CN103934007A - Oxidization synthesis method for network structure of surface plasma visible light catalyst Ag/AgCl - Google Patents
Oxidization synthesis method for network structure of surface plasma visible light catalyst Ag/AgCl Download PDFInfo
- Publication number
- CN103934007A CN103934007A CN201410124633.3A CN201410124633A CN103934007A CN 103934007 A CN103934007 A CN 103934007A CN 201410124633 A CN201410124633 A CN 201410124633A CN 103934007 A CN103934007 A CN 103934007A
- Authority
- CN
- China
- Prior art keywords
- network structure
- agcl
- visible light
- synthesis method
- light catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910021607 Silver chloride Inorganic materials 0.000 title claims abstract description 26
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 title claims abstract description 26
- 239000003054 catalyst Substances 0.000 title claims abstract description 13
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 13
- 238000001308 synthesis method Methods 0.000 title claims description 11
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 claims abstract description 20
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 230000003647 oxidation Effects 0.000 claims abstract description 12
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000004094 surface-active agent Substances 0.000 claims abstract description 11
- 238000005342 ion exchange Methods 0.000 claims abstract description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 24
- 239000000243 solution Substances 0.000 claims description 23
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical group [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 13
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 11
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 11
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 10
- 238000010992 reflux Methods 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000009833 condensation Methods 0.000 claims description 5
- 230000005494 condensation Effects 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000012266 salt solution Substances 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical group Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 3
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 2
- 238000013019 agitation Methods 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 238000011084 recovery Methods 0.000 claims 1
- 238000001291 vacuum drying Methods 0.000 claims 1
- 229910052709 silver Inorganic materials 0.000 abstract description 11
- 239000004332 silver Substances 0.000 abstract description 11
- 238000000034 method Methods 0.000 abstract description 8
- 230000001590 oxidative effect Effects 0.000 abstract description 3
- 230000002194 synthesizing effect Effects 0.000 abstract description 3
- 238000009776 industrial production Methods 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 abstract description 2
- 239000003960 organic solvent Substances 0.000 abstract 1
- 239000000047 product Substances 0.000 description 20
- 230000001699 photocatalysis Effects 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000002105 nanoparticle Substances 0.000 description 6
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 5
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- -1 Silver halide Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 101710134784 Agnoprotein Proteins 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000003760 magnetic stirring Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000007146 photocatalysis Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000005476 size effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910021592 Copper(II) chloride Inorganic materials 0.000 description 1
- 241000784732 Lycaena phlaeas Species 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- 239000002042 Silver nanowire Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- GTKRFUAGOKINCA-UHFFFAOYSA-M chlorosilver;silver Chemical compound [Ag].[Ag]Cl GTKRFUAGOKINCA-UHFFFAOYSA-M 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Landscapes
- Catalysts (AREA)
Abstract
本发明涉及一种表面等离子体可见光催化剂Ag/AgCl的网络结构的氧化合成方法:包括以下两个步骤:一、纳米银线的合成。配置银盐和表面活性剂溶液,将其同时逐滴加入盛有少量加热到一定温度有机溶剂的三颈烧瓶中,反应一段时间,银线生成。二、氧化和离子交换形成Ag/AgCl网络结构。称取氯酸盐,并将其配成溶液。将溶液缓慢滴加入上述体系,反应片刻,冷却,将样品进行离心,洗涤,干燥,收集得产物。本发明工艺简单,制备条件通用,产物形貌稳定,纯度高,且产物处理简单,适合中等规模工业生产。
The invention relates to a method for oxidizing and synthesizing a network structure of surface plasmon visible light catalyst Ag/AgCl, which comprises the following two steps: 1. Synthesizing nanometer silver wires. Prepare silver salt and surfactant solution, add them dropwise into a three-necked flask filled with a small amount of organic solvent heated to a certain temperature, react for a period of time, and silver wires are formed. 2. Oxidation and ion exchange form Ag/AgCl network structure. Weigh the chlorate and make a solution. The solution was slowly added dropwise to the above system, reacted for a while, cooled, the sample was centrifuged, washed, dried, and the product was collected. The invention has simple process, common preparation conditions, stable product appearance, high purity, simple product treatment, and is suitable for medium-scale industrial production.
