CN103933993A - 可磁分离的光催化剂纳米Eu3+-CoFe2O4粉体的制备方法 - Google Patents

可磁分离的光催化剂纳米Eu3+-CoFe2O4粉体的制备方法 Download PDF

Info

Publication number
CN103933993A
CN103933993A CN201410105065.2A CN201410105065A CN103933993A CN 103933993 A CN103933993 A CN 103933993A CN 201410105065 A CN201410105065 A CN 201410105065A CN 103933993 A CN103933993 A CN 103933993A
Authority
CN
China
Prior art keywords
preparation
cofe2o4
powder
cofe
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410105065.2A
Other languages
English (en)
Other versions
CN103933993B (zh
Inventor
陈士昆
周铭
陈晔
常春
陈群
黄顺道
曹继兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU RONGCHANG NEW MATERIAL TECHNOLOGY Co Ltd
Huainan Normal University
Original Assignee
JIANGSU RONGCHANG NEW MATERIAL TECHNOLOGY Co Ltd
Huainan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU RONGCHANG NEW MATERIAL TECHNOLOGY Co Ltd, Huainan Normal University filed Critical JIANGSU RONGCHANG NEW MATERIAL TECHNOLOGY Co Ltd
Priority to CN201410105065.2A priority Critical patent/CN103933993B/zh
Publication of CN103933993A publication Critical patent/CN103933993A/zh
Application granted granted Critical
Publication of CN103933993B publication Critical patent/CN103933993B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明是关于一种可磁分离的光催化剂纳米Eu3+-CoFe2O4粉体的制备方法,采用溶胶凝胶法制备纳米磁性Eu3+-CoFe2O4和CoFe2O4粉体,通过X射线衍射仪和TEM表征,CoFe2O4的特征峰的存在,证实样品粒径30nm左右颗粒。SQUID VSM磁性测量表明:掺杂铕增加,样品的饱和磁化强度、矫顽力显著增加。通过Eu3+-CoFe2O4对有机染料甲基橙在500w氙灯光照90min后,甲基橙溶液的降解率达到99.51%,且催化剂很容易被磁性物质回收。本发明所合成的纳米晶具有磁性强、光催化效率高和易回收等优点;原料成本低,零排放,利用太阳光能,便于工业化生产。

