CN103937238B - 一种球形纳米芳纶材料及其制备方法 - Google Patents

一种球形纳米芳纶材料及其制备方法 Download PDF

Info

Publication number
CN103937238B
CN103937238B CN201410153300.3A CN201410153300A CN103937238B CN 103937238 B CN103937238 B CN 103937238B CN 201410153300 A CN201410153300 A CN 201410153300A CN 103937238 B CN103937238 B CN 103937238B
Authority
CN
China
Prior art keywords
aramid fiber
preparation
ppta
fiber material
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410153300.3A
Other languages
English (en)
Other versions
CN103937238A (zh
Inventor
曲荣君
高静静
李沙沙
孙昌梅
殷平
徐长洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ludong University
Original Assignee
Ludong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ludong University filed Critical Ludong University
Priority to CN201410153300.3A priority Critical patent/CN103937238B/zh
Publication of CN103937238A publication Critical patent/CN103937238A/zh
Application granted granted Critical
Publication of CN103937238B publication Critical patent/CN103937238B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids

Abstract

本发明公开了一种球形纳米芳纶,其为表面光滑、直径为50~200nm的实心圆形球,粒径分布窄且分散均匀,重量百分含量为1.6%~2.0%。其制备方法为在氮气保护下,将聚对苯二甲酰对苯二胺短纤维与氢氧化钾按照重量比为2:3~9:5的比例加入至无水二甲基亚砜中,室温下机械搅拌3~5天直至反应完全,得到深红色芳纶纳米溶液。通过该方法可以制备一种新型球形纳米芳纶材料,以期成为制备高性能复合材料的新型纳米添加材料。其制备方法成本低,处理效率高,工艺简单,适合大规模工艺生产。