Description
技术领域 technical field
本发明属于无机纳米材料技术领域,尤其涉及一种表面等离子体可见光催化剂Ag/AgCl的网络结构的氧化合成方法。 The invention belongs to the technical field of inorganic nanometer materials, and in particular relates to an oxidation synthesis method of a network structure of a surface plasmon visible light catalyst Ag/AgCl.
背景技术 Background technique
纳米科学技术是20世纪80年代末产生的一项正在迅猛发展的新技术。所谓纳米技术是指用若干分子或原子构成的单元——纳米微粒,制造材料或微型器件的科学技术。纳米微粒是指尺寸介于1~100 nm之间的金属或半导体的细小颗粒。纳米微粒所具有的特殊结构层次,赋予了它许多特殊的性质和功能,纳米粒子具有大的比表面积,表面原子数、表面能和表面张力随粒径的下降急剧增加,表面效应、小尺寸效应、量子尺寸效应、宏观量子隧道效应及介电限域效应等导致纳米粒子的热、磁、光、敏感特性和表面稳定性等不同于常规粒子,这就使它具有广泛的应用前景。 Nano science and technology is a new technology that is developing rapidly in the late 1980s. The so-called nanotechnology refers to the science and technology of manufacturing materials or micro-devices with units composed of several molecules or atoms—nanoparticles. Nanoparticles refer to fine particles of metals or semiconductors with a size ranging from 1 to 100 nm. The special structural level of nanoparticles endows it with many special properties and functions. Nanoparticles have a large specific surface area, and the number of surface atoms, surface energy and surface tension increase sharply with the decrease of particle size. Surface effects, small size effects , quantum size effect, macroscopic quantum tunneling effect and dielectric confinement effect lead to the thermal, magnetic, optical, sensitive characteristics and surface stability of nanoparticles are different from conventional particles, which makes it have a wide range of application prospects.
卤化银广泛应用于制造照片胶卷,胶版和胶纸上.氯化银在电化学中也有非常重要的应用,银一氯化银参比电极不易极化,因而能够提供较精确的数据.卤化银的光敏感性和不稳定性限制了其在光催化方面的应用,如果能够使卤化银在光照射下稳定存在就能将其应用于光催化方面.而纳米尺度的金属银在近紫外光区有较强的吸收,通过调整金属银的大小,形状以及纳米颗粒所处的环境能够使其吸收光谱发生红移。理论上,可以利用银纳米颗粒来增强光催化材料对太阳光的吸收。本实验中将银与氯化银进行有效的复合,形成Ag/AgCl的网络结构,首先,由于金属银与氯化银的紧密接触,使体系内所产生的电子能更容易传递到金属银颗粒上,有效的促进了电子和空穴的分离进而提高了量子效率,保证了体系的稳定性;其次,这种新颖的网络结构有较大的比表面积,能提供更多光催化的活性位点,提高催化效率;再次,Ag/AgCl的网络结构有效地拓展了体系对可见光的响应,使其在整个可见光区都有很强的吸收,大大提高了对太阳光的利用率。这种方法拓宽了通过金属表面等离子体共振效应加强光催化材料对可见光吸收的途径,进而提高了光催化材料的性能。 Silver halide is widely used in the manufacture of photo film, offset and gummed paper. Silver chloride also has a very important application in electrochemistry. The silver-silver chloride reference electrode is not easy to polarize, so it can provide more accurate data. Silver halide The photosensitivity and instability of silver halide limit its application in photocatalysis. If silver halide can be stabilized under light irradiation, it can be used in photocatalysis. Nanoscale metallic silver can be used in photocatalysis in the near ultraviolet region. With strong absorption, the absorption spectrum can be red-shifted by adjusting the size, shape and environment of the nanoparticles. In theory, silver nanoparticles can be used to enhance the absorption of sunlight by photocatalytic materials. In this experiment, silver and silver chloride are effectively compounded to form an Ag/AgCl network structure. First, due to the close contact between metallic silver and silver chloride, the electrons generated in the system can be more easily transferred to the metallic silver particles. First, it effectively promotes the separation of electrons and holes, thereby improving the quantum efficiency and ensuring the stability of the system; secondly, this novel network structure has a larger specific surface area, which can provide more photocatalytic active sites , improve the catalytic efficiency; again, the network structure of Ag/AgCl effectively expands the response of the system to visible light, making it have strong absorption in the entire visible light region, which greatly improves the utilization rate of sunlight. This method broadens the way to enhance the visible light absorption of photocatalytic materials through the metal surface plasmon resonance effect, thereby improving the performance of photocatalytic materials.
