步骤a3,具体包括:
SVM分类器是一个包含一个隐层的多层感知器,通过算法经训练过程自动确定隐层节点数;
基于SVM分类器的非线性风电功率短期预测模型表示为:
其中,x是与风电功率密切相关的影响因素,如数值天气预报NWP数据、历史功率、风电场上下游关系;d是输入变量的维度;f(x)是待预测的功率值;是从输入空间到高维空间的非线性映射,即核函数;w是模型参数,b是预测残差项;
定义惩罚函数即优化目标为:
其中,ei是误差项,r为正则化参数,N为样本数;
引入拉格朗日乘子λ后,将基于SVM分类器的非线性预测模型表达式转化为:
其中,λi(i=1,2,...,N)和b为模型系数,K(·)表示从输入空间(非线性空间)到高位特征空间(线性空间)的非线性映射;
核函数K(·)采用径向基函数(RBF)形式,为:
K(x,xi)=exp(-||x-xi||2/σ2);
其中,xi(i=1,2,...,N)为输入的训练样本,σ为核函数参数,为正常数;采用这种方法训练得到SVM分类器每个基函数中心对应一个支持向量。
6.根据权利要求2所述的采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法,其特征在于,所述步骤a4,具体包括:
通过输入样本数据的训练,确定函数参数,即得到SVM预测模型。
7.根据权利要求1-6中任一项所述的采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法,其特征在于,所述步骤b,具体包括:
步骤b1、功率预测基础数据输入;
步骤b2、噪声滤波及数据预处理;
步骤b3、基于SVM的短期功率预测;
步骤b4、预测结果输出及展示。
8.根据权利要求7所述的采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法,其特征在于,在所述步骤b1中,风电功率预测所需输入数据包括资源监测系统数据和运行监测系统数据两部分,其中,资源监测系统数据包含风资源监测数据、风能预测数据以及数值天气预报NWP数据;运行监测系统数据包括风机监测数据、升压站监测数据和数据采集与监视控制系统SCADA;
和/或,
在所述步骤b2中,采用噪声滤波模块对实时监测系统采集得到的带有噪声的进行滤波处理,去除坏数据和奇异值;采用数据预处理模块对数据进行包含对齐、归一化处理和分类筛选的操作,使得输入的数据可以为模型所用。
9.根据权利要求7所述的采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法,其特征在于,所述步骤b3,具体包括:
功率预测过程是将风资源数据及风电运行监测数据输入SVM模型,得到预测结果的输出;
和/或,
所述步骤b4,具体包括:
对预测结果进行输出,并通过图形和表格等形式对预测结果进行展示。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410158376.5A CN103942620A (zh) | 2014-04-18 | 2014-04-18 | 采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410158376.5A CN103942620A (zh) | 2014-04-18 | 2014-04-18 | 采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103942620A true CN103942620A (zh) | 2014-07-23 |
Family
ID=51190282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410158376.5A Pending CN103942620A (zh) | 2014-04-18 | 2014-04-18 | 采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103942620A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106443259A (zh) * | 2016-09-29 | 2017-02-22 | 国网山东省电力公司电力科学研究院 | 基于欧式聚类和spo‑svm的变压器故障诊断新方法 |
CN106499583A (zh) * | 2016-10-13 | 2017-03-15 | 浙江运达风电股份有限公司 | 基于rbf神经网络技术的风力发电机组系统辨识方法 |
CN106779203A (zh) * | 2016-12-08 | 2017-05-31 | 贵州电网有限责任公司电力科学研究院 | 一种基于不同风速段的高原山区风电功率预测方法 |
CN106960260A (zh) * | 2017-03-27 | 2017-07-18 | 深圳汇创联合自动化控制有限公司 | 一种便于电力调度的风电功率预测系统 |
CN110175639A (zh) * | 2019-05-17 | 2019-08-27 | 华北电力大学 | 一种基于特征选取的短期风电功率预测方法 |
-
2014
- 2014-04-18 CN CN201410158376.5A patent/CN103942620A/zh active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106443259A (zh) * | 2016-09-29 | 2017-02-22 | 国网山东省电力公司电力科学研究院 | 基于欧式聚类和spo‑svm的变压器故障诊断新方法 |