Description

可磁分离的光催化剂纳米Eu3+-CoFe2O4粉体的制备方法
技术领域
本发明涉及一种具有易回收的光催化作用纳米磁性材料的制备,在太阳光下催化效率高,适合各种有机污染物的降解,尤其适用于芳环类有机物甲基橙领域。
背景技术
光催化氧化有机物使其分解为小分子物质,从而去除其对环境的污染,是最近几十年来比较热门的研究课题。孙东峰化学共沉淀法制备铁酸钴纳米粒子,用硫酸氧钛水解法在铁酸钴粒子表面包覆二氧化钛,制得顺磁性易于固液分离的二氧化钛/铁酸钴复合光催化材料,并运用X射线衍射仪(XRD)、透射电镜(TEM)和振动样品磁强计(VSM)技术进行了表征,以甲基橙为模拟污染物研究其光催化活性,结果表明该材料具有较高的光催化活性同时有很好的重复使用性能。Rucha Desai用水热共沉淀法制备了居里温度和饱和磁化强度可调的Mn0.5Zn0.5Fe2O4铁磁性纳米颗粒,热重分析显示居里温度会随着粒径大小增加而增大。吴光辉等人当甲基橙的pH值为4时,降解率可达90%左右,而pH值小于4时,降解率接近60%,pH值大于4时,降解率在45%左右,因此,UV/H2O2/草酸铁络合物法光催化降解甲基橙的最佳酸度为pH=4。
溶胶-凝胶法具有操作简便,制备的物质纯度高,均匀性好等优点,而受到广泛重视。但是光催化领域中仍然存在许多问题:1.大部分光催化剂量子效率低,光生电子和空穴复合速率很高,导致光催化效率降低;2.催化剂的能带间隙大,使得其只能在紫外光下才能产生光催化活性,限制了其应用大部分的光催化反应为多相反应,催化剂的回收比较复杂。探索一种便于分离的,催化活性高的可见光光催化剂成为了研究的热点。
发明内容
本发明目的是克服光催化剂TiO2难回收、一般铁氧体磁性弱、制备纳米材料纯度不高的缺点,本发明采用以丙二醇为溶剂和络合剂的溶胶-凝胶法,制备了Eu3+-CoFe2O4纳米微粒催化剂,由于禁带宽度小、光化学稳定性高、低消耗,在太阳能光下将其用于催化甲基橙降解,降解率接近99.51%,该催化剂很容易被回收。此外,这些纳米颗粒处理水后,可以再利用磁铁收集有效地避免了二次污染。
本发明采用Eu3+-CoFe2O4—H2O2pH4系统,用溶胶-凝胶法制备了Eu3+-CoFe2O4超细微粒催化剂,用TEM、XRD等手段进行了表征,SQUID VSM磁性测量系统的分析表明:掺杂铕增加,样品的饱和磁化强度显著增加。得到平均粒径为30nm左右、分散均匀的超细粒子,先在600℃下焙烧2h,再在800℃烘烤2h后,研磨即得Eu3+-CoFe2O4纳米粉体。然后进行光催化降解实验,测定甲基橙溶液随不同时间光照的吸光度确定降解率。
本发明通过以下技术方案得以实现:
1.溶胶-凝胶法制备CoFe2O4纳米颗粒
将n Co(NO3)2·6H2O:n Fe(NO3)3·9H2O:n Eu(NO3)3·6H2O=1:2:0.05的比例溶解在一定量的丙二醇,均在80℃下搅拌蒸发至形成棕色透明溶胶,并在110℃下干燥24h得干凝胶,将干凝胶取出放入刚玉坩埚研磨后,在马夫炉600℃烘烤2h,将产物研细后再在800℃烘烤2h,随炉冷却,将制备好的产品装入标示好的样品袋中。
本发明中,丙二醇起到做配位剂和溶剂的作用,能够防止纳米粒子团聚。
本发明是关于一种可磁分离的纳米光催化剂Eu3+-CoFe2O4的制备方法,采用溶胶凝胶法制备纳米磁性Eu3+-CoFe2O4和CoFe2O4粉体,通过X射线衍射仪和TEM表征,CoFe2O4的特征峰的存在,证实样品粒径30nm左右颗粒。SQUID VSM磁性测量表明:掺杂铕增加,样品的饱和磁化强度、矫顽力显著增加。通过Eu3+-CoFe2O4对有机染料甲基橙在500w氙灯光照90min后,甲基橙溶液的降解率达到99.51%,且催化剂很容易被磁性物质回收。本发明属于纳米材料制备技术及光催化性能研究,以丙二醇作为溶剂和配位剂,绿色环保;实验工艺路线简单、操作便利;所合成的纳米晶具有磁性强、光催化效率高和易回收等优点;原料成本低,零排放,利用太阳光能,便于工业化生产。
附图说明
图1为Co-Fe复合氧化物的XRD图谱;
图2(包括图2a和图2b)为Eu3+-CoFe2O4纳米光催化剂在不同放大倍数下的T EM图片;
图3为CoFe2O4-Eu3+(5%)磁滞回线图;
图4为纳米CoFe2O4掺杂Eu3+(5%)紫外可见光谱图;
图5a为纳米Eu3+-CoFe2O4水溶液图片;图5b为在外加磁场下磁分离的纳米Eu3+-CoFe2O4水溶液图片。
具体实施方式
下面结合附图和试验来进一步描述本发明:
本发明采用JEM-2010型透射电镜,可以证明制备的样品为纳米粉体,采用SQUID-VSM测试CoFe2O4-Eu 3+磁滞回线。
本实施例通过以下技术方案得以实现:
(1)将0.01molCo(NO3)2·6H2O、0.02molFe(NO3)3·9H2O和0.0005mol Eu(NO3)3·6H2O溶于25ml丙二醇,形成红棕色溶液,将所配溶液加入25ml去离子水做溶剂,加热80℃到并剧烈搅拌,形成透明溶胶;
(2)搅拌结束后将所得产物放入烘箱110℃干燥24h,获得干凝胶;
(3)将所得干凝胶置于研钵中研成粉末,放入马弗炉中600℃烘烤2h后,再在800℃烘烤2h后,得到Eu3+-CoFe2O4纳米晶。
表1:实验配方
2.XRD、TEM的表征和磁学测试
附图1可见,30.26°(220),35.76°(311),43.15°(400),57.25°(511),62.76°(440)与标准卡尖晶石CoFe2O4(PDF Card NO:22-1086)对比吻合,属于立方晶系,晶胞参数a=8.391。根据Scherrer公式估算及TEM表征制备的CoFe2O4样品的晶粒度约为30nm,处于纳米微粒尺度范围。样品各晶面产生的衍射峰明显,且基线基本平稳。随着Eu的加入,所得样品的衍射峰强度减弱,峰形宽化明显,表明同样条件下合成产物的结晶化程度和晶粒尺寸Eu的加入而减小。
附图2可以看出,Eu3+-CoFe2O4纳米粒子完全包覆在了表面活性剂的表面,纳米粒子均匀的分散平均粒径大约30纳米左右,这与X R D结果是一致的。
附图3可知:随着铕掺杂量的增加,比饱和磁化强度值和剩余比磁化强度值都是单调增加,而矫顽场值呈增大趋势。随着Eu3+掺杂含量的增加,样品饱和磁化强度发生显著增强,这主要归因于Eu3+离子具有4f成单电子,是磁性稀土离子,与磁性的Fe3+离子之间产生的铁磁耦合作用。
表2各种样品的磁学性质
3.光催化性能的测试及可回收实验
先配制1.0×10-5mol.L-1的甲基橙标准溶液,用移液管取两份2mL30%的H2O2分别加入(盛有200ml1.0×10-5mol.L-1的甲基橙标准溶液)的250ml烧杯中,用盐酸溶液调节到pH=4.0,搅拌混合均匀;再将称量好的10mg纳米TiO2和10mg纳米CoFe2O4-Eu3+分别加入上述的两个烧杯里,先在黑暗环境中磁力搅拌30m in,使得染料与催化剂之间到达吸附-解析平衡。然后500W氙灯模拟光光照30m in,进行离心分离后,通过紫外-可见分光光度计测试上清液在506n m处的吸光度,得出剩余染料的浓度。在对甲基橙溶液进行吸光度测定每隔30m in测定一次。
附图4纳米CoFe2O4掺杂Eu3+(5%)对甲基橙的脱色率计算:从图中可以读出Ao=0.411a.u.,At=0.002a.u.
脱色率=[(A0-At)/A0]×100%=[(0.411-0.002)/0.411]×100%=99.51%
附图5a和图5b可知:Eu3+-CoFe2O4纳米催化剂不仅具有优异的光催化性能,而且便于回收。在外加磁场的作用下,Eu3+-CoFe2O4催化剂能很快从水相中分离出来。这种性能方便催化剂的回收和再利用,对于光催化剂的工业应用具有重要的意义。