发明内容 Contents of the invention
本发明的目的是提供了一种表面等离子体可见光催化剂Ag/AgCl的网络结构的氧化合成方法。 The object of the present invention is to provide a method for oxidizing and synthesizing the network structure of surface plasmon visible light catalyst Ag/AgCl.
为了实现上述目的,本发明的技术方案如下: In order to achieve the above object, the technical scheme of the present invention is as follows:
一种表面等离子体可见光催化剂Ag/AgCl的网络结构的氧化合成方法,具体步骤如下: A kind of oxidative synthesis method of the network structure of surface plasmon visible light catalyst Ag/AgCl, concrete steps are as follows:
(1)纳米银线的合成 (1) Synthesis of silver nanowires
称取银盐和表面活性剂,将其分别溶于溶剂中,得到银盐溶液和表面活性剂溶液;取少量溶剂于三颈烧瓶中,磁力搅拌并加热至160~180℃,待溶剂温度稳定后,将银盐溶液和表面活性剂溶液同时逐滴加入到所述三颈烧瓶中,反应70-80分钟后,生成纳米银线;其中:银盐和表面活性剂的摩尔比为1:1; Weigh the silver salt and surfactant, and dissolve them in the solvent respectively to obtain the silver salt solution and the surfactant solution; take a small amount of solvent in a three-necked flask, stir magnetically and heat to 160~180°C until the temperature of the solvent is stable Finally, the silver salt solution and the surfactant solution are added dropwise into the three-necked flask at the same time, and after 70-80 minutes of reaction, nano-silver wires are generated; wherein: the molar ratio of the silver salt to the surfactant is 1:1 ;
(2)氧化和离子交换形成Ag/AgCl网络结构 (2) Oxidation and ion exchange to form Ag/AgCl network structure
称取氯酸盐,溶于溶剂中,得到氯酸盐溶液,将溶液缓慢加入到步骤(1)所得体系中,反应0-60分钟,冷却,将样品进行离心,洗涤,干燥,即得所需产物:其中:银盐与氯酸盐的摩尔比为1:1。 Weigh the chlorate, dissolve it in a solvent to obtain a chlorate solution, slowly add the solution to the system obtained in step (1), react for 0-60 minutes, cool, centrifuge the sample, wash, and dry to obtain the obtained Required product: Among them: the molar ratio of silver salt and chlorate is 1:1.
本发明中,步骤(1)和步骤(2)中所述溶剂均为乙二醇,纯度等级为分析纯。 In the present invention, the solvents described in step (1) and step (2) are all ethylene glycol, and the purity grade is analytically pure.
本发明中,所述银盐为硝酸银,其浓度为0.12mol/L。 In the present invention, the silver salt is silver nitrate, and its concentration is 0.12mol/L.
本发明中,所述表面活性剂为聚乙烯吡咯烷酮,其平均分子质量为1300000。 In the present invention, the surfactant is polyvinylpyrrolidone with an average molecular mass of 1,300,000.
本发明中,所述氯酸盐为氯化铜,其浓度为0.12mol/L。 In the present invention, the chlorate is copper chloride, and its concentration is 0.12mol/L.
本发明中,步骤(1)中所述加热采用油浴锅,整个加热过程有冷凝回流装置。 In the present invention, an oil bath is used for heating in step (1), and a condensation reflux device is provided in the whole heating process.
本发明中,步骤(2)所述洗涤是用乙醇和去离子水分别洗涤产物。 In the present invention, the washing in step (2) is washing the product with ethanol and deionized water respectively.
本发明中,步骤(2)中所述干燥是在60℃真空干燥箱中干燥10h。 In the present invention, the drying in step (2) is drying in a vacuum oven at 60°C for 10 hours.
由于采用上述方案,本发明具有以下有益效果: Due to the adoption of the above scheme, the present invention has the following beneficial effects:
1、本发明实现了利用常见的铜盐和氯酸盐为前驱体,通过加热回流首次合成了Ag/AgCl网络结构的复合材料。 1. The present invention realizes the first synthesis of a composite material with Ag/AgCl network structure by using common copper salt and chlorate as precursors through heating and reflux.