CN106499583A (zh) * | 2016-10-13 | 2017-03-15 | 浙江运达风电股份有限公司 | 基于rbf神经网络技术的风力发电机组系统辨识方法 |
CN106499583B (zh) * | 2016-10-13 | 2019-03-05 | 浙江运达风电股份有限公司 | 基于rbf神经网络技术的风力发电机组系统辨识方法 |
CN106779203A (zh) * | 2016-12-08 | 2017-05-31 | 贵州电网有限责任公司电力科学研究院 | 一种基于不同风速段的高原山区风电功率预测方法 |
CN106779203B (zh) * | 2016-12-08 | 2020-09-15 | 贵州电网有限责任公司电力科学研究院 | 一种基于不同风速段的高原山区风电功率预测方法 |
CN106960260A (zh) * | 2017-03-27 | 2017-07-18 | 深圳汇创联合自动化控制有限公司 | 一种便于电力调度的风电功率预测系统 |
CN110175639A (zh) * | 2019-05-17 | 2019-08-27 | 华北电力大学 | 一种基于特征选取的短期风电功率预测方法 |
CN110175639B (zh) * | 2019-05-17 | 2021-06-11 | 华北电力大学 | 一种基于特征选取的短期风电功率预测方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Puri et al. | A hybrid artificial intelligence and internet of things model for generation of renewable resource of energy | |
CN103778340B (zh) | 大规模新能源发电特性的统计方法 | |
CN103020462B (zh) | 计及复杂尾流效应模型的风电场概率输出功率计算方法 | |
CN102055188B (zh) | 基于时间序列法的超短期风电功率预报方法 | |
CN103904682B (zh) | 一种基于风光混合模型的功率预测方法 | |
CN103942620A (zh) | 采用复合数据源基于径向基核函数支持向量机的风电功率短期预测方法 | |
CN104978608A (zh) | 一种风电功率预测装置及预测方法 | |
CN105160060A (zh) | 一种基于实际功率曲线拟合的风电场理论功率确定方法 | |
CN103942736B (zh) | 一种风电场多机等值建模方法 | |
CN103106544A (zh) | 一种基于t-s型模糊神经网络的光伏发电预测系统 | |
CN105335560A (zh) | 光伏发电功率波动性及其自动发电控制备用需求计算方法 | |
CN103927598A (zh) | 基于自学习径向基核函数的光伏发电功率预测方法 | |
CN103955521A (zh) | 一种风电场机群划分方法 | |
CN104574221B9 (zh) | 一种基于损失电量特征参数的光伏电站运行状态辨识方法 | |
Alanazi et al. | Wind energy assessment using Weibull distribution with different numerical estimation methods: a case study | |
Li et al. | Ultra-short-term wind power prediction using BP neural network | |
Kim et al. | Wind power forecasting based on hourly wind speed data in South Korea using machine learning algorithms | |
Liu et al. | A weight-varying ensemble method for short-term forecasting PV power output | |
CN103927599A (zh) | 基于自学习径向基核函数支持向量机的风电功率预测方法 | |
Guo et al. | A new approach for interval forecasting of photovoltaic power based on generalized weather classification | |
Alsaidan et al. | Solar energy forecasting using intelligent techniques: A step towards sustainable power generating system | |
CN103955755A (zh) | 采用复合数据源基于自学习多项式核函数支持向量机的风电功率短期预测方法 | |
CN103942618A (zh) | 采用复合数据源的基于自学习多项式核函数支持向量机的光伏发电功率短期预测方法 | |
CN103955759A (zh) | 采用复合数据源基于径向基核函数支持向量机的光伏发电功率短期预测方法 | |
CN103955757A (zh) | 采用复合数据源基于多项式核函数支持向量机的光伏发电功率短期预测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140723 |
|
RJ01 | Rejection of invention patent application after publication |