Claims (2)

1.可磁分离的光催化剂纳米Eu3+-CoFe2O4粉体的制备方法,其特征在于:所用的原料包括Co(NO3)2·6H2O、Fe(NO3)3·9H2O、Eu(NO3)3·6H2O、丙二醇。
2.根据权利要求书1所述的制备方法,其特征在于,通过下述溶胶-凝胶法得到,具体步骤如下:
(1)将n Co(NO3)2·6H2O:n Fe(NO3)3·9H2O:n Eu(NO3)3·6H2O为1:2:0.05的比例溶解于丙二醇,形成红棕色溶液,将所配溶液加入去离子水做溶剂,加热80℃到并剧烈搅拌,形成透明溶胶;
(2)搅拌结束后将所得产物放入烘箱110℃干燥24h,获得干凝胶;
(3)将所得干凝胶置于研钵中研成粉末,放入马弗炉中600℃烘烤2h后,再在800℃烘烤2h后,得到Eu3+-CoFe2O4纳米晶。
CN201410105065.2A 2014-03-20 2014-03-20 可磁分离的光催化剂纳米Eu3+-CoFe2O4粉体的制备方法 Active CN103933993B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410105065.2A CN103933993B (zh) 2014-03-20 2014-03-20 可磁分离的光催化剂纳米Eu3+-CoFe2O4粉体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410105065.2A CN103933993B (zh) 2014-03-20 2014-03-20 可磁分离的光催化剂纳米Eu3+-CoFe2O4粉体的制备方法

Publications (2)

Publication Number Publication Date
CN103933993A true CN103933993A (zh) 2014-07-23
CN103933993B CN103933993B (zh) 2016-01-20

Family

ID=51182024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410105065.2A Active CN103933993B (zh) 2014-03-20 2014-03-20 可磁分离的光催化剂纳米Eu3+-CoFe2O4粉体的制备方法

Country Status (1)