2、本发明的方法对产物的形貌有很高的调控性。 2. The method of the present invention has high controllability to the morphology of the product.
3、本发明采用简单无机盐作为反应物,具有很强的通用性。 3. The present invention adopts simple inorganic salts as reactants and has strong versatility.
4、本发明制备的产物具有良好的对有机污染物的光催化降解性能,可以作为高性能光催化剂,有较为广阔的发展前景和应用空间。 4. The product prepared by the present invention has good photocatalytic degradation performance on organic pollutants, can be used as a high-performance photocatalyst, and has relatively broad development prospects and application space.
5、本发明的工艺简单,制备条件通用,产物形貌稳定、纯度高,且产物处理方便简洁,适合于中等规模工业生产。 5. The process of the present invention is simple, the preparation conditions are common, the product is stable in appearance, high in purity, and the product is convenient and simple to handle, which is suitable for medium-scale industrial production.
6、本发明的方法具有条件温和、加热均匀、节能高效、易于控制等特点。 6. The method of the present invention has the characteristics of mild conditions, uniform heating, energy saving and high efficiency, and easy control.
附图说明 Description of drawings
图1为实施例1中在200nm的倍数下得到的中间产物的SEM照片。 Fig. 1 is the SEM picture of the intermediate product obtained under the multiple of 200nm in embodiment 1.
图2为实施例1中在600nm的倍数下得到的产物的SEM照片。 Fig. 2 is the SEM photo of the product obtained at the multiple of 600nm in Example 1.
图3为实施例1中在200nm的倍数下得到的产物的TEM照片。 FIG. 3 is a TEM photo of the product obtained in Example 1 at a multiple of 200 nm.
图4为实施例1所得产物的XRD图谱。 Fig. 4 is the XRD spectrum of the product obtained in Example 1.
图5为实施例1所得产物的EDS图谱。 Figure 5 is the EDS spectrum of the product obtained in Example 1.
图6为实施例2中在200nm的倍数下得到的产物的SEM照片。 FIG. 6 is a SEM photo of the product obtained in Example 2 at a multiple of 200 nm.
图7为实施例3中在200nm的倍数下得到的产物的SEM照片。 Figure 7 is a SEM photo of the product obtained in Example 3 at a multiple of 200 nm.
具体实施方式 Detailed ways
下面结合附图所示实施例对本发明作进一步详细的说明。 The present invention will be described in further detail below in conjunction with the embodiments shown in the accompanying drawings.
实施例1 Example 1
第一步:分别称取0.204g AgNO3,0.1332g 聚乙烯吡咯烷酮(PVP),0.204g CuCl2·2H2O置于三个标号分别为A,B,C的20ml的反应瓶中,分别加入10ml 乙二醇超声至溶解为透明溶液。 Step 1: Weigh 0.204g AgNO 3 , 0.1332g polyvinylpyrrolidone (PVP), 0.204g CuCl 2 2H 2 O into three 20ml reaction flasks labeled A, B, and C respectively, and add 10ml of ethylene glycol was sonicated until dissolved into a clear solution.
第二步:量取10ml乙二醇于50ml的三颈烧瓶中,加入磁子,并固定于铁架台上,置于油浴锅中,搭好回流冷凝装置,开启回流水和油浴锅开关,设置温度为160℃,并开启磁力搅拌。 Step 2: Measure 10ml of ethylene glycol into a 50ml three-necked flask, add magnets, fix it on the iron stand, place it in the oil bath, set up the reflux condensation device, and turn on the switch of the reflux water and the oil bath , set the temperature to 160°C, and turn on the magnetic stirring.
第三步:等油浴锅达到设置温度并稳定,同时逐滴加入AgNO3溶液和PVP溶液,滴加时间持续十分钟。 Step 3: Wait for the oil bath to reach the set temperature and stabilize, and at the same time add AgNO 3 solution and PVP solution drop by drop for ten minutes.
第四步:反应八十分钟,溶液变为乳白色,逐滴加入CuCl2溶液,滴加时间持续十分钟。 Step 4: react for 80 minutes, the solution turns milky white, add CuCl 2 solution dropwise, and the dropping time lasts for 10 minutes.
第五步:反应十分钟,关闭油浴锅和冷凝水,并将油浴锅移出液面,冷却至室温,用无水乙醇和去离子水洗涤数次,置于真空干燥箱中干燥。 Step 5: React for ten minutes, turn off the oil bath and condensed water, remove the oil bath from the liquid surface, cool to room temperature, wash with absolute ethanol and deionized water several times, and dry in a vacuum oven.
图1为实施例1中在200nm的倍数下得到的中间产物银线产物的SEM照片;图2为实施例1中在200nm的倍数下得到的产物的SEM照片;图3为实施例1所得产物的TEM图片;图4为实施例1所得产物的XRD图谱,说明复合物中的既有AgCl,又有Ag存在。图5为实施例1所得产物的EDS图谱,Ag的原子数多于Cl的原子数,进一步佐证了产物为Ag/AgCl复合物。 Fig. 1 is the SEM photograph of the intermediate product silver line product obtained under the multiple of 200nm in embodiment 1; Fig. 2 is the SEM photograph of the product obtained under the multiple of 200nm in embodiment 1; Fig. 3 is the product obtained in embodiment 1 TEM picture; Figure 4 is the XRD pattern of the product obtained in Example 1, indicating that both AgCl and Ag exist in the complex. Figure 5 is the EDS spectrum of the product obtained in Example 1. The number of Ag atoms is more than that of Cl, which further proves that the product is an Ag/AgCl complex.
实施例2 Example 2
第一步:分别称取0.204g AgNO3,0.1332g 聚乙烯吡咯烷酮(PVP),0.102g CuCl2·2H2O置于三个标号分别为A,B,C的20ml的反应瓶中,分别加入10ml 乙二醇超声至溶解为透明溶液。 Step 1: Weigh 0.204g AgNO3, 0.1332g polyvinylpyrrolidone (PVP), 0.102g CuCl 2 2H 2 O into three 20ml reaction bottles labeled A, B, and C respectively, add 10ml Ethylene glycol was sonicated until dissolved into a clear solution.
第二步:量取10ml乙二醇于50ml的三颈烧瓶中,加入磁子,并固定于铁架台上,置于油浴锅中,搭好回流冷凝装置,开启回流水和油浴锅开关,设置温度为160℃,并开启磁力搅拌。 Step 2: Measure 10ml of ethylene glycol into a 50ml three-necked flask, add magnets, fix it on the iron stand, place it in the oil bath, set up the reflux condensation device, and turn on the switch of the reflux water and the oil bath , set the temperature to 160°C, and turn on the magnetic stirring.
第三步:等油浴锅达到设置温度并稳定,同时逐滴加入AgNO3溶液和PVP溶液,滴加时间持续十分钟。 Step 3: Wait for the oil bath to reach the set temperature and stabilize, and at the same time add AgNO3 solution and PVP solution drop by drop for ten minutes.
第四步:反应八十分钟,溶液变为乳白色,逐滴加入CuCl2溶液,滴加时间持续十分钟。 Step 4: react for 80 minutes, the solution turns milky white, add CuCl 2 solution dropwise, and the dropping time lasts for 10 minutes.
第五步:反应四十分钟,关闭油浴锅和冷凝水,并将油浴锅移出液面,冷却至室温,用无水乙醇和去离子水洗涤数次,置于真空干燥箱中干燥。 Step 5: React for 40 minutes, close the oil bath and condensed water, remove the oil bath from the liquid surface, cool to room temperature, wash with absolute ethanol and deionized water several times, and dry in a vacuum oven.
图5为实施例2中在200nm的倍数下得到的产物的SEM照片。由图片可以看出,在此条件下依然能形成Ag/AgCl的网络结构,只是网较粗,相对比表面积较小。 FIG. 5 is a SEM photo of the product obtained in Example 2 at a multiple of 200 nm. It can be seen from the picture that the Ag/AgCl network structure can still be formed under this condition, but the network is thicker and the relative specific surface area is smaller.
实施例3 Example 3
第一步:分别称取0.204g AgNO3,0.1332g 聚乙烯吡咯烷酮(PVP),0.204g CuCl2·2H2O置于三个标号分别为A,B,C的20ml的反应瓶中,分别加入10ml 乙二醇超声至溶解为透明溶液。 Step 1: Weigh 0.204g AgNO 3 , 0.1332g polyvinylpyrrolidone (PVP), 0.204g CuCl 2 2H 2 O into three 20ml reaction flasks labeled A, B, and C respectively, and add 10ml of ethylene glycol was sonicated until dissolved into a clear solution.
第二步:量取10ml乙二醇于50ml的三颈烧瓶中,加入磁子,并固定于铁架台上,置于油浴锅中,搭好回流冷凝装置,开启回流水和油浴锅开关,设置温度为180℃,并开启磁力搅拌。 Step 2: Measure 10ml of ethylene glycol into a 50ml three-necked flask, add magnets, fix it on the iron stand, place it in the oil bath, set up the reflux condensation device, and turn on the switch of the reflux water and the oil bath , set the temperature to 180°C, and turn on the magnetic stirring.
第三步:等油浴锅达到设置温度并稳定,同时逐滴加入AgNO3溶液和PVP溶液,滴加时间持续十分钟。 Step 3: Wait for the oil bath to reach the set temperature and stabilize, and at the same time add AgNO3 solution and PVP solution drop by drop for ten minutes.
第四步:反应八十分钟,溶液变为乳白色,逐滴加入CuCl2溶液,滴加时间持续十分钟。 Step 4: react for 80 minutes, the solution turns milky white, add CuCl2 solution drop by drop, and the dropwise addition time lasts 10 minutes.
第五步:反应四十分钟,关闭油浴锅和冷凝水,并将油浴锅移出液面,冷却至室温,用无水乙醇和去离子水洗涤数次,置于真空干燥箱中干燥。 Step 5: React for 40 minutes, close the oil bath and condensed water, remove the oil bath from the liquid surface, cool to room temperature, wash with absolute ethanol and deionized water several times, and dry in a vacuum oven.
图6为实施例2中在200nm的倍数下得到的产物的SEM照片。由图片可以看出,在此条件下依然能形成Ag/AgCl的网络结构,网间距较大,较为疏松。 FIG. 6 is a SEM photo of the product obtained in Example 2 at a multiple of 200 nm. It can be seen from the picture that the Ag/AgCl network structure can still be formed under this condition, and the network spacing is relatively large and relatively loose.
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,在不脱离本发明的范畴的情况下所做出的修改都在本发明的保护范围之内。 The above description of the embodiments is for those of ordinary skill in the art to understand and apply the present invention. It is obvious that those skilled in the art can easily make various modifications to these embodiments, and apply the general principles described here to other embodiments without creative effort. Therefore, the present invention is not limited to the embodiments herein, and modifications made without departing from the scope of the present invention are within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410124633.3A CN103934007B (en) | 2014-03-31 | 2014-03-31 | The oxidation synthesis method of the network structure of a kind of surface plasma visible light catalyst Ag/AgCl |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410124633.3A CN103934007B (en) | 2014-03-31 | 2014-03-31 | The oxidation synthesis method of the network structure of a kind of surface plasma visible light catalyst Ag/AgCl |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103934007A true CN103934007A (en) | 2014-07-23 |
CN103934007B CN103934007B (en) | 2016-04-06 |
Family
ID=51182038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410124633.3A Expired - Fee Related CN103934007B (en) | 2014-03-31 | 2014-03-31 | The oxidation synthesis method of the network structure of a kind of surface plasma visible light catalyst Ag/AgCl |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103934007B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104190449A (en) * | 2014-08-20 | 2014-12-10 | 江苏大学 | Preparation method for hollow Ag/AgCl nano-structure photocatalysis material |
CN104400001A (en) * | 2014-11-14 | 2015-03-11 | 东北林业大学 | Method for preparing Ag/AgCl nanocomposite by utilizing trichoderma hamatum extracellular fluid |
CN104841947A (en) * | 2015-04-30 | 2015-08-19 | 同济大学 | Synthesis method of cable type silver chloride coated copper nano-structure |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102441376A (en) * | 2011-10-25 | 2012-05-09 | 通化师范学院 | Photoactivation preparation method of AgCl/Ag nano visible light catalyst |
-
2014
- 2014-03-31 CN CN201410124633.3A patent/CN103934007B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102441376A (en) * | 2011-10-25 | 2012-05-09 | 通化师范学院 | Photoactivation preparation method of AgCl/Ag nano visible light catalyst |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104190449A (en) * | 2014-08-20 | 2014-12-10 | 江苏大学 | Preparation method for hollow Ag/AgCl nano-structure photocatalysis material |
CN104400001A (en) * | 2014-11-14 | 2015-03-11 | 东北林业大学 | Method for preparing Ag/AgCl nanocomposite by utilizing trichoderma hamatum extracellular fluid |
CN104400001B (en) * | 2014-11-14 | 2016-03-16 | 东北林业大学 | A kind of method utilizing the mould extracellular fluid of hook-shaped wood to prepare Ag/AgCl nano composite material |
CN104841947A (en) * | 2015-04-30 | 2015-08-19 | 同济大学 | Synthesis method of cable type silver chloride coated copper nano-structure |
Also Published As
Publication number | Publication date |
---|---|
CN103934007B (en) | 2016-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | Pristine Bi2WO6 and hybrid Au-Bi2WO6 hollow microspheres with excellent photocatalytic activities | |
Cheng et al. | Enhanced photoelectrochemical and photocatalytic properties of anatase-TiO2 (B) nanobelts decorated with CdS nanoparticles | |
Ren et al. | Preparation and enhanced photocatalytic activity of TiO2 nanocrystals with internal pores | |
Liu et al. | Increased photocatalytic hydrogen evolution and stability over nano-sheet g-C3N4 hybridized CdS core@ shell structure | |
Wen et al. | In-situ synthesis of visible-light-driven plasmonic Ag/AgCl-CdWO4 photocatalyst | |
CN103708424B (en) | { the preparation method of the square nanometer sheet of BiOBr that 001} crystal face exposes | |
CN101623644B (en) | Preparation for compound hollow sphere CdS-TiO* and application in photocatalytic hydrogen production by water decomposition | |
CN104043481B (en) | A kind of functionalization graphene supports the preparation method of noble metal nanocrystalline composite catalyst | |
CN105854913A (en) | Two-dimension carbide loaded metal simple substance nano-powder, and preparation method and application thereof | |
CN103551145B (en) | A kind of preparation method of Nano Silver/Graphene/P25 composite | |
Liu et al. | Facile synthesis of core–shell CuO/Ag nanowires with enhanced photocatalytic and enhancement in photocurrent | |
Fang et al. | Preparation of the all-solid-state Z-scheme WO3/Ag/AgCl film on glass accelerating the photodegradation of pollutants under visible light | |
CN107262153A (en) | A kind of preparation method of Pd/MIL 100 (Fe) photochemical catalyst | |
CN105771978A (en) | Preparation method and application of novel silver-loaded magnetic graphene-based TiO2 nanotubes | |
CN105195143A (en) | Mesoporous photocatalytic material and preparation method thereof | |
Wang et al. | Reduced graphene oxide-based photocatalysts containing Ag nanoparticles on a TiO 2 nanotube array | |
CN102631910A (en) | Stable graphene/titanium oxide composite nanosol and preparation method thereof | |
CN103934007B (en) | The oxidation synthesis method of the network structure of a kind of surface plasma visible light catalyst Ag/AgCl | |
CN108620601A (en) | A method of it is nanocrystalline to prepare sheet Cu under room temperature | |
CN103157495A (en) | A kind of Au/BiOBr0.2I0.8 visible light catalyst and its preparation method | |
CN102698780A (en) | Silver halide/ silver phosphate heterojunction membrane visible photo-catalysis material and preparation method thereof | |
CN105536841A (en) | Preparation method of AgSiO2 core-shell structure modified g-C3N4 photocatalytic fiber | |
CN107694589A (en) | A kind of preparation method of film composite material for photoelectrocatalysis production hydrogen | |
CN104841947B (en) | A kind of cable-type silver chlorate wraps up the synthetic method of copper nanostructured | |
CN108855190A (en) | The Ag-g-C that a kind of copper chlorophyll trisodium and eosin are sensitized altogether3N4The preparation method and applications of catalysis material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160406 Termination date: 20190331 |
|
CF01 | Termination of patent right due to non-payment of annual fee |