Description

一种球形纳米芳纶材料及其制备方法
技术领域
本发明属于球形纳米芳纶材料技术领域,尤其涉及一种新型球形纳米芳纶材料,及以聚对苯二甲酰对苯二胺(PPTA)短纤维为前驱体通过氢氧化钾常温处理制备该新型球形纳米芳纶材料的方法。
背景技术
随着纳米技术发展,纳米材料在高分子材料领域中的研究与开发正在兴起并已成趋势,至今已制备出类似无机纳米结构的包括纳米球,纳米片,纳米管等重要的高分子纳米材料。高分子纳米球一直是科研工作者研究的一个热门领域。由于高分子纳米球具有尺寸小、比表面积大、大小均一、表面易修饰等特点,在标准计量,生物医学,胶体科学等领域都具有广泛的应用。
芳纶是一种具有高强度、高模量、低密度、耐高温、耐化学腐蚀等优异性能的高科技纤维,通常作为一种增强材料广泛应用于航空、航天、汽车、造船和特种品开发等领域。芳纶高分子链中由于存在酰胺键间的氢键和芳香环间的π-π静电作用力,使得芳纶分子链呈刚性伸直状,而且横向分子间的作用力变弱,在某些条件下甚至可发生断裂。现已有研究表明,通过超声技术处理芳纶纤维可使纤维表面发生细纤维化,聚合度有少许降低。据报道,YangMing等通过控制kevlar纤维的脱质子化过程,首次在室温下成功制备了直径为3~30nm,长约10μm的芳纶纳米管,并将之作为一种添加剂制备了高强度复合材料。
纳米材料的特殊性能与纳米粒子的形貌密切相关,目前尚未见其它新形貌芳纶纳米材料,为了充分利用芳纶的优异性能和制备高性能复合材料,研发工艺简单,成本低,适合大规模工业使用的新型芳纶纳米材料是市场的迫切需求。
发明内容
本发明的目的在于提供一种以聚对苯二甲酰对苯二胺(PPTA)短纤维为前驱体的新型球形纳米芳纶材料的制备方法,该方法是直接以PPTA短纤维为前驱体,无需共聚或包覆,工艺简单,产率高,适于大规模生产。
本发明提供了一种新型球形纳米芳纶材料,其组成及各个组份的重量百分含量为:聚对苯二甲酰对苯二胺纳米粒子1.6wt%~2.0wt%,二甲基亚砜98.0wt%~98.4wt%,其中:所述聚对苯二甲酰对苯二胺纳米粒子的粒径为50~200nm,且为表面光滑的实心圆形球。
本发明还提供了一种制备所述新型球形纳米芳纶材料的制备方法,其制备步骤如下:在氮气保护下,将聚对苯二甲酰对苯二胺短纤维与氢氧化钾按照重量比为2:3~9:5的比例加入至无水二甲基亚砜中,室温下机械搅拌3~5天直至反应完全,得到深红色芳纶纳米溶液。其中每0.15g~0.25g的所述聚对苯二甲酰对苯二胺短纤维加入无水二甲基亚砜75ml~150ml。
该溶液装瓶密封,可用于做球形纳米芳纶涂覆材料或增强材料。
优选的,所述聚对苯二甲酰对苯二胺短纤维的特性粘数IV为3.0dl/g~8.0dl/g,数均分子量为3000~40000,所述短纤维中聚对苯二甲酰对苯二胺的聚合度为13~128。
本发明的有益效果是:提供了一种新型球形纳米芳纶材料,以期成为制备高性能复合材料的新型纳米添加材料。其制备方法成本低,处理效率高,工艺简单,适合大规模工艺生产。
附图说明
图1为本发明所制备新型球形纳米芳纶材料透射电镜图。
具体实施方式
以下对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1
在氮气保护下,0.2克聚对苯二甲酰对苯二胺短纤维与0.1107克氢氧化钾加入100毫升无水二甲基亚砜中,室温下机械搅拌3~5天直至反应完全,得到深红色芳纶纳米溶胶。装瓶密封,即为重量百分比为1.82%的球形纳米芳纶材料。
实施例2
在氮气保护下,0.2克聚对苯二甲酰对苯二胺短纤维与0.2214克氢氧化钾加入100毫升二甲基亚砜中,室温下机械搅拌3~5天直至反应完全,得到深红色芳纶纳米溶胶。装瓶密封,即为重量百分比为1.80%的球形纳米芳纶材料。
实施例3
在氮气保护下,0.2克聚对苯二甲酰对苯二胺短纤维与0.3184克氢氧化钾加入100毫升二甲基亚砜中,室温下机械搅拌3~5天直至反应完全,得到深红色芳纶纳米溶液。装瓶密封,即为重量百分比为1.78%的球形纳米芳纶材料。
如图1所示,为本发明所制备新型球形纳米芳纶材料透射电镜图。
以上所述仅为本发明的较佳实施方式,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种球形纳米芳纶材料的制备方法,其特征在于,在氮气保护下,将聚对苯二甲酰对苯二胺短纤维与氢氧化钾按照重量比为2:3~9:5的比例加入至无水二甲基亚砜中,室温下机械搅拌3~5天直至反应完全,得到深红色芳纶纳米溶液,其中每0.15g~0.25g的所述聚对苯二甲酰对苯二胺短纤维加入无水二甲基亚砜75ml~150ml。
2.根据权利要求1所述的球形纳米芳纶材料的制备方法,其特征在于:所述聚对苯二甲酰对苯二胺短纤维的特性粘数IV为3.0dl/g~8.0dl/g,数均分子量为3000~40000。
3.根据权利要求2所述的球形纳米芳纶材料的制备方法,其特征在于:所述聚对苯二甲酰对苯二胺短纤维中聚对苯二甲酰对苯二胺的聚合度为13~128。
4.一种根据权利要求1或2或3所述的制备方法制备得到的球形纳米芳纶材料,其特征在于:聚对苯二甲酰对苯二胺纳米粒子1.6wt%~2.0wt%,二甲基亚砜98.0wt%~98.4wt%,其中,所述聚对苯二甲酰对苯二胺纳米粒子的粒径为50~200nm。
CN201410153300.3A 2014-04-16 2014-04-16 一种球形纳米芳纶材料及其制备方法 Expired - Fee Related CN103937238B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410153300.3A CN103937238B (zh) 2014-04-16 2014-04-16 一种球形纳米芳纶材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410153300.3A CN103937238B (zh) 2014-04-16 2014-04-16 一种球形纳米芳纶材料及其制备方法

Publications (2)

Publication Number Publication Date
CN103937238A CN103937238A (zh) 2014-07-23
CN103937238B true CN103937238B (zh) 2016-04-20

Family

ID=51185129

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410153300.3A Expired - Fee Related CN103937238B (zh) 2014-04-16 2014-04-16 一种球形纳米芳纶材料及其制备方法

Country Status (1)

Country Link
CN (1) CN103937238B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105603759B (zh) * 2015-12-29 2017-11-03 哈尔滨工业大学 一种由本体纳米纤维自增强的高保土率的取芯软袋的制造方法
CN108912350B (zh) * 2018-06-13 2021-05-07 中科广化(重庆)新材料研究院有限公司 一种球形芳纶纳米材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009820A (en) * 1990-03-05 1991-04-23 E. I. Du Pont De Nemours And Company Process of making acicular para-aramide particles
CN1890432A (zh) * 2003-12-09 2007-01-03 帝人特瓦隆有限公司 对位芳族聚酰胺沉析纤维膜

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009820A (en) * 1990-03-05 1991-04-23 E. I. Du Pont De Nemours And Company Process of making acicular para-aramide particles
CN1890432A (zh) * 2003-12-09 2007-01-03 帝人特瓦隆有限公司 对位芳族聚酰胺沉析纤维膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"加工聚对苯二甲酰对苯二胺的新方法";左德钧;《化工新型材料》;19911231;第(1991年)卷(第11期);第26-28页,正文第二节,第26页左栏倒数第一段至右栏第二段 *

Also Published As

Publication number Publication date
CN103937238A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
Saba et al. Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites
Lin et al. Isolation of aramid nanofibers for high strength and toughness polymer nanocomposites
Torres-Rendon et al. Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison
Zabihi et al. Self-assembly of quaternized chitosan nanoparticles within nanoclay layers for enhancement of interfacial properties in toughened polymer nanocomposites
Ge et al. Construction of nanocrystalline cellulose-based composite fiber films with excellent porosity performances via an electrospinning strategy
Yang et al. A nano-TiO2/regenerated cellulose biohybrid enables simultaneously improved strength and toughness of solid epoxy resins
Wu et al. Facile and simple fabrication of strong, transparent and flexible aramid nanofibers/bacterial cellulose nanocomposite membranes
Zhang et al. Morphological structure and mechanical properties of epoxy/polysulfone/cellulose nanofiber ternary nanocomposites
Liu et al. Aqueous dispersion of carbon fibers and expanded graphite stabilized from the addition of cellulose nanocrystals to produce highly conductive cellulose composites
Vigneshwaran et al. Effect of Gum arabic on distribution behavior of nanocellulose fillers in starch film
Li et al. In situ fabrication of cellulose nanocrystal‐silica hybrids and its application in UHMWPE: Rheological, thermal, and wear resistance properties
Wu et al. Improving electrical, mechanical, thermal and hydrophobic properties of waterborne acrylic resin-glycidyl methacrylate (GMA) by adding multi-walled carbon nanotubes
Yin et al. Simultaneous enhancement of toughness, strength and superhydrophilicity of solvent-free microcrystalline cellulose fluids/poly (lactic acid) fibers fabricated via electrospinning approach
Bakhtiar et al. New generation of hybrid filler for producing epoxy nanocomposites with improved mechanical properties
Qiu et al. Carboxymethyl cellulose sizing repairs carbon fiber surface defects in epoxy composites
Hadavand et al. The role of nanoclay on surface roughness and characteristics of epoxy polysulfide nanocomposite
Li et al. Hydroxylated hexagonal boron nitride nanoplatelets enhance the mechanical and tribological properties of epoxy-based composite coatings
Cai et al. Extreme dynamic performance of nanofiber mats under supersonic impacts mediated by interfacial hydrogen bonds
CN103937238B (zh) 一种球形纳米芳纶材料及其制备方法
Ogbonna et al. A review on recent advances on the mechanical and conductivity properties of epoxy nanocomposites for industrial applications
Jee et al. Solvent-free encapsulation of curing agents for high performing one-component epoxy adhesives
Qiu et al. Environmentally friendly water-soluble epoxy emulsions nano sphere improved the interfacial performance of high modulus carbon fiber reinforced epoxy composites based on robust van der Waals force
Kang et al. Multiwalled carbon nanotube pretreatment to enhance tensile properties, process stability, and filler dispersion of polyamide 66 nanocomposites
Cassagnau et al. Viscosity and dynamics of nanorod (carbon nanotubes, cellulose whiskers, stiff polymers and polymer fibers) suspensions
Afolabi et al. Effect of dispersion method and CNT loading on the quality and performance of nanocomposite soy protein/CNTs adhesive for wood application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160420

Termination date: 20190416