Country Link
CN (1) CN103933993B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105129868A (zh) * 2015-07-16 2015-12-09 大连理工大学 一种制备Cr3+掺杂的CoFe2O4高密度磁记录材料的方法
CN105214674A (zh) * 2015-09-17 2016-01-06 淮南师范学院 纳米CoFe1.95Y0.05O4粉体的制备及催化降解甲基橙的方法
CN107381649A (zh) * 2017-06-09 2017-11-24 安徽理工大学 一种铕掺杂钴铁氧体复合材料及其制备方法
CN111729670A (zh) * 2020-07-02 2020-10-02 广东石油化工学院 一种α型三氧化二铋磁性纳米光催化剂的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1602997A (zh) * 2004-09-07 2005-04-06 天津大学 微波合成钙钛矿结构催化剂以及电催化剂材料及制造方法
US20060025713A1 (en) * 2003-05-12 2006-02-02 Alex Rosengart Magnetic particle-based therapy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060025713A1 (en) * 2003-05-12 2006-02-02 Alex Rosengart Magnetic particle-based therapy
CN1602997A (zh) * 2004-09-07 2005-04-06 天津大学 微波合成钙钛矿结构催化剂以及电催化剂材料及制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIN-CHAO ZHANG ET AL.,: "Electrical Properties of NASICON-type Structured Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte Prepared by 1,2-Propylene glycol-assisted Sol-gel Method", 《CHINESE JOURNAL OF CHEMICAL PHYSICS》, vol. 25, no. 6, 27 December 2012 (2012-12-27) *
杨贵进: "稀土掺杂纳米钴铁氧体的制备及其磁性能研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》, 15 September 2009 (2009-09-15) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105129868A (zh) * 2015-07-16 2015-12-09 大连理工大学 一种制备Cr3+掺杂的CoFe2O4高密度磁记录材料的方法
CN105214674A (zh) * 2015-09-17 2016-01-06 淮南师范学院 纳米CoFe1.95Y0.05O4粉体的制备及催化降解甲基橙的方法
CN107381649A (zh) * 2017-06-09 2017-11-24 安徽理工大学 一种铕掺杂钴铁氧体复合材料及其制备方法
CN111729670A (zh) * 2020-07-02 2020-10-02 广东石油化工学院 一种α型三氧化二铋磁性纳米光催化剂的制备方法
CN111729670B (zh) * 2020-07-02 2022-12-23 广东石油化工学院 一种α型三氧化二铋磁性纳米光催化剂的制备方法

Also Published As

Publication number Publication date
CN103933993B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
Zinatloo-Ajabshir et al. Preparation of magnetically retrievable CoFe2O4@ SiO2@ Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants
Kumar et al. Visible-light-driven N-TiO2@ SiO2@ Fe3O4 magnetic nanophotocatalysts: synthesis, characterization, and photocatalytic degradation of PPCPs
Falak et al. Synthesis, characterization, and magnetic properties of ZnO-ZnFe2O4 nanoparticles with high photocatalytic activity
Abroshan et al. Novel magnetically separable Ag3PO4/MnFe2O4 nanocomposite and its high photocatalytic degradation performance for organic dyes under solar-light irradiation
Zhu et al. Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation
Wu et al. Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation
Singh et al. Synthesis of zinc substituted cobalt ferrites via reverse micelle technique involving in situ template formation: a study on their structural, magnetic, optical and catalytic properties
Ansari et al. NiTiO3/NiFe2O4 nanocomposites: Simple sol–gel auto-combustion synthesis and characterization by utilizing onion extract as a novel fuel and green capping agent
Nguyen et al. A facile synthesis, characterization, and photocatalytic activity of magnesium ferrite nanoparticles via the solution combustion method
Shao et al. Preparation and characterization of magnetic core–shell ZnFe2O4@ ZnO nanoparticles and their application for the photodegradation of methylene blue
Wilson et al. Preparation and photocatalytic properties of hybrid core–shell reusable CoFe2O4–ZnO nanospheres
He et al. A magnetic TiO2 photocatalyst doped with iodine for organic pollutant degradation
Wetchakun et al. Synthesis and characterization of novel magnetically separable CoFe2O4/CeO2 nanocomposite photocatalysts
Mao et al. Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method
Chang et al. Preparation of Fe 3 O 4/TiO 2 magnetic photocatalyst for photocatalytic degradation of phenol
Makovec et al. Magnetically recoverable photocatalytic nanocomposite particles for water treatment
Bhukal et al. Magnetically separable copper substituted cobalt–zinc nano-ferrite photocatalyst with enhanced photocatalytic activity
Li et al. Novel ternary composites: Preparation, performance and application of ZnFe2O4/TiO2/polyaniline
Liu et al. Visible light photodegradation of methylene blue by AgBr–TiO2/SiO2@ Fe3O4 magnetic photocatalysts
CN103933993B (zh) 可磁分离的光催化剂纳米Eu3+-CoFe2O4粉体的制备方法
Bakhshayesh et al. Synthesis of magnetite-porphyrin nanocomposite and its application as a novel magnetic adsorbent for removing heavy cations
Cao et al. Green synthesis and surface properties of Fe3O4@ SA core–shell nanocomposites
Reza Mohammad Shafiee et al. Green synthesis of NiFe2O4/Fe2O3/CeO2 nanocomposite in a Walnut Green Hulls extract medium: magnetic properties and characterization
Puspitarum et al. High performance of magnetically separable and recyclable photocatalyst of green-synthesized CoFe2O4/TiO2 nanocomposites for degradation of methylene blue
Fardood et al. Preparation, characterization and photocatalysis performances of superparamagnetic MgFe2O4@ CeO2 nanocomposites: Synthesized via an easy and green sol–gel method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant