CN103930910A - 无监督的神经重放、学习完善、关联以及记忆转移的方法和装置:结构可塑性和结构约束建模 - Google Patents

无监督的神经重放、学习完善、关联以及记忆转移的方法和装置:结构可塑性和结构约束建模 Download PDF

Info

Publication number
CN103930910A
CN103930910A CN201280055315.5A CN201280055315A CN103930910A CN 103930910 A CN103930910 A CN 103930910A CN 201280055315 A CN201280055315 A CN 201280055315A CN 103930910 A CN103930910 A CN 103930910A
Authority
CN
China
Prior art keywords
neuron
pattern
delay
neuronic
afferent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280055315.5A
Other languages
English (en)
Other versions
CN103930910B (zh
Inventor
J·F·亨泽格
V·H·陈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN103930910A publication Critical patent/CN103930910A/zh
Application granted granted Critical
Publication of CN103930910B publication Critical patent/CN103930910B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/049Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Image Analysis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本公开的某些方面支持无监督的神经重放、学习完善、关联以及记忆转移的技术。

Description

无监督的神经重放、学习完善、关联以及记忆转移的方法和装置:结构可塑性和结构约束建模
相关申请的交叉引用
本专利申请的主题与2011年11月9日提交的题为“METHODS ANDAPPARATUS FOR UNSUPERVISED NEURAL REPLAY,LEARNINGREFINEMENT,ASSOCIATION AND MEMORY TRANSFER:NEURALCOMPONENT REPLAY(无监督的神经重放、学习完善、关联以及记忆转移的方法和装置:神经组件重放)”的美国专利申请、2011年11月9日提交的题为“METHODS AND APPARATUS FOR UNSUPERVISED NEURAL REPLAY,LEARNING REFINEMENT,ASSOCIATION AND MEMORY TRANSFER:NEURAL COMPONENT MEMORY TRANSFER(无监督的神经重放、学习完善、关联以及记忆转移的方法和装置:神经组件记忆转移)”的美国专利申请、2011年11月9日提交的题为“METHODS AND APPARATUS FOR UNSUPERVISEDNEURAL REPLAY,LEARNING REFINEMENT,ASSOCIATION AND MEMORYTRANSFER:NEURAL ASSOCIATIVE LEARNING,PATTERN COMPLETION,SEPARATION,GENERALIZATION AND HIERARCHICAL REPLAY(无监督的神经重放、学习完善、关联以及记忆转移的方法和装置:神经关联学习、模式补全、划分、概括以及阶层式重放)”的美国专利申请有关,上述申请与本申请一同申请且已转让给本申请的受让人、并通过引用明确合并于此。
背景技术
领域
本公开的某些方面一般地涉及神经系统工程设计,并且更具体地,涉及无监督的神经重放、学习完善、关联以及记忆转移的方法和装置。
背景
在神经系统工程设计领域,有一项基本问题,即在没有原始刺激的情况下,真实重放已由一个或多个神经元学习到的神经激发模式。此外,在原始的刺激不再存在之后进行快速学习、学习完善、关联、以及记忆转移的问题仍然有待解决。
以生物学启发的神经元模型来学习模式的当前方法在功能上是单向的方法:为了确定神经元匹配什么模式,需要尝试不同的模式直到找到匹配的那个。真实重放什么已被学习(无论是生物学地还是通过机器来学习)的方法是未知的。
概述
本公开的某些方面提供一种神经组件重放的方法。该方法一般包括用一个或多个参照神经元来参照多个传入神经元输出中的模式,用一个或多个关系方面神经元来匹配所述多个传入神经元输出中的模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面,以及诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式。
本公开的某些方面提供了一种用于神经组件重放的装置。该装置一般包括配置成用一个或多个参照神经元来参照多个传入神经元输出中的模式的第一电路,配置成用一个或多个关系方面神经元来匹配所述多个传入神经元输出中的模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面的第二电路,以及配置成诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式的第三电路。
本公开的某些方面提供了一种用于神经组件重放的设备。该设备一般包括用于用一个或多个参照神经元来参照多个传入神经元输出中的模式的装置,用于用一个或多个关系方面神经元来匹配所述多个传入神经元输出中的模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面的装置,以及用于诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式的装置。
本公开的某些方面提供一种用于神经组件重放的计算机程序产品。该计算机程序产品一般包括计算机可读介质,所述计算机可读介质包括用于执行以下动作的代码:用一个或多个参照神经元来参照多个传入神经元输出中的模式,用一个或多个关系方面神经元来匹配所述多个传入神经元输出中的模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面,以及诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式。
本公开的某些方面提供一种神经组件学习完善以及快速学习的方法。该方法一般包括用一个或多个模式学习神经元来参照多个传入神经元输出中的模式,用一个或多个关系方面神经元来匹配所述多个传入神经元输出中的模式与一个或多个参照神经元的输出之间的一个或多个关系方面,诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式,以及使用被诱导的基本相似的模式来完善所述一个或多个模式学习神经元的学习。
本公开的某些方面提供一种神经组件学习完善以及快速学习的装置。该装置一般包括配置成用一个或多个模式学习神经元来参照多个传入神经元输出中的模式的第一电路,配置成用一个或多个关系方面神经元来匹配所述多个传入神经元输出中的模式与一个或多个参照神经元的输出之间的一个或多个关系方面的第二电路,配置成诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式的第三电路,以及配置成使用被诱导的基本相似的模式来完善所述一个或多个模式学习神经元的学习的第四电路。
本公开的某些方面提供一种神经组件学习完善以及快速学习的设备。该设备一般包括用于用一个或多个模式学习神经元来参照多个传入神经元输出中的模式的装置,用于用一个或多个关系方面神经元来匹配所述多个传入神经元输出中的模式与一个或多个参照神经元的输出之间的一个或多个关系方面的装置,用于诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式的装置,以及用于使用被诱导的基本相似的模式来完善所述一个或多个模式学习神经元的学习的装置。
本公开的某些方面提供一种神经组件学习完善以及快速学习的计算机程序产品。该计算机程序产品一般包括计算机可读介质,所述计算机可读介质包括用于执行以下动作的代码:用一个或多个模式学习神经元来参照多个传入神经元输出中的模式,用一个或多个关系方面神经元来匹配所述多个传入神经元输出中的模式与一个或多个参照神经元的输出之间的一个或多个关系方面,诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式,以及使用被诱导的基本相似的模式来完善所述一个或多个模式学习神经元的学习。
本公开的某些方面提供一种神经学习完善的方法。该方法一般包括在刺激之下,学习一组输入中的模式的子集,学习所述模式的元素和所述模式的子集之间的关系方面,在没有刺激的情况下,使用已学习到的关系方面来重放所述一组输入中的所述模式,以及在没有刺激的情况下,完善对所述一组输入中的所述模式的学习。
本公开的某些方面提供了一种用于神经学习完善的装置。该装置一般包括配置成在刺激之下,学习一组输入中的模式的子集的第一电路,配置成学习所述模式的元素和所述模式的子集之间的关系方面的第二电路,配置成在没有刺激的情况下,使用已学习到的关系方面来重放所述一组输入中的所述模式的第三电路,以及配置成在没有刺激的情况下,完善对所述一组输入中的所述模式的学习的第四电路。
本公开的某些方面提供了一种用于神经学习完善的设备。该设备一般包括用于在刺激之下,学习一组输入中的模式的子集的装置,用于学习所述模式的元素和所述模式的子集之间的关系方面的装置,用于在没有刺激的情况下,使用已学习到的关系方面来重放所述一组输入中的所述模式的装置,以及用于在没有刺激的情况下,完善对所述一组输入中的所述模式的学习的装置。
本公开的某些方面提供一种用于神经学习完善的计算机程序产品。该计算机程序产品一般包括计算机可读介质,所述计算机可读介质包括用于执行以下动作的代码:在刺激之下,学习一组输入中的模式的子集,学习所述模式的元素和所述模式的子集之间的关系方面,在没有刺激的情况下,使用已学习到的关系方面来重放所述一组输入中的所述模式,以及在没有刺激的情况下,完善对所述一组输入中的所述模式的学习。
本公开的某些方面提供一种神经组件重放的方法。该方法一般包括用一个或多个参照神经元来参照多个传入神经元输出中的模式,用一个或多个关系方面神经元来匹配所述多个传入神经元输出中的模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面,以及通过使所述一个或多个关系方面神经元的输出突发来诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式。
本公开的某些方面提供了一种用于神经组件重放的装置。该装置一般包括配置成用一个或多个参照神经元来参照多个传入神经元输出中的模式的第一电路,配置成用一个或多个关系方面神经元来匹配所述多个传入神经元输出中的模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面的第二电路,以及配置成通过使所述一个或多个关系方面神经元的输出突发来诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式的第三电路。
本公开的某些方面提供了一种用于神经组件重放的设备。该设备一般包括用于用一个或多个参照神经元来参照多个传入神经元输出中的模式的装置,用于用一个或多个关系方面神经元来匹配所述多个传入神经元输出中的模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面的装置,以及用于通过使所述一个或多个关系方面神经元的输出突发来诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式的装置。
本公开的某些方面提供一种用于神经组件重放的计算机程序产品。该计算机程序产品一般包括计算机可读介质,所述计算机可读介质包括用于执行以下动作的代码:用一个或多个参照神经元来参照多个传入神经元输出中的模式,用一个或多个关系方面神经元来匹配所述多个传入神经元输出中的模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面,以及通过使所述一个或多个关系方面神经元的输出突发来诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式。
本公开的某些方面提供一种神经组件重放的方法。该方法一般包括用一个或多个参照神经元来参照多个传入神经元输出中的模式,用一个或多个关系方面神经元来匹配所述多个传入神经元输出中的模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面,以及诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式,其中所述传入神经元中的至少一个传入神经元、所述一个或多个参照神经元、或所述一个或多个关系方面神经元之间的信号传递包括快速尖峰序列或独立尖峰中的至少一者。
本公开的某些方面提供了一种用于神经组件重放的装置。该装置一般包括配置成用一个或多个参照神经元来参照多个传入神经元输出中的模式的第一电路,配置成用一个或多个关系方面神经元来匹配所述多个传入神经元输出中的模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面的第二电路,以及配置成诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式的第三电路,其中所述传入神经元中的至少一个传入神经元、所述一个或多个参照神经元、或所述一个或多个关系方面神经元之间的信号传递包括快速尖峰序列或独立尖峰中的至少一者。
本公开的某些方面提供了一种用于神经组件重放的设备。该设备一般包括用于用一个或多个参照神经元来参照多个传入神经元输出中的模式的装置,用于用一个或多个关系方面神经元来匹配所述多个传入神经元输出中的模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面的装置,以及用于诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式的装置,其中所述传入神经元中的至少一个传入神经元、所述一个或多个参照神经元、或所述一个或多个关系方面神经元之间的信号传递包括快速尖峰序列或独立尖峰中的至少一者。
本公开的某些方面提供一种用于神经组件重放的计算机程序产品。该计算机程序产品一般包括计算机可读介质,所述计算机可读介质包括用于执行以下动作的代码:用一个或多个参照神经元来参照多个传入神经元输出中的模式,用一个或多个关系方面神经元来匹配所述多个传入神经元输出中的模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面,以及诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式,其中所述传入神经元中的至少一个传入神经元、所述一个或多个参照神经元、或所述一个或多个关系方面神经元之间的信号传递包括快速尖峰序列或独立尖峰中的至少一者。本公开的某些方面提供一种神经组件记忆转移的方法。该方法一般包括用一个或多个参照神经元来参照多个传入神经元输出中的模式,用一个或多个第一关系方面神经元来匹配所述多个传入神经元输出中的模式与所述一个或多个参考神经元的输出之间的一个或多个第一关系方面,以及通过诱导所述多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的第一模式来将所述模式转移到一个或多个被转移方神经元。
本公开的某些方面提供了一种用于神经组件记忆转移的装置。该装置一般包括配置成用一个或多个参照神经元来参照多个传入神经元输出中的模式的第一电路,配置成用一个或多个第一关系方面神经元来匹配所述多个传入神经元输出中的模式以及所述一个或多个参照神经元的输出之间的一个或多个第一关系方面的第二电路,以及配置成通过诱导所述多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的第一模式来将所述模式转移到一个或多个被转移方神经元的第三电路。
本公开的某些方面提供了一种用于神经组件记忆转移的设备。该设备一般包括用于用一个或多个参照神经元来参照多个传入神经元输出中的模式的装置,用于用一个或多个第一关系方面神经元来匹配所述多个传入神经元输出中的模式以及所述一个或多个参照神经元的输出之间的一个或多个第一关系方面的装置,以及用于通过诱导所述多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的第一模式来将所述模式转移到一个或多个被转移方神经元的装置。
本公开的某些方面提供一种用于神经组件记忆转移的计算机程序产品。该计算机程序产品一般包括计算机可读介质,所述计算机可读介质包括用于执行以下动作的代码:用一个或多个参照神经元来参照多个传入神经元输出中的模式,用一个或多个第一关系方面神经元来匹配所述多个传入神经元输出中的模式与所述一个或多个参考神经元的输出之间的一个或多个第一关系方面,以及通过诱导所述多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的第一模式来将所述模式转移到一个或多个被转移方神经元。
本公开的某些方面提供一种神经关联学习的方法。该方法一般包括用第一刺激来参照一组一个或多个输入中的第一模式,学习所述一组输入中的第一模式的一个或多个元素与所述第一模式的参照之间的关系方面,用第二刺激来参照所述一组一个或多个输入中的第二模式,学习所述一组输入中的第二模式的一个或多个元素与所述第二模式的参照之间的关系方面,在没有第一和第二刺激的情况下,使用已学习到的关系方面来重放所述一组输入中的所述第一和第二模式,以及基于所述重放将所述第一和第二模式相关联。
本公开的某些方面提供了一种用于神经关联学习的装置。该装置一般包括配置成用第一刺激来参照一组一个或多个输入中的第一模式的第一电路,配置成学习所述一组输入中的第一模式的一个或多个元素与所述第一模式的参照之间的关系方面的第二电路,配置成用第二刺激来参照所述一组一个或多个输入中的第二模式的第三电路,配置成学习所述一组输入中的第二模式的一个或多个元素与所述第二模式的参照之间的关系方面的第四电路,配置成在没有第一和第二刺激的情况下,使用已学习到的关系方面来重放所述一组输入中的所述第一和第二模式的第五电路,以及配置成基于所述重放将所述第一和第二模式相关联的第六电路。
本公开的某些方面提供了一种用于神经关联学习的设备。该设备一般包括用于用第一刺激来参照一组一个或多个输入中的第一模式的装置,用于学习所述一组输入中的第一模式的一个或多个元素与所述第一模式的参照之间的关系方面的装置,用于用第二刺激来参照所述一组一个或多个输入中的第二模式的装置,用于学习所述一组输入中的第二模式的一个或多个元素与所述第二模式的参照之间的关系方面的装置,用于在没有第一和第二刺激的情况下,使用已学习到的关系方面来重放所述一组输入中的所述第一和第二模式的装置,以及用于基于所述重放将所述第一和第二模式相关联的装置。
本公开的某些方面提供了一种用于神经关联学习的计算机程序产品。该计算机程序产品一般包括计算机可读介质,所述计算机可读介质包括用于执行以下动作的代码:用第一刺激来参照一组一个或多个输入中的第一模式,学习所述一组输入中的第一模式的一个或多个元素与所述第一模式的参照之间的关系方面,用第二刺激来参照所述一组一个或多个输入中的第二模式,学习所述一组输入中的第二模式的一个或多个元素与所述第二模式的参照之间的关系方面,在没有第一和第二刺激的情况下,使用已学习到的关系方面来重放所述一组输入中的所述第一和第二模式,以及基于所述重放将所述第一和第二模式相关联。
本公开的某些方面提供一种神经比较的方法。该方法一般包括用第一刺激来参照一组一个或多个输入中的第一模式,学习所述一组输入中的第一模式的一个或多个元素与所述第一模式的参照之间的关系方面,用第二刺激来参照所述一组一个或多个输入中的第二模式,重放所述第一模式,以及基于所述重放以及所述第一和第二模式的参照将所述第一模式与所述第二模式作比较。
本公开的某些方面提供了一种用于神经比较的装置。该装置一般包括配置成用第一刺激来参照一组一个或多个输入中的第一模式的第一电路,配置成学习所述一组输入中的第一模式的一个或多个元素与所述第一模式的参照之间的关系方面的第二电路,配置成用第二刺激来参照所述一组一个或多个输入中的第二模式的第三电路,配置成重放所述第一模式的第四电路,以及配置成基于所述重放以及所述第一和第二模式的参照将所述第一模式与所述第二模式作比较的第五电路。
本公开的某些方面提供了一种用于神经比较的设备。该设备一般包括用于用第一刺激来参照一组一个或多个输入中的第一模式的装置,用于学习所述一组输入中的第一模式的一个或多个元素与所述第一模式的参照之间的关系方面的装置,用于用第二刺激来参照所述一组一个或多个输入中的第二模式的装置,用于重放所述第一模式的装置,以及用于基于所述重放以及所述第一和第二模式的参照将所述第一模式与所述第二模式作比较的装置。
本公开的某些方面提供一种用于神经比较的计算机程序产品。该计算机程序产品一般包括计算机可读介质,所述计算机可读介质包括用于执行以下动作的代码:用第一刺激来参照一组一个或多个输入中的第一模式,学习所述一组输入中的第一模式的一个或多个元素与所述第一模式的参照之间的关系方面,用第二刺激来参照所述一组一个或多个输入中的第二模式,重放所述第一模式,以及基于所述重放以及所述第一和第二模式的参照将所述第一模式与所述第二模式作比较。
本公开的某些方面提供一种神经模式补全的方法。该方法一般包括用第一刺激来参照一组一个或多个输入中的第一模式,学习所述一组输入中的第一模式的一个或多个元素与第一模式的参照之间的关系方面,用第二刺激来参照所述一组一个或多个输入中的第二模式,其中所述第二模式包括所述第一模式的降级的版本,以及响应于暴露于所述第二模式或所述第二刺激中的至少一者来重放所述第一模式中的、而在所述第二模式中缺失了或降级的至少一个元素。
本公开的某些方面提供了一种用于神经模式补全的装置。该装置一般包括配置成用第一刺激来参照一组一个或多个输入中的第一模式的第一电路,配置成学习所述一组输入中的第一模式的一个或多个元素与第一模式的参照之间的关系方面的第二电路,配置成用第二刺激来参照所述一组一个或多个输入中的第二模式的第三电路,其中所述第二模式包括所述第一模式的降级的版本,以及配置成响应于暴露于所述第二模式或所述第二刺激中的至少一者来重放所述第一模式中的、而在所述第二模式中缺失了或降级的至少一个元素的第四电路。
本公开的某些方面提供了一种用于神经模式补全的设备。该设备一般包括用于用第一刺激来参照一组一个或多个输入中的第一模式的装置,用于学习所述一组输入中的第一模式的一个或多个元素与第一模式的参照之间的关系方面的装置,用于用第二刺激来参照所述一组一个或多个输入中的第二模式的装置,其中所述第二模式包括所述第一模式的降级的版本,以及用于响应于暴露于所述第二模式或所述第二刺激中的至少一者来重放所述第一模式中的、而在所述第二模式中缺失了或降级的至少一个元素的装置。
本公开的某些方面提供了一种用于神经模式补全的计算机程序产品。该计算机程序产品一般包括计算机可读介质,所述计算机可读介质包括用于执行以下动作的代码:用第一刺激来参照一组一个或多个输入中的第一模式,学习所述一组输入中的第一模式的一个或多个元素与第一模式的参照之间的关系方面,用第二刺激来参照所述一组一个或多个输入中的第二模式,其中所述第二模式包括所述第一模式的降级的版本,以及响应于暴露于所述第二模式或所述第二刺激中的至少一者来重放所述第一模式中的、而在所述第二模式中缺失了或降级的至少一个元素。
本公开的某些方面提供一种神经模式划分的方法。该方法一般包括用一个或多个参照神经元来参照一组一个或多个输入中的第一模式,学习所述第一模式的一个或多个元素与所述第一模式的参照之间的第一关系方面,用所述一个或多个参照神经元来参照所述一组一个或多个输入中的第二模式,其中所述第二模式与所述第一模式相似,学习所述第二模式的一个或多个元素与所述第二模式的参照之间的第二关系方面,修改所述第一模式或所述第二模式中的至少一者以增加所述第一和第二模式之间的区别,以及在使用所述一个或多个参照神经元进行修改之后,用第一刺激参照所述第一模式并且用第二刺激参照所述第二模式,其中所述第一刺激异于所述第二刺激。
本公开的某些方面提供了一种用于神经模式划分的装置。该装置一般包括配置成用一个或多个参照神经元来参照一组一个或多个输入中的第一模式的第一电路,配置成学习所述第一模式的一个或多个元素与所述第一模式的参照之间的第一关系方面的第二电路,配置成用所述一个或多个参照神经元来参照所述一组一个或多个输入中的第二模式的第三电路,其中所述第二模式与所述第一模式相似,配置成学习所述第二模式的一个或多个元素与所述第二模式的参照之间的第二关系方面的第四电路,配置成修改所述第一模式或所述第二模式中的至少一者以增加所述第一和第二模式之间的区别的第五电路,以及配置成在使用所述一个或多个参照神经元进行修改之后,用第一刺激参照所述第一模式并且用第二刺激参照所述第二模式的第六电路,其中所述第一刺激异于所述第二刺激。
本公开的某些方面提供了一种用于神经模式划分的设备。该设备一般包括用于用一个或多个参照神经元来参照一组一个或多个输入中的第一模式的装置,用于学习所述第一模式的一个或多个元素与所述第一模式的参照之间的第一关系方面的装置,用于用所述一个或多个参照神经元来参照所述一组一个或多个输入中的第二模式的装置,其中所述第二模式与所述第一模式相似,用于学习所述第二模式的一个或多个元素与所述第二模式的参照之间的第二关系方面的装置,用于修改所述第一模式或所述第二模式中的至少一者以增加所述第一和第二模式之间的区别的装置,以及用于在使用所述一个或多个参照神经元进行修改之后,用第一刺激参照所述第一模式并且用第二刺激参照所述第二模式的装置,其中所述第一刺激异于所述第二刺激。
本公开的某些方面提供了一种用于神经模式划分的计算机程序产品。该计算机程序产品一般包括计算机可读介质,所述计算机可读介质包括用于执行以下动作的代码:用一个或多个参照神经元来参照一组一个或多个输入中的第一模式,学习所述第一模式的一个或多个元素与所述第一模式的参照之间的第一关系方面,用所述一个或多个参照神经元来参照所述一组一个或多个输入中的第二模式,其中所述第二模式与所述第一模式相似,学习所述第二模式的一个或多个元素与所述第二模式的参照之间的第二关系方面,修改所述第一模式或所述第二模式中的至少一者以增加所述第一和第二模式之间的区别,以及在使用所述一个或多个参照神经元进行修改之后,用第一刺激参照所述第一模式并且用第二刺激参照所述第二模式,其中所述第一刺激异于所述第二刺激。
本公开的某些方面提供一种神经模式概括的方法。该方法一般包括用第一刺激来参照一组一个或多个输入中的第一模式,学习所述一组输入中的第一模式的一个或多个元素与所述第一模式的参照之间的关系方面,用第二刺激来参照所述一组一个或多个输入中的第二模式,学习所述一组输入中的第二模式的一个或多个元素与所述第二模式的参照之间的关系方面,在没有所述第一和第二刺激的情况下重放所述第一模式或所述第二模式中的至少一者,以及基于所述重放学习所述第一和第二模式的概括。
本公开的某些方面提供了一种用于神经模式概括的装置。该装置一般包括配置成用第一刺激来参照一组一个或多个输入中的第一模式的第一电路,配置成学习所述一组输入中的第一模式的一个或多个元素与所述第一模式的参照之间的关系方面的第二电路,配置成用第二刺激来参照所述一组一个或多个输入中的第二模式的第三电路,配置成学习所述一组输入中的第二模式的一个或多个元素与所述第二模式的参照之间的关系方面的第四电路,配置成在没有所述第一和第二刺激的情况下重放所述第一模式或所述第二模式中的至少一者的第五电路,以及配置成基于所述重放学习所述第一和第二模式的概括的第六电路。
本公开的某些方面提供了一种用于神经模式概括的设备。该设备一般包括用于用第一刺激来参照一组一个或多个输入中的第一模式的装置,用于学习所述一组输入中的第一模式的一个或多个元素与所述第一模式的参照之间的关系方面的装置,用于用第二刺激来参照所述一组一个或多个输入中的第二模式的装置,用于学习所述一组输入中的第二模式的一个或多个元素与所述第二模式的参照之间的关系方面的装置,用于在没有所述第一和第二刺激的情况下重放所述第一模式或所述第二模式中的至少一者的装置,以及用于基于所述重放学习所述第一和第二模式的概括的装置。
本公开的某些方面提供了一种用于神经模式概括的计算机程序产品。该计算机程序产品一般包括计算机可读介质,所述计算机可读介质包括用于执行以下动作的代码:用第一刺激来参照一组一个或多个输入中的第一模式,学习所述一组输入中的第一模式的一个或多个元素与所述第一模式的参照之间的关系方面,用第二刺激来参照所述一组一个或多个输入中的第二模式,学习所述一组输入中的第二模式的一个或多个元素与所述第二模式的参照之间的关系方面,在没有所述第一和第二刺激的情况下重放所述第一模式或所述第二模式中的至少一者,以及基于所述重放学习所述第一和第二模式的概括。
本公开的某些方面提供一种神经模式序列补全的方法。该方法一般包括用第二层参照神经元来参照一组一个或多个第一层神经元中的模式的各部分的每个序列,学习所述模式的一个或多个元素与所述模式的各部分的序列的参照之间的关系方面,用第三层参照神经元来参照所述第二层参照神经元中的模式序列,学习所述模式序列的一个或多个元素与所述第二层参照神经元的模式序列的参照之间的关系方面,以及在所述第一层神经元中在产生所述模式的先前部分之后重放所述模式的后续部分。
本公开的某些方面提供了一种用于神经模式序列补全的装置。该装置一般包括配置成用第二层参照神经元来参照一组一个或多个第一层神经元中的模式的各部分的每个序列的第一电路,配置成学习所述模式的一个或多个元素与所述模式的各部分的序列的参照之间的关系方面的第二电路,配置成用第三层参照神经元来参照所述第二层参照神经元中的模式序列的第三电路,配置成学习所述模式序列的一个或多个元素与所述第二层参照神经元的模式序列的参照之间的关系方面的第四电路,以及配置成在所述第一层神经元中在产生所述模式的先前部分之后重放所述模式的后续部分的第五电路。
本公开的某些方面提供了一种用于神经模式序列补全的设备。该设备一般包括用于用第二层参照神经元来参照一组一个或多个第一层神经元中的模式的各部分的每个序列的装置,用于学习所述模式的一个或多个元素与所述模式的各部分的序列的参照之间的关系方面的装置,用于用第三层参照神经元来参照所述第二层参照神经元中的模式序列的装置,用于学习所述模式序列的一个或多个元素与所述第二层参照神经元的模式序列的参照之间的关系方面的装置,以及用于在所述第一层神经元中在产生所述模式的先前部分之后重放所述模式的后续部分的装置。
本公开的某些方面提供了一种用于神经模式序列补全的计算机程序产品。该计算机程序产品一般包括计算机可读介质,所述计算机可读介质包括用于执行以下动作的代码:用第二层参照神经元来参照一组一个或多个第一层神经元中的模式的各部分的每个序列,学习所述模式的一个或多个元素与所述模式的各部分的序列的参照之间的关系方面,用第三层参照神经元来参照所述第二层参照神经元中的模式序列,学习所述模式序列的一个或多个元素与所述第二层参照神经元的模式序列的参照之间的关系方面,以及在所述第一层神经元中在产生所述模式的先前部分之后重放所述模式的后续部分。
本公开的某些方面提供一种神经模式阶层式重放的方法。该方法一般包括用第二层参照神经元来参照一组一个或多个第一层神经元中的模式的各部分的每个序列,学习每个模式的一个或多个元素与所述一组一个或多个第一层神经元中的所述模式的各部分的该序列的参照之间的关系方面,用第三层参照神经元来参照所述第二层参照神经元中的模式序列,学习所述模式序列的一个或多个元素与所述第二层参照神经元中的所述模式序列的参照之间的关系方面,基于所述第三层参照神经元来调用对所述第二层中的所述模式序列的参照的重放,以及基于对所述第二层中的所述模式序列的参照的重放的调用来重放所述第一层中的所述模式的各部分的序列。
本公开的某些方面提供了一种用于神经模式阶层式重放的装置。该装置一般包括配置成用第二层参照神经元来参照一组一个或多个第一层神经元中的模式的各部分的每个序列的第一电路,配置成学习每个模式的一个或多个元素与所述模式的各部分的该序列的参照之间的关系方面的第二电路,配置成用第三层参照神经元来参照所述第二层参照神经元中的模式序列的第三电路,配置成学习所述模式序列的一个或多个元素与所述第二层参照神经元的所述模式序列的参照之间的关系方面的第四电路,配置成基于所述第三层参照神经元来调用对所述第二层中的所述模式序列的参照的重放的第五电路,以及配置成基于对所述第二层中的所述模式序列的参照的重放的调用来重放所述第一层中的所述模式的各部分的序列的第六电路。
本公开的某些方面提供了一种用于神经模式阶层式重放的设备。该设备一般包括用于用第二层参照神经元来参照一组一个或多个第一层神经元中的模式的各部分的每个序列的装置,用于学习每个模式的一个或多个元素与所述模式的各部分的该序列的参照之间的关系方面的装置,用于用第三层参照神经元来参照所述第二层参照神经元中的模式序列的装置,用于学习所述模式序列的一个或多个元素与所述第二层参照神经元中的所述模式序列的参照之间的关系方面的装置,用于基于所述第三层参照神经元来调用对所述第二层中的所述模式序列的参照的重放的装置,以及用于基于对所述第二层中的所述模式序列的参照的重放的调用来重放所述第一层中的所述模式的各部分的序列的装置。
本公开的某些方面提供了一种用于神经模式阶层式重放的计算机程序产品。该计算机程序产品一般包括计算机可读介质,所述计算机可读介质包括用于执行以下动作的代码:用第二层参照神经元来参照一组一个或多个第一层神经元中的模式的各部分的每个序列,学习每个模式的一个或多个元素与所述一组一个或多个第一层神经元中的所述模式的各部分的该序列的参照之间的关系方面,用第三层参照神经元来参照所述第二层参照神经元中的模式序列,学习所述模式序列的一个或多个元素与所述第二层参照神经元中的所述模式序列的参照之间的关系方面,基于所述第三层参照神经元来调用对所述第二层中的所述模式序列的参照的重放,以及基于对所述第二层中的所述模式序列的参照的重放的调用来重放所述第一层中的所述模式的各部分的序列。
本公开的某些方面提供一种神经模式序列补全的方法。该方法一般包括用多个参照神经元来参照多个传入神经元中的模式的多个部分,用一个或多个关系方面神经元基于所述传入神经元和所述一个或多个关系方面神经元之间的延迟小于第一值而将所述模式的各部分中的一个或多个部分关联到所述参照神经元的子集,用所述一个或多个关系方面神经元基于所述延迟大于第二值而将所述模式中的一个或多个剩余部分关联到所述参照神经元的该子集,以及基于所述传入神经元激发所述模式的该一个或多个部分的元素来由所述参照神经元的该子集诱导所述模式中的该一个或多个剩余部分的重放。
本公开的某些方面提供了一种用于神经模式序列补全的装置。该装置一般包括配置成用多个参照神经元来参照多个传入神经元中的模式的多个部分的第一电路,配置成用一个或多个关系方面神经元基于所述传入神经元和所述一个或多个关系方面神经元之间的延迟小于第一值而将所述模式的各部分中的一个或多个部分关联到所述参照神经元的子集的第二电路,配置成用所述一个或多个关系方面神经元基于所述延迟大于第二值而将所述模式中的一个或多个剩余部分关联到所述参照神经元的该子集的第三电路,以及配置成基于所述传入神经元激发所述模式的该一个或多个部分的元素来由所述参照神经元的该子集诱导所述模式中的该一个或多个剩余部分的重放的第四电路。
本公开的某些方面提供了一种用于神经模式序列补全的设备。该设备一般包括用于用多个参照神经元来参照多个传入神经元中的模式的多个部分的装置,用于用一个或多个关系方面神经元基于所述传入神经元和所述一个或多个关系方面神经元之间的延迟小于第一值而将所述模式的各部分中的一个或多个部分关联到所述参照神经元的子集的装置,用于用所述一个或多个关系方面神经元基于所述延迟大于第二值而将所述模式中的一个或多个剩余部分关联到所述参照神经元的该子集的装置,以及用于基于所述传入神经元激发所述模式的该一个或多个部分的元素来由所述参照神经元的该子集诱导所述模式中的该一个或多个剩余部分的重放的装置。
本公开的某些方面提供了一种用于神经模式序列补全的计算机程序产品。该计算机程序产品一般包括计算机可读介质,所述计算机可读介质包括用于执行以下动作的代码:用多个参照神经元来参照多个传入神经元中的模式的多个部分,用一个或多个关系方面神经元基于所述传入神经元和所述一个或多个关系方面神经元之间的延迟小于第一值而将所述模式的各部分中的一个或多个部分关联到所述参照神经元的子集,用所述一个或多个关系方面神经元基于所述延迟大于第二值而将所述模式中的一个或多个剩余部分关联到所述参照神经元的该子集,以及基于所述传入神经元激发所述模式的该一个或多个部分的元素来由所述参照神经元的该子集诱导所述模式中的该一个或多个剩余部分的重放。
本公开的某些方面提供一种神经组件重放的方法。该方法一般包括用一个或多个参照神经元来参照多个传入神经元输出中的模式,使用结构可塑性用一个或多个关系方面神经元来学习所述多个传入神经元输出中的模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面,以及诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式。
本公开的某些方面提供了一种用于神经组件重放的装置。该装置一般包括配置成用一个或多个参照神经元来参照多个传入神经元输出中的模式的第一电路,配置成使用结构可塑性用一个或多个关系方面神经元来学习所述多个传入神经元输出中的模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面的第二电路,以及配置成诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式的第三电路。
本公开的某些方面提供了一种用于神经组件重放的设备。该设备一般包括用于用一个或多个参照神经元来参照多个传入神经元输出中的模式的装置,用于使用结构可塑性用一个或多个关系方面神经元来学习所述多个传入神经元输出中的模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面的装置,以及用于诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式的装置。
本公开的某些方面提供一种用于神经组件重放的计算机程序产品。该计算机程序产品一般包括计算机可读介质,所述计算机可读介质包括用于执行以下动作的代码:用一个或多个参照神经元来参照多个传入神经元输出中的模式,使用结构可塑性用一个或多个关系方面神经元来学习所述多个传入神经元输出中的模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面,以及诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式。
附图简述
为了能详细理解本公开的以上陈述的特征所用的方式,可参照各方面来对以上简要概述的内容进行更具体的描述,其中一些方面在附图中解说。然而应该注意,附图仅解说了本公开的某些典型方面,故不应被认为限定其范围,因为本描述可允许有其他等同有效的方面。
图1解说根据本公开的某些方面的神经元的示例网络。
图2解说根据本公开的某些方面的连接到模式匹配神经元的传入神经元的示例。
图3解说根据本公开的某些方面的组件重放的一般方法的示例。
图4解说根据本公开的某些方面的演示性重放实施例的示例。
图5解说根据本公开的某些方面的演示性重放实施例的另一示例。
图6解说根据本公开的某些方面的优选重放实施例的示例。
图7解说根据本公开的某些方面的模式匹配和重放的示例。
图8解说根据本公开的某些方面的神经组件重放的示例操作。
图8A解说了能够执行图8中解说的操作的示例组件。
图9解说根据本公开的某些方面的优选重放实施例的示例模型。
图10解说根据本公开的某些方面的优选重放实施例的另一示例模型。
图11解说根据本公开的某些方面的模式学习和关系学习的示例图。
图12解说根据本公开的某些方面的基于结构可塑性学习规则的突触权重的示例。
图13解说根据本公开的某些方面的尖峰定时依赖可塑性(STDP)学习规则的示例图表。
图14解说根据本公开的某些方面的经修改的STDP学习规则的示例图表。
图15解说根据本公开的某些方面的关系激发返回到传入的反馈的示例图。
图16解说根据本公开的某些方面的与结构可塑性和结构约束建模有关的神经组件重放的示例操作。
图16A解说了能够执行图16中解说的操作的示例组件。
图17解说根据本公开的某些方面的控制重放的示例网络图。
图18解说根据本公开的某些方面的激励振荡的示例。
图19解说根据本公开的某些方面的用突发来控制重放的示例。
图20解说根据本公开的某些方面的用突发来控制重放的另一示例。
图21解说根据本公开的某些方面的传入、参照神经元以及关系方面学习神经元的示例模型。
图22解说根据本公开的某些方面的传入、参照神经元以及关系方面学习神经元的示例图。
图23解说根据本公开的某些方面的神经组件重放的其它示例操作。
图23A解说了能够执行图23中解说的操作的示例组件。
图24解说根据本公开的某些方面的神经组件重放的其它示例操作。
图24A解说了能够执行图24中解说的操作的示例组件。
图25解说了根据本公开的某些方面的多个模式的示例重放。
图26解说根据本公开的某些方面的有缺陷的以及有用的学习完善概念的示例。
图27解说根据本公开的某些方面的关系方面学习神经元的示例。
图28解说根据本公开的某些方面的学习完善的示例。
图29解说根据本公开的某些方面的神经学习完善的示例操作。
图29A解说了能够执行图29中解说的操作的示例组件。
图30解说根据本公开的某些方面的有缺陷的以及有用的记忆转移概念的示例。
图31解说根据本公开的某些方面的用于记忆转移的神经元网络的示例。
图32解说根据本公开的某些方面的用于记忆转移的神经元间连通性的示例。
图33解说根据本公开的某些方面的用于记忆转移的神经元间连通性的另一示例。
图34解说根据本公开的某些方面的用于记忆转移以及关联的神经元间连通性的示例。
图35解说根据本公开的某些方面的神经组件记忆转移的示例操作。
图35A解说了能够执行图35中解说的操作的示例组件。
图36解说根据本公开的某些方面的神经关联学习的示例操作。
图36A解说了能够执行图36中解说的操作的示例组件。
图37解说根据本公开的某些方面的模式补全的示例。
图38解说根据本公开的某些方面的具有滞后补全的降级输入的示例。
图39解说根据本公开的某些方面的具有重放补全的降级输入的示例。
图40解说根据本公开的某些方面的具有后期补全的降级输入的示例。
图41解说根据本公开的某些方面的神经模式补全的示例操作。
图41A解说了能够执行图41中解说的操作的示例组件。
图42解说根据本公开的某些方面的神经模式划分的示例操作。
图42A解说了能够执行图42中解说的操作的示例组件。
图43解说根据本公开的某些方面的模式比较的示例。
图44解说根据本公开的某些方面的神经比较的示例操作。
图44A解说了能够执行图44中解说的操作的示例组件。
图45解说根据本公开的某些方面的神经模式概括的示例操作。
图45A解说了能够执行图45中解说的操作的示例组件。
图46解说根据本公开的某些方面的神经元的水平关联的示例。
图47解说根据本公开的某些方面的带有参照的模式学习的示例。
图48解说根据本公开的某些方面的神经组件学习完善和快速学习的示例操作。
图48A解说了能够执行图48中解说的操作的示例组件。
图49解说根据本公开的某些方面的规程流、重复重放以及引导流的示例。
图50解说根据本公开的某些方面的阶层式模式重放的示例。
图51解说根据本公开的某些方面的模式补全的示例框图。
图52解说根据本公开的某些方面的神经模式序列补全的示例操作。
图52A解说了能够执行图52中解说的操作的示例组件。
图53解说根据本公开的某些方面的神经模式阶层式重放的示例操作。
图53A解说了能够执行图53中解说的操作的示例组件。
图54解说根据本公开的某些方面的可在没有阶层的情况下执行的神经模式序列补全的示例操作。
图54A解说了能够执行图54中解说的操作的示例组件。
图55解说根据本公开的某些方面的使用通用处理器的神经组件重放、学习完善、记忆转移、关联学习、模式比较、模式补全、模式划分、模式概括、具有阶层的模式序列补全、以及模式阶层式重放的示例软件实现。
图56解说根据本公开的某些方面的其中存储器可与个体的分布式处理单元对接的神经组件重放、学习完善、记忆转移、关联学习、模式比较、模式补全、模式划分、模式概括、具有阶层的模式序列补全、以及模式阶层式重放的示例实现。
图57解说根据本公开的某些方面的基于分布式存储器和分布式处理单元的神经组件重放、学习完善、记忆转移、关联性学习、模式比较、模式补全、模式划分、模式概括、具有阶层的模式序列补全、以及模式阶层式重放的示例实现。
详细描述
以下参照附图更全面地描述本公开的各个方面。然而,本公开可用许多不同形式来实施并且不应解释为被限定于本公开通篇给出的任何具体结构或功能。确切而言,提供这些方面是为了使得本公开将是透彻和完整的,并且其将向本领域技术人员完全传达本公开的范围。基于本文中的教导,本领域技术人员应领会,本公开的范围旨在覆盖本文中所披露的本公开的任何方面,不论其是与本公开的任何其他方面相独立地还是组合地实现的。例如,可以使用本文所阐述的任何数目的方面来实现装置或实践方法。另外,本公开的范围旨在覆盖使用作为本文中所阐述的本公开的各种方面的补充或者与之不同的其他结构、功能性、或者结构及功能性来实践的此类装置或方法。应当理解,本文中所披露的本公开的任何方面可由权利要求的一个或多个元素来实施。
措辞“示例性”在本文中用于表示“用作示例、实例或解说”。本文中描述为“示例性”的任何方面不必被解释为优于或胜过其他方面。
尽管本文中描述了特定方面,但这些方面的众多变体和置换落在本公开的范围之内。虽然提到了优选方面的一些益处和优点,但本公开的范围并非旨在被限定于特定益处、用途或目标。相反,本公开的各方面旨在能宽泛地应用于不同的技术、系统配置、网络和协议,其中一些作为示例在附图以及以下对优选方面的详细描述中解说。详细描述和附图仅仅解说本公开而非限定本公开,本公开的范围由所附权利要求及其等效技术方案来定义。
示例神经系统
图1解说根据本公开的某些方面的具有多级神经元的示例神经系统100。神经系统100可包括神经元级102,该级神经元102通过突触连接网络104连接到另一级神经元106。为简单起见,图1中仅解说了两级神经元,但在典型的神经系统中可存在更少或更多级神经元。
如图1所解说的,级102中的每一神经元可接收输入信号108,输入信号108可以是由前一级(图1中未示出)的多个神经元所生成的。信号108可表示级102的神经元的输入电流。该电流可在神经元膜上累积以对膜电位进行充电。当膜电位达到其阈值时,该神经元可激发并生成输出尖峰,该输出尖峰将被传递到下一级神经元(例如,级106)。
尖峰从一级神经元向另一级神经元的传递可通过突触连接(或简称“突触”)网络104来达成,如图1所解说的。突触104可从级102神经元接收输出信号(即,尖峰),根据可调节突触权重…,来缩放那些信号(其中P是级102的神经元与级106的神经元之间的突触连接的总数),并且将经缩放的信号组合为级106中的每一个神经元的输入信号。级106中的每个神经元可基于对应的经组合输入信号来生成输出尖峰110。随后可使用另一突触连接网络(图1中未示出)将这些输出尖峰110传递到另一级神经元。
神经系统100可以通过电路来仿真并且可以用在大范围的应用中,诸如图像和模式识别、机器学习、电机控制及类似应用等。神经系统100中的每一神经元可被实现为神经元电路。被充电至发起输出尖峰的阈值的神经元膜可被实现为例如对流经其的电流进行积分的电容器。
在一方面,电容器作为神经元电路的电流积分器件可被除去,并且可使用较小的忆阻器元件来替代它。这种办法可应用于神经元电路中,以及其中大容量电容器被用作电流积分器的各种其他应用中。另外,每个突触104可基于忆阻器元件来实现,其中突触权重改变可与忆阻器电阻的变化有关。使用纳米特征尺寸的忆阻器,可显著地减小神经元电路和突触的面积,这可使得实现超大规模神经系统硬件实现变得可行。
本公开的某些方面支持用于解决在没有原始刺激的情况下真实重放已被一个或多个神经元(例如,图1中解说的神经元)学习到的神经激发模式的问题的方法。此外,本公开提出的方法解决了在原始刺激不再存在之后进行快速学习、学习完善、关联、以及记忆转移的问题。
以生物学启发的神经模型来学习模式的现有方法是功能上单向的方法:为了确定神经元匹配什么模式,需要尝试不同的模式直到找到匹配的那个。真实重放什么已被学习(无论是生物学地还是通过机器学习)的方法一般是未知的。本公开提供了一种学习重放模式(无论是前向、反演、还是两者)并且由与在刺激下产生了原始模式的神经元相同的神经元来重放真实模式的方法,该重放是进一步通过对学习了该模式或者仅学习了该模式的子集的相同神经元的激励来实现的。此外,本公开的方法允许非常快速的学习,并且可以是高度可缩放的,因为一个或多个神经元已学习到的多个模式能由相同的神经结构(无需添加神经元)来重放。最后,模式的学习和学习重放两者都可以无监督的方式实现。
学习重放还可为更好或更完整地学习模式提供基础。此外,可减轻对于在刺激过程中学习模式的需求。除了重放,本公开还提供了一种用于在没有了原始刺激的情况下进行新的或继续的下游或上游(或两者)处理操作的方法。因此,使用本公开的方法,即使刺激仅仅是短暂地存在,重放内部响应模式和继续处理此经历的能力仍可变得可能,由此为机器学习提供实质优势。本公开不仅提供了重放真实神经模式的方法,还提供了用于在没有刺激的情况下完善模式学习以改善或扩展学习、以及转移、巩固或组织记忆以补全模式或模式序列、以及在无需刺激存在的情况下关联概念和/或输入或学习概念和/或输入的关联的方法。最后,由于这些方法可被应用于概念、感官输入、或处于任何抽象级、上下文以及内容的信号,因此所提出的方法可以既是基本的也是普遍的。
神经激发模式的重放
如上所述的,一般未知有现有方法能真实重放神经激发模式。然而,可能不仅需要确定一给定的模式是否与一存储着(或已学习到)的模式相匹配,还需要直接确定所存储着(或已学习到)的模式是什么。另外,可能需要经由原始产生了该模式的神经元来重现原始传入(输入)中的模式。此外,可能需要将模式重放与已学习到或已匹配于该模式的(或具有与该模式的某一对应关系)神经元进行相关。另外,可能需要重现所存储着的(或已学习到的)模式的忠实的或高保真的重放,以及在不需要原始的刺激来产生该模式的情况下使用重放来接着进行继续的处理,诸如学习完善、关联、记忆转移。
虽然在一些文献中存在某些模式重放的方法,但这些方法具有数项缺陷。首先,模式可能并非是由曾在刺激之下播放过该模式的相同神经元来播放的。因此,这可能并不代表真实重放,而是由一些其它神经元重放的副本。在这种情况下,来自传入的下游效应可能会丢失,因为“重放”不是由相同的传入产生的。
第二,模式的元素(例如,尖峰)可能不是唯一性可区分的,并且特定模式元素和特定传入之间的联系可能会丢失。因此,这可能不是相同模式的重放,而是不同模式(例如,聚合模式)的重放。第三,在模式中可能有干扰(例如,通常由于“重放”触发导致的在传入中的其它活动)。因此,这实际上可能并不是相同的模式,并且下游效应(包括与该模式的神经元匹配)可能会被破坏。
第四,已学习到该模式的神经元的输出中可能有干扰(通常由于“重放”触发导致)。因此,来自该神经元的下游效应可能会被破坏。第五,“重放”能力可能无法以无监督的方式学习,或者根本没有任何学习方法是已知或可用的。此外,可能存在其它附加的缺陷,诸如仅能够反演地“重放”,或者仅能够以接近激发的速率“重放”。将参考示例和类比来讨论这些和其它缺陷。
真实重放神经元已匹配/学习到了什么的问题
图2解说根据本公开的某些方面的连接到模式匹配神经元的传入神经元的示例200。例如,无论原因或刺激可能是什么,也无论是外部的还是内部的,神经元202可与一组传入(输入)204中的一模式相匹配。图2中解说了这种情形,其中神经元202可与传入神经元204的输出所产生的一模式(对应于这些传入神经元204的激发模式206,其中x轴可被看作是时间、或激发速率、或其它编码维)相匹配。在这种情况下,术语“传入”并不意味着推断处理阶段或处理层意义上的任何特定含义,其仅仅表示对神经元202的输入(即,从神经元202的角度来看的传入)。传入204可以仅仅是上游神经元(例如,神经元202的上游)、或者感官神经元、或者任何特定处理阶段或处理层中的神经元。
典型的神经元可被建模为带泄漏积分激发(LIF)神经元、或者动态尖峰神经元、或者甚至简单的求和以及S形函数。不管怎样,这些操作可以是单向函数,因为在不尝试不同模式直到找到匹配的情况下(即,在不分析诸如突触权重和延迟之类的内部因素的情况下)在操作上不可能确定神经元202与什么具体的信号组合或模式相匹配。在能够存储信息和该信息能否(以及如何能)从记忆中读出之间可能存在本质区别。问题就在于能够如何读出(重放)已学习到的模式。
重放保真度的问题
理想地,读出的模式应当足够忠实于原始,以使得能够被在刺激期间学习到了该原始模式的神经元所识别。问题在于如何能够那样好地重现该读出的模式使得学习到了该模式的那个神经元能够识别它。
离线处理的问题
在没有原始刺激的情况下不能真实地重放模式对机器学习来说可能是一致命的限制,因为这可能要求输入或刺激存在足够长的时间才能使学习的所有方面得以发生。然而,学习可能需要在下游处理网络中的多个阶段(或者由于反馈的缘故甚至在上游中)发生或者按照与实时呈现时不同的次序发生。问题在于一旦原始刺激(输入)结束,如何才能够接着进行继续学习、学习的完善、记忆(学习)的转移、以及其它各种下游操作(或上游操作或反馈)。
有缺陷的“重放”尝试
首先,可以考虑仅仅刺激已与一模式相匹配的神经元(例如,图2中的神经元202)以再次激发(尖峰输出),但这将具有受限制的使用,因为可能无法提供用于在其它神经元(例如,图2中的神经元208和210)处重现相同下游效应的方法。这有些类似于仅仅通过说‘那个人是A’来进行声称就是对看到A这个人的重放。对于前者,无法检视A这个人的特征、比较这些特征、或进行任何进一步的处理。因此,可能需要有经由那些相同的传入(而不是其它神经元)来重放由传入产生的原始模式(或基本相似的模式)而不会干扰该模式的方法。否则,下游效应将会丢失或不完整。因此,如果刺激仅是短暂存在,则重放内部响应模式并且继续处理此经历的能力对于机器学习来说将是实质性的优势。
其次,应当注意关于由哪些神经元来重放模式的区别的重要性。例如,网络可能仅能够经由不同的神经元(而不是原始的传入)来播放相同的模式。即使也曾提供那些不同神经元作为对来自图2的神经元202的输入,问题仍在于神经元202将如何在无需手动干预以将这些不同输入连接起来的情况下将此识别为“相同”的模式以便具有与神经元202从传入学习到的效应相同的效应。对于这一缺陷的清楚演示是神经元202不会识别出由不同神经元播放的副本。显然,经由不同神经元的“重放”完全不代表真实重放,并且在任何下游效应(包括已学习到该模式的神经元)的意义上可能是不起作用的。
第三,在重放中模式匹配神经元的相关性是重要的。如果模式匹配神经元本身与原始播放以及重放相匹配,则可建立保真度的衡量。另外,如果在调用该重放时涉及该神经元,则可能存在模式和模式匹配神经元的双向关联。因此存在将模式的重放与已学习到该模式的一个或多个神经元进行相关的动机。换言之,可能想要使来自图2的神经元202参与控制或者诱导重放神经元202已学习到的(或至少已匹配于的)模式的过程。例如,可能有要重放神经元202已学习到的模式的要求。理想地,重放触发将会涉及神经元202并且使得相同的下游效应成为可能,包括由神经元202自身识别出重放的模式。虽然使模式匹配神经元直接诱导重放可能是不必要的,但该神经元参与到此过程中可能是想要的,例如,即使这导致先是反演重放(或原始模式的某些其它变形)然后是经由原始传入最终变换回原始版本。
第四,播放诸模式元素的聚合、派生或总和(无论是前向还是反演、压缩的还是未压缩的)、模式的激发速率或其它函数可能不是对该模式的重放。打个比方:在键盘上键入‘qwert[空格]y’可以通过在键盘上键入五次键‘x’随后键入‘空格’然后再键入‘x’来“重放”;是的,有六次字母按键按压并且最后一次是在一空格之后发生的,但哪个‘x’对应于该模式的哪个元素是未知的。关键在于,一个‘x’无法与所谓“重放”中的另一个‘x’区分,并且因此,不太可能表示原始模式中的唯一性字母间的具体关系。概括来说,所需要的是在没有干扰的情况下经由相同的传入来重放实际的原始模式。
记忆转移的问题
模式仅对于什么神经元产生了该模式而言有意义。打个比方,如果有人要说一个数字序列,则该序列不仅在序列中有几个数字以及这些数字的相对次序方面有意义,而且在具体数字是什么方面也是有意义的。通过用第二层学习第一层的输出并且随后用第三层来学习第二层的输出来“转移”记忆的过程不代表第一层模式的记忆在被转移。为了转移第一层的记忆,第三层也将不得不学习第一层输出。在没有原始刺激的情况下,这将需要的不是第二层的重放,而是第一层的重放。
问题的普遍性
已在活体内(具体来说,在海马区、视觉系统以及其它大脑区域中)观测到模式重放的生物学证据。这样的重放可前向以及反演、时间上压缩以及不压缩地发生。然而,导致这样的重放的机制是未知的。此外,最近的证据已显示海马区细胞可匹配或对应于与“地点”或行为的偶发方面相对应的上游模式或者状态,但它们稍后可被“擦除”或重置,而记忆可被保留。一种可能性是这样的记忆被巩固成其它或更长期的记忆。
总的来说,重放可正在使用中,因为它可应用于任何感官模态或任何概念层,以便反演学习或记忆功能。因此,重放可代表重要的普遍皮层问题,对于这一问题的普遍解决方案将会是非常有价值的。
重放的方法以及相关联的用于进一步处理(包括学习完善、关联、以及记忆转移)的方法
本公开的某些方面支持重放的方法,以及相关联的用于进一步处理(包括学习完善、关联、以及记忆转移等)的方法。
重放
本公开提出的组件重放的方法可解决上述的模式重放问题。组件重放可一般定义为经由相同传入来对由特定神经元实际参照的传入中的模式的重放。参照该模式的特定神经元(参照神经元)可根据模式选择性地响应并且学习该选择性。聚合模式或者更大或更长规模的模式可通过组合组件重放来得以重放。组件重放可因此被用于在神经网络中生成系统性重放。
图3中的流程图300所解说的组件重放的一般方法可包括使用一个或多个模式学习(或至少匹配)神经元来学习(或至少匹配)多个传入神经元响应中的模式。并且,该组件重放方法还可包括使用一个或多个关系学习(或至少匹配)神经元来学习这些学习神经元和传入模式的一个或多个关系方面。
如图3中解说的,一般的重放方法可包括学习一模式,因此参照神经元可被称为模式学习神经元。然而,由模式学习神经元来进行模式学习可以不是必需的。相反,模式学习神经元可由参照神经元来替代,该参照神经元可以学习或可以不学习、可以匹配或可以不匹配传入中的模式,并且甚至可以不连接到传入。所有必需的只是对应于传入中的模式的参照(即,在具有与模式的一定关系方面是一致的,诸如在相对于特定传入模式的特定时间激发)。应注意,皮层构造的中间层可以被通称为参照神经元或模式学习(或至少匹配)神经元。
神经组件重放概念将在时间编码的上下文中详细描述,尽管该方法可以是普适的并且可被应用于激发速率编码、重合编码、或者其它信号编码变形。由于沿轴突的信号传播、穿越中继、或树突过程导致的或甚至在突触处的延迟可被抽象。
演示性重放实施例
图4解说了本公开的第一演示性实施例的在这一时间编码上下文中的示例神经连通性图400。神经元402和404可表示传入,神经元406可以是模式匹配或学习神经元,而神经元408和410可以是关系方面学习/匹配神经元。在此时间编码上下文中,延迟可通过各种宽度的矩形来表示在连接上。矩形在水平方向上越大,延迟就会越长。还应注意,在图400中,连接仅在有箭头终止的地方发生(即,不仅仅因为一条线穿过另一条线)。同样的约定将用在其它神经连通性图中。
在刺激412下,传入神经元402和404可按照图416中所描绘的时间模式414来激发,其中x轴代表时间,垂直条形指示每个神经元激发的时间。刺激412可来自多个感官模态中的任一种,诸如触觉、听觉、嗅觉、味觉、视觉等,或者仅仅来自神经网络的上游。应注意,如果神经元406是带泄漏积分激发或者其
典型的神经元模型,并且有针对两个输入的特定阈值用于激发,则神经元406可在神经元402稍早于神经元404地激发的情况下激发。这可以是因为来自神经元402的连接在抵达神经元406的胞体之前可能需要穿过较大的延迟,而来自神经元404的连接可能穿过较小的延迟。因此,神经元406可与该特定时间顺序(如图416所展示的)相匹配,并且它可激发尖峰418。在图416中,神经元406可在这些延迟之后立即激发,但这仅仅是一示例,且也可能存在由于神经元406的处理导致的某些延迟(例如,一时间常数)。
从图4中的图400可以观察到,神经元408可接收来自传入神经元402和模式匹配/学习神经元406的输入。来自神经元402的输入遇到的延迟可将信号与神经元406的响应对齐。事实上,神经元408可与传入神经元402和模式匹配/学习神经元406的响应之间的定时关系相匹配。神经元410可用传入404获得类似的效果。可从图4中的图416观察到,在原始刺激412之下,这些关系方面学习神经元408、410可响应于各自的关系方面(例如,图416中的激发420)而激发。在图416中,激发418和激发420之间的延迟可以是小的,但是非零。这也仅仅是一个示例;实际延迟可以是零或者更大。另外,在406对神经元408、410的树突的输入与神经元408、410的胞体之间可插入延迟。
在这第一实施例中,为了重放模式,可施加控制422以使原始传入发放尖峰。这一控制可来自除产生该原始模式的刺激412之外的输入。在这种情况下,应注意,这一控制可以是同步的,如图4中的图424所解说的。由于神经元408、410已学习到(或至少匹配)的延迟,神经元408、410可在经延迟的时间激发,而不是在同时激发(图424中的尖峰426和428)。应注意,来自神经元402、404的输入可能需要足够强来使神经元408、410激发(不一定要立即激发,但至少最终激发或者借助某些背景帮助(诸如振荡激励或来自其它突触的削减的抑制或额外的重合输入,如刺激430所标示)而激发)。由于神经元408、410可以被反馈回神经元402、404,因此它们可导致那些传入按原始模式的反演激发,由此可实现反演重放,如图424中的反演时间模式432所解说的。应注意,抑制性控制434可被用于在原始刺激412存在时防止反馈使传入402、404激发,尽管可用各种替代方式(诸如中介之类)来代替。另外,甚至在刺激期间,反馈也可被允许影响原始传入。
该第一演示性实施例的优势可以在于:重放的模式可以是真实和确切的,并且可经由原始传入来产生。然而,这一实施例还可具有某些缺点。在一方面,模式可被反演并且控制可以是针对传入的(在反演模式中,神经元402、404可能在得到重建之前同步激发),并因此可影响下游(包括神经元406的行为)。另外,神经元406可能不与反演模式相匹配。另外,在这一实施例中,可缩放性可能受限制,因为可能要求逐模式逐传入的关系方面学习神经元。此外,重放还可能要求控制的同步。
前向和反演重放
图5中解说的第二重放实施例可通过双重反演来解决重放非反演模式的问题。实际上,上述的与图4相关联的方法可被重复,以使得另一个层2和层3(在图5中称为层4和5)可被添加以与反演模式、反演模式的关系方面、以及(神经连通性图502中解说的)原始传入或(神经连通性图504中解说的)关系学习神经元p和q相匹配。因此,所提出的方法可重放反演模式或者前向模式(通过控制模式匹配器x或者反演模式匹配器x’,如图5中所解说的)。图504的优点(使用关系方面学习神经元用于反演级的关系学习)可以是可在线(即,在模式学习的同时)执行反演学习。按照神经连通性图502,可通过诱导反演模式来执行反演学习。
应注意,方法502和504之间的主要区别可以是使用关系方面学习神经元来代替第二“重放”栈(层4和5)的传入。在图504中,由于这一区别,可执行第二反演的在线学习。然而,神经元x’可能并不暴露于传入而是暴露于传入的变换。
图5中的图502、504所解说的第二实施例变形的优点可以是可重放前向和/或反演模式。然而,仍然可能会有缩放限制。在一方面,可能逐模式逐传入地要求一个关系方面学习神经元,并且针对传入的控制可影响下游。在本公开中稍后讨论的优选实施例可克服这些缺点。
记忆转移
将学习从一个神经元、神经阵列或皮层区域转移到另一个可能是机器智能的关键部分。在这一过程中,重放可充当一关键角色。为了对此进行解释,可考虑来自图5的神经连通性图502。为了介绍记忆转移方面,可忽略图5的电路系统中的重放是原始模式的反演这一事实。以下将结合重放模式的前向版本的电路来进一步给出记忆转移和进一步处理方面的详细描述。同时,以下示例可用于介绍进一步处理。
学习的转移可如下工作。当刺激存在时,第一电路(由图502中的层2-3表示)可学习该模式。随后,离线(没有刺激),这一学习的记忆可通过用第一电路(经由层2-3)诱导该模式并允许第二神经元电路(层4和5)学习(接收)该模式来转移到第二神经元电路(由图502中的层4-5表示)。另外,一个或多个额外的神经元(未在图502中示出)可在重放期间学习该模式(无论它们属于什么电路)。应注意,在此离线步骤之后,原始电路(层2和3)可甚至被擦除并且重用于其它目的,同时仍然在第二神经元电路(层4和5)中保留该已学习到的模式的记忆。
应注意,通过这一实施例,转移的记忆可关于相同的原始输入,这正是所想要的。可能不存在对第一电路的依赖(其甚至可被擦除或者可“遗忘”该模式)。在一方面,另一神经元,例如神经元y(在图502中未示出,但在任何层中可用于替代神经元x),可在重放期间被训练(学习)该模式。随后,如果原始刺激再次呈现,则神经元y可识别它(即使层2和3被擦除),因此无论何时只要需要,该模式就可被匹配和重放。这一记忆转移能力对于所提出的方法可以是普遍可用的,而不仅仅是对这一实施例可用,尽管取决于实施例,转移可以未必在每个阶段处均涉及反演。
此外,记忆转移可以仅仅是重放的一个扩展。在一方面,重放还可被用于完善学习。通过对模式进行重放,下游神经元(例如,图2中的神经元208和210)可经由相同的传入被重新暴露于模式,以使得学习可经由突触可塑性或其它手段继续进行。此外,重放甚至可被学习了该模式的神经元(即图5中的图502中的神经元x或图2中的神经元202)用于完善学习。在一方面,模式的学习可采取一个或多个阶段(在刺激期间学习以及在没有刺激情况下借助重放的一个或多个完善阶段)。模式学习的较早阶段(例如,在刺激期间)可通过与模式的元素子集相匹配来匹配该模式。模式学习的较晚阶段(例如,重放期间)可拾取该模式的额外元素来改善匹配。此处关键的着眼点在于,关系方面学习神经元可学习模式匹配神经元的行为(激发)和传入模式的元素之间尚未被该模式匹配神经元依赖以匹配该模式的诸关系方面。
此外,一旦神经元学习了特定模式,下游网络就可通过重放那些模式来比较模式(或比较重放的和原始模式)并且学习差异或相似性,诸如将模式分类到群中。通过重放属于一个或多个群的模式,更高级神经元就可学习属于特定群的模式的普遍方面(例如,相似的特征)。
模式重放的优选实施例的介绍
用于模式重放的优选实施例可包括可缩放多路复用织构(tapestry)或皮层构造,其意义在于它可以普遍的方式被使用(即,无论上下文或内容或编码、层或级、或处理的阶段是什么)以及根据希望或要求来缩放。这一特定实施例可具有以上描述的所有优点,但不具有上述的缺点。确切或相似的模式可以经由原始传入来前向或反演地重放。另外,它可以是紧凑的并且可缩放的,因为每个关系方面学习神经元可处理多个模式。此外,可经由已学习到模式的神经元来诱导控制并且不需要任何控制同步。传入模式可以是干净的。如果希望的话,模式学习可以是完全在线的(或者离线,如果希望的话)。图6中的神经连通性图600勾勒了前向重放的构思的基本实现(反演可通过根据上述方法扩展图600来获得)。
应注意,图6中的关系方面学习(或至少匹配)神经元602和604可具有来自两个模式学习(或参照)神经元606和608的输入。一般而言,这可以是任何数目的模式学习神经元。这可允许以上提到的可缩放性。此外,还可通过刺激模式匹配神经元(即神经元606和/或神经元608)以得到它们所(分别)匹配的模式的重放来实现控制。当神经元606被激励,可实现神经元606所学习的模式的重放。当神经元608被刺激时,可实现神经元608所学习到的模式的重放。在采用图7中的图表702、704所示的带泄漏积分激发神经元的示例结果中,模式重放的真实性可通过神经元606和神经元608可在各自的重放(与它们学习/匹配的模式的重放相匹配)之际重新激发的这一事实得到证实。当想要避免循环重放时,可选择抑压这样的重新激发。
在优选实施例中,关系方面学习/匹配可通过学习/匹配经延迟的模式匹配神经元输入和传入信号定时之间的延迟上的差异来实现。尽管延迟可被解说为就像发生在神经元602、604的树突上一样,但该延迟也可以是轴突的或树突的、或来自某些其它源。
以下将进一步描述优选实施例。以下,除非另外言明,否则讨论将参考这一优选实施例。
图8解说根据本公开的某些方面的神经组件重放的示例操作800。在802,可用一个或多个参照神经元来参照多个传入神经元输出中的模式。在804,可用一个或多个关系方面神经元来匹配这多个传入神经元输出中的模式与这一个或多个参照神经元的输出之间的一个或多个关系方面。在806,可诱导这多个传入神经元中的一个或多个传入神经元输出与这一个或多个参照神经元所参照的模式基本相似的模式。
学习重放
已描述了(在给定了经配置的延迟、连接、以及控制的情况下)如何能够实现真实重放,还将描述如何(自动地或无监督地)学习重放并在网络内控制学习的方法。将详细描述无监督的学习,尽管也可采用有监督的学习。为了详细描述学习重放,将在具有动态尖峰发放神经元和可塑性的优选的可缩放实施例(仍然是采用时间编码)的上下文中给出描述。
图9中的神经元连通性图900解说了优选实施例的模型,其显示了每个神经元角色的数个代表,尽管这一织构可以各种尺度(更大的或更小的)以及具有不同填充分布/神经元数量或比例的不同层(角色)来创建并且一些角色可被组合成一个神经元。在图9中,传入可由神经元a到d来表示,模式学习神经元可由神经元w到z来表示,而关系方面学习神经元可由神经元p到s来表示。虽然这些神经元可具有相同或不同内部模型,但连接可能是重要的。为了帮助解释此类连接,模式学习神经元的输出可被称为传出(对下游处理的输入或者回到上游处理的反馈)。由于传入可以实际上是感官神经元(视觉、触觉、听觉等)或者先前层的神经元或是在神经网络中的任何阶段或概念级处的神经元,因此可将凡是导致神经元a到d以一个或多个模式激发的任何因素称为刺激。凡是导致特定神经元x到z激发的任何输入或触发可被称为控制。这些信号(传入、传出、控制和刺激)通常在神经织构900的外部连接,但这可以不是必需的,其它内部信号也可延伸自或延伸到神经织构800以外的点。为了清楚起见,神经连通性图900可主要关注于相关连接和方面。
应注意,该一般方法继续与上述的优选实施例有关。然而,现在将描述关于学习的更多细节。首先,将参照示例结构方面来描述连通性,这些示例结构方面可与这一连通性有关。
学习和结构
如早先描述的,模式学习神经元可学习多个传入中的模式(但并非必需学习所有传入中的模式)。这一连通性从结构上可被描述为生物学意义上的十字状(树突可铺开,与传入的轴突相交),从而以不同的可能延迟对传入进行采样。另外,它们可彼此连接以彼此横向抑制(图9中的脊突902),以使得它们可竞相学习不同模式(这可以是直接的,如所示出的,或者经由中间神经元或其它抑制或竞争机制)。这一抑制可以是普遍的(即,后突触的)。另外,如前文所述,关系方面学习神经元可接收来自模式学习神经元的输入和来自传入的输入(一般是一对一)。从结构上看,前者可被描述为与学习神经元的轴突(未必是仅一个)平行的基底树突过程,而后者可被描述为(优选地)仅连接到一个传入的轴突的顶端树突过程。
这样的生物学结构设计可以是非必需或关键的,但其意在指出可如何在物理空间中表示连通性以及可被物理表示的约束。这其中的隐含意义将在以下进一步解释。关系方面学习神经元的轴突还可连接回(反馈到)与其配对的传入神经元(同样一般是一对一)。这可被表示为轴突过程垂直向下延伸到传入。最后,传入的输出可抑制关系方面学习神经元经由中间神经元(每个传入对一个中间神经元或多对一、一对多、或多对多)对那些传入的激励。再一次,中间神经元的使用可以是一示例。然而,在这种情况下,这些抑制性连接可以是因来自关系方面学习神经元的特定的激励连接而异的(即,前突触抑制)。另一选项可以是使用普遍的抑制性连接(即,后突触抑制)。变形也是可能的,包括将抑制效应聚集到一个中间神经元或者使用中介中继。
突触可塑性和结构可塑性
可使用诸如尖峰定时依赖可塑性(STDP)之类的方法或诸如Hebbian规则之类的其它规则(例如Oja或Bienenstock-Copper-Munro(BCM)规则)来学习突触权重。应注意,所描述的机制对于学习传入或学习神经元的一个或多个尖峰而言足够普遍,只要突触/延迟的数目在这方面不被严格约束即可。优选的机制包括经修改的STDP学习规则,但也可使用变形,诸如并入对输入频率、或前/后尖峰次序的考虑。如图10中的神经连通性图1000(图1000可表示来自图9的图900的一部分)所解说的,学习关系可跨神经元或层改变。
学习可受以上连通性和结构的特定方面的约束。这可通过结构可塑性或对于延迟、权重和/或输入的约束来获得。在优选实施例中,可施加结构可塑性以移动或生出/删除脊突(进而突触)。从计算的观点来看,这可通过重用未使用的突触资源来建模。实际上,当突触权重衰落到阈值以下时,可通过为该突触重新分配新权重(优选地等于或稍高于此阈值)、新延迟或输入(神经元)中的一者或多者来重用该突触。在优选实施例中,可仅提供新的权重和延迟,并且一个选项可以是限制延迟上的变化(例如,限制量和/或方向,就像结构上生长率被约束一样)。
此外,结构可塑性可被约束或限界。例如,末梢树突突触可被约束为较长的延迟,而顶端树突突触可具有短的或宽泛变化的延迟。如果树突过程与轴突平行运行,则这可允许以各种延迟进行采样并且因此学习特定的对应延迟。相反,如果输入神经元远离接收者(例如,对关系方面学习神经元的传入输入),则延迟可被约束为一相对高的值。另外,等距结构组件可被假设具有相同或相似的延迟。应能理解,这些仅仅是符合本公开的概念的示例。在优选实施例中,对关系方面学习神经元的传入输入遇到的延迟可被固定在一符合它们的结构距离的相对大的值,而突触的来自学习神经元的输入可具有在一个大范围内的可变延迟。此外,前者的固定延迟可被设定为跨关系方面学习神经元(就像到配对的传入的距离是相似的,而与配对无关一样)相同或相似的值。还应注意,根据具体情况,可通过柱型组织以及对轴突或树突过程垂直地或水平地路由来结构化地表示一对一或其它关系。
应注意,在图11中的神经联通性图1100中,关系神经元的来自传入的输入所遭遇的延迟可以是一致的。这可以是由于结构约束(例如,层间的距离)所导致,或者由于处于发展中。例如,在发展期间,模式神经元激发可被抑制,而传入可同步激发。因此,关系方面神经元可学习这些传入的一致延迟。这可能发生在例如使用STDP或其它学习规则时。随后,在发展之后,那些一致的延迟可被学习为具有一大权重并且在正常刺激期间可不改变。结果,关系方面神经元可以延迟激发,这取决于这些传入中由于刺激导致的相对延迟。学习和重放过程可随后如上所解释地继续进行。
关系方面学习的替换方式
一种计算地获得关系方面学习的方式可以是使具有不同延迟的许多突触(或可能的突触位置/脊突)连接(或潜在地连接)到相同的输入轴突,并仅使用突触可塑性来调整权重,如图12中的图表1202所解说的。另一种方式可以是具有结构可塑性,并且仅有一个或少数突触,从而如果它们衰落的话可被重新分配对相同输入的不同延迟(例如,沿树突/轴突平行过程滑动),如图12中的图表1204所解说的。两种方法都可表示图12中的示例结构1206中所描绘的可能连接的范围。结构1206可包括神经元1208的树突和神经元1210的轴突的平行过程。图1202和1204根据输入(x轴)、延迟(y轴)、以及权重(z轴)来显示了网络中所有突触状态。属于标绘1202、1204上的关系方面学习神经元的点的定位(突触状态)解说了在第一种情况下可以有许多可能突触,而在第二种情况下有较少的可能突触。然而,在两种情况下,都可在正确延迟为正确的输入增强一个或多个突触权重。
两种方法都被发现工作良好,尽管第一个可能学习得更快,因为脊突全都同时存在而不是以某种顺序被“尝试”。然而,虽然第一种方法可能更快,但其也可遭受来自不同模式匹配/学习神经元的输入的失衡的问题。第二种方法可能资源效率更高,因为在第一种方法中,许多延迟抽头(突触)可能最终未被使用(参见图12中的图1202)。在某种意义上,这些方法仅仅是脊突/突触能动性和结构可塑性的速度或动态的型谱上的不同点。
此外,第一种方法可能具有更高的倾向来学习更广的因果输入对应关系,除非使用内稳态来抵消这种倾向。这可以是由于具有很长的LTP(长期增强)拖尾(正足迹)的经典STDP所导致的,如图13中的图表1304的标绘1302所解说的。x轴表示突触前尖峰和突触后尖峰之间的时间差,其中正的x值对应于因果情况(突触前尖峰在突触后尖峰之前)。
以上问题可通过将正的STDP足迹减少到较短的时间间隔来避免,如图13中图表1308的标绘1306所解说的。这可通过直接改变可塑性曲线(各种因果或非因果变形是可能的,诸如零均值或偏移高斯)来执行,或者通过使用内稳态来基于神经元在一较长时间窗口中总体活动性(例如,激发率)来调控这些神经元来执行。可通过基于神经元的长期激发率是高于还是低于范围(即,分别是上和下目标值)以步进或渐进方式增加或减少对胞体的聚合输入的总体乘性调制来使用内稳态。在一方面,这一方法的效应可以是即便STDP原本可导致权重增大(或减小),但内稳态效应可降低(或提高)突触输入的效应。
当组合来看时,这一效应可被表示为如图表1308中的样子,其中零水平线被向上偏移,使得原先根据STDP可能是增加的效应在内稳态效应之后可实际上为减小(参见标绘1306)。在长期上,实际增大的权重可被限制于水平轴的较窄区域,或者被扩展到水平轴的更宽区域(突触前和突触后尖峰间的时间差)。
如图14中的图表1402的标绘1404所解说的,混合办法可既使用内稳态也改变曲线。将拖尾进一步向下推(远离零权重调整水平线)的一个原因可以是为了收窄时间重合分辨率(这对于关系方面学习神经元可能特别有用),因为内稳态可能不会将之前在学习过程中被提高的权重降下来(标绘1404位于零线1406附近)。应注意,零附近的权重调整可能不会实质性地改变权重。替代地,权重衰落(权重朝零的缓慢衰落)可与学习过程组合地使用。
反直觉行为
初一看,可能需要使模式学习神经元在学习期间不要大幅改变关系方面神经元激发时间。由于关系方面神经元接收来自传入和模式学习神经元两者的输入,因此输入的平衡会是要考虑的问题。事实上,模式学习神经元可能不太会显著地改变关系方面神经元定时,除非那些连接的权重大幅强于传入或基本在相同时间激发的多个模式学习神经元的权重(被横向抑制所抵消的效应)。在任何情况下,这可经由脊突或突触约束(权重、延迟)来避免或实质性抑制。结构可塑性(延迟变化的树突上的脊突位置)和非经典STDP(例如,资源考虑)的组合也可能使上述情况不太可能实现。
然而,即使存在失衡并且上层尖峰定时被改变,也不一定有什么是要避免的。如图15中神经连接图1500所解说的,关系方面激发(可能要求其是显著的以便使重放能够实现)回向传入的反馈1502也可改变传入的定时。换言之,可以有一反馈环,以使得上层中的定时改变导致下层中的定时改变。然而,重要的是重现传入模式,而不是重现刺激。传入可被看作是刺激的变换。如果变换不同,则不一定有影响,只要该学习是基于相同的变换即可。换言之,在学习期间,传入模式可改变并且这一改变的传入模式可表示已学习、以及可被重放的模式。
图16解说根据本公开的某些方面的与结构可塑性和结构约束建模有关的神经组件重放的示例操作1600。在1602,可用一个或多个参照神经元来参照多个传入神经元输出中的模式。在1604,可使用结构可塑性以一个或多个关系方面神经元来学习这多个传入神经元输出中的模式与这一个或多个参照神经元的输出之间的一个或多个关系方面。在1606,可诱导这多个传入神经元中的一个或多个传入神经元输出与由这一个或多个参照神经元所参照的模式基本相似的模式。
控制重放
为了重放已学习到的模式,可使用控制来激励已学习到该模式的神经元,例如来自图17的网络图1700中的神经元w、x、y或z。这样的控制可仅仅是模式匹配/学习神经元的另一突触输入,如图17中所解说的。取决于输入平衡,这样的突出可具有更强的权重,或者输入可在激励振荡期间被驱动,这会有效地增大神经元的输入或者减小激发阈值(或在抑制振荡中的间歇期间)。虽然振荡可能并非必要,但这可以是一个替代方式。图18的示例1800解说了正弦激励振荡1802。应注意,振荡的波峰可位于学习神经元1804被控制发放尖峰并经由关系方面学习神经元诱导传入模式的时刻。
振荡1802可被施加于神经元1804的膜(胞体处,具有低延迟或没有延迟)或者在突触处(因而招致根据该突触/连接的延迟)。振荡1802可以普遍地施加于附近的所有神经元,因此在图19中解说的示例中的振荡还可推升学习神经元对关系方面学习神经元的效应。应注意,重放可重复,除非在此示例中使用的振荡具有会抑压模式之后的重新激励的波谷。
另一种控制重放的方式可以是使用突发。来自图19和图20的示例解说了神经元x或y所作的突发可如何用于使关系方面学习神经元激发。这仅仅是一示例,因为突发可以被用在任何层/神经元。
然而,突发和振荡都可以是非必要的,并且可能具有缺点,因此可能不是优选的。然而,如果突发是想要的特征,则可推荐(a)在电路内部(即,不在可能具有局部电路的输入或输出连接的点处)以及在可塑性较低的连接上使用突发。首先,如果突发仅在电路内部,则可规避所连接的电路中的干扰(如果阵列中的某些连接是仅局部的)。其次,如果突发是在电路中的可塑性较低或不可塑连接上,则可规避对该电路内部的学习方面的某些干扰。
可考虑来自图17的重放体系结构1700的变形,其中传入和参照神经元(例如,分别是神经元a和x)不可突发(仅仅正常运行),而关系神经元(例如,神经元p)可突发(可选地仅在重放模式中突发)。这可为传入和参照神经元避免某些突发缺点,因为根据定义,它们不突发。此外,突发的一个缺点可在关系神经元中被消除:关系神经元可不必要在播放期间突发;这一较低程度的活动性可随后被配置,以使其可不足以显著地影响传入(反馈环)。随后,可考虑移除阻断重复的抑制性反馈连接(如果想要重复的话,或反之)。另外,由于这一情形中延迟、学习和突发的组合,导致数个细微但重要的问题可被避免,因为关系方面学习者(只有突发神经元)可以是一对一地与传入连接的并且在该模式下可以是因果的。然而,如果传入在重放的同时还运行学习,则仍可能有延迟-突发-学习组合问题。为了避免这一问题,关系神经元输入到传入神经元的连接可被预接线(例如,在发展中)。
图21中的神经连通性图2100展示了上述原理,其中单个神经元2102代表传入、神经元2104代表参照神经元、而神经元2106代表关系方面学习神经元。应注意,传入可接收来自上游的输入或刺激,并且它们的输出可在下游被使用或者由其它参照神经元(模式匹配神经元)使用,诸如用于匹配其它模式、记忆转移、比较、记忆转移等等。参照神经元可接收来自上游或其它传入的控制输入,并且它们的输出可在下游被用于概括、特殊化或进一步处理。然而,关系方面学习神经元可仅具有电路内部的连接。因此,根据以上的描述,在本公开的一个实施例中,只有那些神经元可突发。
另外,通过响应于控制输入来改变神经元的动态,可仅在重放(或其它模式)期间允许突发。例如,虽然数据输入可能改变神经元的状态(电流或电压),但控制输入可改变有效电导、静息或阈值电位、以及其它动态参数。
如果总体想要更大的控制,则优选实施例可宁愿基于扩展。控制重放的另一方式可以是通过扩展网络,如图22中所解说的,即通过从一对一关系推广到一对多或多对一关系或者甚至多对多关系。应注意,虽然来自图21的图2100中解说的是传入和关系方面神经元是在一对一基础上连接的,但这可以是非必需的。这可呈现至少两个可能的优点。第一,在存在噪声或概率激发的情况下,多对一以及一对多连接可改善稳定性。第二,如果一个输入不足以导致接收侧神经元激发(施加一约束),则多个输入可克服这一限制。
图23解说根据本公开的某些方面的神经组件重放的示例操作2300。在2302,可用一个或多个参照神经元来参照多个传入神经元输出中的模式。在2304,可用一个或多个关系方面神经元来匹配这多个传入神经元输出中的模式与这一个或多个参照神经元的输出之间的一个或多个关系方面。在2306,可通过使由这一个或多个关系方面神经元的输出发生突发来诱导这多个传入神经元中的一个或多个传入神经元输出与这一个或多个参照神经元所参照的模式基本相似的模式。
图24解说根据本公开的某些方面的神经组件重放的示例操作2400。在2402,可用一个或多个参照神经元来参照多个传入神经元输出中的模式。在2404,可用一个或多个关系方面神经元来匹配这多个传入神经元输出中的模式与这一个或多个参照神经元的输出之间的一个或多个关系方面。在2406,可诱导这多个传入神经元中的一个或多个传入神经元输出与由这一个或多个参照神经元所参照的模式基本相似的模式,其中这些传入神经元中的至少一个传入神经元、这一个或多个参照神经元、或这一个或多个关系方面神经元之间的信号传递可包括快速尖峰序列或独立尖峰中的至少一者。
组件重放和系统重放
图25中解说了使用具有突触和结构可塑性的上述时间编码模型在一短暂训练历时之后的多个(例如五个)模式的重放。这些重放被解说在框的传入段(L1A)中(在没有刺激(S)的情况下)(为了清楚,图25中没有示出关系方面学习神经元响应)。应注意,在第2模式的情形中,两个神经元已学习到该模式。重新激励第二个神经元可重放更完整的模式(更多传入)(参见第二个框“II”下的“L1A”中的模式)。因此,应注意,该方法可通过激励已学习到模式的神经元中的一个或多个神经元来更完整地重放该模式。另外,图21解说了相同的体系结构如何能够用相同的神经元来进行多路复用(学习和重放多个模式I到V)。换言之,该体系结构可以是相当可缩放的。
学习完善和关联
应注意,组件重放可重放的不仅仅是神经元已学习到的模式。这点可能看似细微,但将会非常有用。关键着眼点在于,为了完善学习,一种方法将要求比无论哪个将进行学习上的完善的实体所已学习到的模式更好地重放该模式(或提供缺失的片段)。然而,这可能并不意味着该模式比任何实体已学习到的模式要好。
在图26中的示例2602中,关于完善的有缺陷的概念是仅重放实体所学习到的模式中要经受学习完善的那部分。问题是如何才能使进一步的完善发生。在图26中的示例2604中,重放可以是比将要经受学习完善的实体已学习到的模式更忠实的模式重现。然而,这可能并不意味着要经受学习完善的实体是已学习了关于该模式的任何内容的唯一实体。
特定神经元x学习了要在有特定传入输入之际激发这一事实可能实际上是由于神经元x未完全学习到传入输入模式中的所有激发而导致的。图27中解说了一个示例,其中神经元x所作的模式识别可不依赖于传入d。打个比方,这可被认为是仅仅因为眼睛和鼻子来识别某个人的脸。但是,关系方面学习神经元可学习匹配神经元的激发和传入模式中的可能任何一个或甚至全部元素之间的关系。换言之,关系方面学习神经元可不受神经元x依赖于该模式的什么元素所约束。打个比方,这可被认为是听到第一人说关于第二人的“那是A这个人”的第三人。第三人也可看见第二人(A这个人)。也许,第一人仅仅因为眼睛和鼻子(假设A的面部的其余部分被遮挡)而识别出A这个人。这可能无法避免第三人(他能够看到A这个人的全部面部)学习A这个人的头发与第二人将他标识为“A这个人”之间的对应关系。因此,关系方面学习神经元可重现与一个(或多个)学习神经元所赖于匹配的模式有所不同(例如,更大、更完整、或不同部分)的传入模式。
然而,应注意,“传入”可不需要被连接到模式学习神经元(例如,图27中的示例2702中的神经元n)。只要有一配对的关系方面神经元(例如,神经元t),则神经元n的激发就可与传入模式相关联,并可借助传入来重放。这可提供一种将其它信号或活动与传入正在播放的、正被学习的模式相关联的在线方法。虽然可能不需要在学习神经元这一级来学习对应关系,但对应关系可被保留用于当该模式的另一片断(诸如图27的神经元d)或相关的神经元(诸如图27中的神经元n)激发时进行重放(以及之后或在一更高级别或由另一神经元学习)。因此,如图28中所解说的,一旦刺激不再存在,所提出的方法可完善学习、比较或继续进行其它处理。
图29解说根据本公开的某些方面的神经学习完善的示例操作2900。在2902,在刺激之下,可学习一组输入中的模式的一子集。在2904,可学习该模式的元素与该模式的该子集之间的关系方面。在2906,在没有刺激的情况下,可使用已学习到的关系方面来重放这组输入中的该模式。在4208,在没有刺激的情况下,可完善对这组输入中的该模式的学习。
记忆转移和关联
在给定了重放方法的情况下,可描述记忆转移的方法。图30指出了有意义的记忆转移的关键特异性:在没有经由原始传入的重放的情况下,记忆的“转移”不能真正发生,因为无论被转移方学习到什么,都不会是原始传入的一方面。在图30的示例3002中,被转移方可学习模式匹配神经元的输出。关键着眼点可以是对于有用的转移,被转移方以后可不需要依赖于转移方来识别模式。在图30的示例3004中,就是这种情况。因此,记忆的离线(没有刺激的情况下)转移会需要经由原始传入的重放。这一重放可以是由神经网络中的别处的组件重放导致的组件重放或系统重放。无论怎样,模式识别转移方可参与触发重放,但被转移方可不依赖于此。
为了转移记忆,可使用重放方法经由原始传入来重放模式。尽管这可能看上去是反直觉的,但是应注意,被转移方(新的模式匹配者)和相关联的关系方面神经元可不连接到转移方(旧的模式匹配者)并且不连接到任何相关联的关系方面神经元(即,如果转移方具有/要求重放能力的话;否则不需要关系方面神经元)。被转移方可学习被重放的模式。应注意,被转移方可学习转移方已学习到的模式的不同元素或方面。还应注意,与以上对与学习完善有关的关联的描述类似,被转移方可学习传入模式和一个或多个附加的输入神经元(图27中的示例2702中的神经元n)中的模式的组合。区别在于,此处这种学习可能是由于该另一个模式作为此重放的一部分的重放所导致或者由于该另一个模式纯粹作为那些附加信号的一致“播放”的重放(以便将它们与传入模式相关联)所导致。在任一种情况下,这一个或多个附加输入可以或可以不是对转移方的输入,甚至可以或可以不是对被转移方或关系方面学习神经元的输入。
应注意,一旦记忆被转移,则转移方((诸)模式匹配神经元)以及关系方面学习神经元都可被重用/擦除/重新指派或经受新的学习,而不会破坏被转移方识别原始模式的能力。
还应注意,也可基于关系方面神经元(图31中的示例3100中的神经元p到s)而不是(或作为补充)传入(神经元a到d)来转移记忆。然而,如果被转移方依赖于关系方面神经元,则若记忆要由被转移方保留的话,那么这些不应当被擦除。
此外,新的一批关系方面学习神经元可与被转移方相关联地使用,以便重放被转移方所学习到的模式、完善被转移方的学习或者实现以上讨论的进一步处理中的任何处理,甚至包括再次转移此记忆。这可很好地与本公开的皮层构造结构的普遍性相符。图32中解说了这一结构。应注意,尽管相同的字母被用于两个皮层区域中的神经元,但这些不是相同的神经元。这仅仅是方便,并且标识对皮层区域而言是局部的。
图32中的图3200解说了用于记忆转移的连通性的示例。虽然这些皮层区域被分开显示,但这些也可仅仅是一共同区域内的不同区域或沿皮层构造的延展的点。在示例3200中,两个皮层区域可使用相同的传入。图33中的图3300显示,一旦转移完成,就可不再有对第一皮层区域的依赖。图34中的示例图3400显示了对转移的扩展并且同时由第三皮层区域对来自从第一和第二皮层区域的分别学习的模式进行相关联(转移和关联)。
最后,关于记忆转移,可以有数个扩展以及替代方式。可与擦除原始记忆相协同地实现向第二或其它记忆的转移。这可在不影响重放保真度的情况下完成,因为可使用关系方面神经元来实现重放。
如果重放确实触发原始模式匹配激发,并且这也是所希望的,但不希望在记忆转移的同时进行学习完善,则从层2(参照或模式匹配神经元)到层3(关系方面学习)的输入可被抑制性连接所阻断。具体来说,可由例如先前层3输出(经延迟)或者先前层2输出(受控制)来驱动层2到层3突触的突触前抑制。这一概念的变形是可能的。中心思想是使用此规程中的先前输出作为触发来抑制此规程中的特定连接层。
应注意,以上原理也可被应用于在暴露于原始刺激期间使用的突触前抑制的替代方式,用于如上所述地由先前层1输出来抑制层3到层1的连接。变形可包括直接来自刺激而不是层1(传入)的触发或来自刺激或层1的突触后抑制。在这两种情况的任一种中,可使用延迟来将此规程中的先前信号的时间窗口一直来到该规程步骤将被抑制的时刻。
应注意,如果抑制性影响是作用于相对大的时间量程(因果的,但是例如具有带长时间常数的衰落影响),则并不一定需要精确的延迟。即使突触抑制具有短时间常数,也可使用共振抑制性中间神经元来维持在较长时间窗口上的抑制。尽管如此,如果抑制的时间窗口较窄,则时间精确会更有益处。也可通过使用将关系方面学习激发和因果传入激发互相关的学习规则来学习此时间延迟(即,由抑制性神经元或电路来学习,甚至在无监督的学习中学习),由此提高具有与那些激发对齐的延迟的突触连接的权重。
图35解说根据本公开的某些方面的神经组件记忆转移的示例操作3500。在3502,可用一个或多个参照神经元来参照多个传入神经元输出中的模式。在3504,可用一个或多个第一关系方面神经元来匹配这多个传入神经元输出中的模式与这一个或多个参照神经元的输出之间的一个或多个第一关系方面。在3506,可通过诱导这多个传入神经元输出与这一个或多个参照神经元所参照的模式基本相似的第一模式来将模式转移到一个或多个被转移方神经元。
图36解说根据本公开的某些方面的神经关联学习的示例操作3600。在3602,可用第一刺激来参照一组一个或多个输入中的第一模式。在3604,可学习该组输入中的第一模式的一个或多个元素与第一模式的参照之间的关系方面。在3606,可用第二刺激来参照该组一个或多个输入中的第二模式。在3608,可学习该组输入中的第二模式的一个或多个元素与第二模式的参照之间的关系方面。在3610,在没有第一和第二刺激的情况下,可使用已学习到的关系方面来重放这组输入中的第一和第二模式。在3612,可基于重放将第一和第二模式相关联。
模式补全和模式划分
模式补全是这样的一个过程,其中系统之前已被暴露于诱发传入中的原始模式的原始刺激,并且随后该系统可被暴露于仅会诱发原始模式的一部分的部分刺激,区别在于重放方法补全该模式。换言之,模式补全的能力可表示以完整响应来响应于降级的输入的能力。
本公开提供了一种模式补全的方法。为了实现模式补全,可能需要将降级的模式作为对应于原始模式来匹配或参照的参照(或模式学习者/匹配者)。图37解说了数个传入3702和两个参照(或模式学习神经元)3704、3706的网络3700。图37中还解说了原始(完整)的模式3708。在一方面,神经元3704可参照这一模式(或已学习了这一模式)。此外,神经元3704还可至少参照(匹配)降级的模式3710。另外,该模式的所有元素可由关系方面神经元学习,如尖峰3712所解说的。还解说了降级的输入3714,并且它可满足该参照所需的最小元素,因此神经元3704在此降级的输入3714上也可激发(不仅仅在完整输入3708上)。
根据以上的描述,参照(匹配)输出(图37中的神经元3704)可以随后被输入到关系方面层,这可导致关系方面神经元激发。由于上文描述的关系神经元到传入神经元的突触前抑制连通性的原因,抑制性电路可抑压原始模式中已在此降级的模式中的那些元素进行重放。然而,由于缺失的元素不在降级的模式中,因此它们可能不具有抑制性反馈并且因此可能被重放。因此,如图38中所解说的,模式可由重放电路来补全。应注意,补全部分可在相对于降级但存在的部分(尖峰3804)而言延迟了的时间被重放(尖峰3802)。这些部分可通过为降级但是存在的部分插入延迟来得到对齐,以使得它们可被重新对齐(尖峰3806)。
模式补全的替代方法可以是移除、抑压或克服如上所述的突触前抑制性电路。结果,降级的模式可首先发生。随后,在延迟了的时间,完整的模式可被重放,如图39中所解说的。
模式补全的另一替代方法可以是参照(匹配)在模式结束之前激发的情况。这是在图37中显示神经元3706的目的。可以注意到,神经元3706激发中间模式(例如,图39中的尖峰3902、3904,以及图40中的尖峰4002)。这可能是因为其识别出降级的模式的早期部分。在此情形中,发生在参照之后的缺失部分(图40中的尖峰4002)可以用传入的降级部分来重放,如图40中解说的。这可能是因为关系方面神经元可响应于神经元3706并因此可诱导传入在神经元3706激发之后(而非之前)激发。
最后,更大以及更普遍的模式补全也是可能的。更大指的是正在产生的模式可以在持续时间上比延迟线范围(例如,树突延迟范围的持续时间)更长,因此模式可由序列中的多个参照神经元学习/参照。更普遍指的是模式每传入具有多个尖峰。以下在阶层式重放的讨论中进一步提供说明。
一相关但不同的过程可以是模式划分的过程。这可表示修改相似的已存储/已学习模式以增加它们之间的差异以及增强识别刺激时的特异性的能力。本公开与模式划分相兼容,因为可使用参照层处的横向抑制来划分参照层神经元学习并因此划分存储着的模式。划分也可在关系方面学习期间发生,因为这一学习取决于与参照层和传入的关系。应注意,如果相似模式在参照激发时引起混淆,则这可因此负面地影响关系方面学习,这会由此划分或抑压相似方面的学习。如果在关系方面学习期间针对单个原始模式有多个参照(对应于多个模式)激发,则类似效果也会发生。
图41解说根据本公开的某些方面的神经模式补全的示例操作4100。在4102,可用第一刺激来参照一组一个或多个输入中的第一模式。在4104,可学习该组输入中的第一模式的一个或多个元素与第一模式的参照之间的关系方面。在4106,可用第二刺激来参照这组一个或多个输入中的第二模式,其中第二模式可包括第一模式的降级版本。在4108,可响应于暴露于第二模式或第二刺激中的至少一者来重放第一模式中的、而在第二模式中缺失了或降级的至少一个元素。
图42解说根据本公开的某些方面的神经模式划分的示例操作4200。在4202,可用一个或多个参照神经元来参照一组一个或多个输入中的第一模式。在4204,可学习第一模式的一个或多个元素与第一模式的参照之间的第一关系方面。在4206,可用一个或多个参照神经元来参照这组一个或多个输入中的第二模式,其中第二模式可与第一模式相似。在4208,可学习第二模式的一个或多个元素与第二模式的参照之间的第二关系方面。在4210,可修改第一模式或第二模式中的至少一者以增加第一和第二模式之间的区别。在4212,在修改以及使用这一个或多个参照神经元之后,可用第一刺激来参照第一模式并且可用第二刺激来参照第二模式,其中第一刺激可异于第二刺激。
模式比较和概括
本公开的某些方面支持模式比较的方法。模式比较表示比较两个已存储或学习的模式的能力。并不一定需要将模式存储在一个参照(模式学习)神经元中,而是可由关系方面神经元群体或由多个参照神经元或两者的组合来存储该模式。例如,可以有两个或更多这样存储着的、有待离线(即,在没有原始刺激的情况下)比较的模式,或者可以有一个存储着的模式以及一个当前由于刺激导致正在发生的模式。本公开提供了比较这些模式的方法。
图43解说根据本公开的某些方面的神经连通性图4300的示例。在一方面,如上所述的,神经元x可以是对第一模式的参照且神经元y可以是对第二模式的参照,而关系方面学习神经元p到s已学习了这两个模式的重放。为了比较这两个模式,可使用控制来诱导神经元x和y中的一个或另一个激发并调用对应模式的重放。此外,可检查传入(a到d)中的模式是否会被(i)对应的神经元或(ii)对应于另一模式的神经元、(iii)两者所匹配、或(iv)一个都不匹配。因此,可以离线方式比较存储着的模式。类似地,可将存储着的模式与传入中的当前模式(当前由于对传入的刺激而正在发生的)相比较。
此外,可通过横向抑制来方便模式比较。在一方面,神经元x和y可彼此横向抑制(图43中未示出)。如果与神经元x和y所识别/参照的模式类似的模式被播放/重放,并且如果神经元x先激发,则它会抑制神经元y激发。在某种意义上,第一/最佳匹配可阻止另一匹配。相反,如果没有匹配发生,可以没有抑压并且可鼓励最微小的匹配。匹配越好,直到神经元x或y(视情况而定)激发为止的延迟就可越小。
如果两个模式不是相同的但是相似,则概括这一问题可能是合意的。概括可发生在更高层或在同一层。在图4300中,神经元t可代表更高层神经元,而神经元z可代表(与模式学习神经元)同一层的神经元。应注意,没有一种情况(t或z都不)被要求连接到便于重放的关系方面学习神经元(神经元p到s)。另外,在更高层的情况下,神经元t可不需要被直接连接到神经元x和y,但它可以位于甚至更高的层(更间接)。
可通过重放一系列模式来执行搜索。随着目标模式的匹配变得更接近,对应于目标模式的参照神经元可变得越来越可能要激发(或者例如增加其激发率)。
概括可在线(在播放期间)或离线(借助重放)发生。通过播放或重放模式,概括神经元可学习针对这两个模式均激发。关键可在于,并没有使激发变得互斥,诸如通过抑制。例如,在神经元z的情形中,如果想要神经元z概括已被神经元x和y所参照的模式,则神经元x或y的激发不应抑制神经元z激发。
图44解说根据本公开的某些方面的进行神经比较的示例操作4400。在4402,可用第一刺激来参照一组一个或多个输入中的第一模式。在4404,可学习该组输入中的第一模式的一个或多个元素与第一模式的参照之间的关系方面。在4406,可用第二刺激来参照该组一个或多个输入中的第二模式。在4408,可重放第一模式。在4410,可基于此重放和第一和第二模式的参照将第一模式与第二模式作比较。
图45解说根据本公开的某些方面的神经模式概括的示例操作4500。在4502,可用第一刺激来参照一组一个或多个输入中的第一模式。在4504,可学习该组输入中的第一模式的一个或多个元素与第一模式的参照之间的关系方面。在4506,可用第二刺激来参照该组一个或多个输入中的第二模式。在4508,可学习该组输入中的第二模式的一个或多个元素与第二模式的参照之间的关系方面。在4510,可在没有第一和第二刺激的情况下重放第一模式或第二模式中的至少一者。在4512,可基于重放来学习第一和第二模式的概括。
水平(自)关联
在一方面,可存在感官刺激,诸如看到特定的某张脸,这可导致一特定的传入模式。第一模式学习神经元(例如,在第一皮层区域中:视觉)可根据以上方法学习这一模式。然而,还可以有另一种模态下的同时(或甚至仅仅是时间上接近的)刺激,例如,可由第二模式学习神经元(例如,在第二皮层区域中:听觉)学习的响声模式。在一方面,第一模式学习神经元可不连接到此第二(听觉)感官模态输入,因此它可能未将这一声音学习为该模式的一部分。图46中解说了这一情形。
应注意,皮层区域模式学习神经元4602可不连接到彼此的传入。根据本公开的关系方面学习神经元,关系方面学习神经元4604可与来自这两种模态的传入配对。另外,它们可接收来自视觉和听觉模式匹配/学习神经元的输入。因此,关系方面学习神经元可被连接为跨越到其它皮层区域的传出,如图46中由从第二皮层区域关系方面神经元4608到第一皮层区域参照神经元4610的轴突的树突过程4606所表示的。此外,第一皮层区域传入4612和第二皮层区域传入4614可连接到第三皮层区域传入,如图46中所解说的。尽管来自图46中的神经连通性图4600仅解说了一个这样的水平连接并且仅仅是单向的,但是水平连接可以由来自任一皮层区域的关系学习方面神经元中的一个或多个(甚至每一个)作出。
应注意,通过触发重放,即使视觉和听觉模式曾由不同神经元所学习,重放也可包括视觉和听觉模式两者。在一方面,离线学习或记忆转移可将两者相关联,并且学习经组合的模式(例如,被转移方模式学习神经元可与视觉和听觉输入的组合相匹配)。
学习速度和参照
以上结合学习完善讨论了能够在刺激不再可用之后改善模式的学习的优点。然而,本公开的方法可具有甚至更好的潜能。在以上的综合讨论中,模式学习(或至少匹配)神经元是被用在皮层构造的第二层中。技术上来说,这一模式学习神经元可实际上是用于关系方面学习的参照。正发生的情况可以是关系方面学习正使用模式学习神经元的输出来关联该模式的来自每个传入的个体元素。该参照是模式学习神经元还是模式匹配神经元对于该目的来说不重要。换言之,参照神经元可以是除模式学习(或匹配)神经元以外的神经元。在一方面,这一神经元可甚至不连接到传入。图47中的神经连通性图4700中的神经元y解说了参照。
在本公开的一个方面,模式学习神经元可被用作为参照,而刺激可如综合讨论的那样可用,区别在于,需要学习多久才能获得该模式学习神经元(以及传入,如果有强反馈的话)与该模式一致的激发就只学习多久,但不一定久到足以使学习发展到该神经元能将该模式与其它模式区分开(或仅仅与其它相似模式区分开)的程度。换言之,在刺激期间的学习可能非常快速,因为没有需要真正完善模式匹配或区分能力。这可在借助与其它概念/输入的关联或不借助于此类关联的情况下,使用相同神经元(完善学习)或向另一神经元的转移来离线地(没有刺激的情况下)完成。
在另一方面,传入中的一个可被用作为参照。当该传入始终与特定模式相关联(并且例如在其它模式存在时不激发)时,这可运行良好。确实,如果特定传入已经是一模式的良好指示物,则要学习该模式的动机就少了。但是,这也并不一定如此。例如,一顶特定的帽子可能是某人特别独特或区别性的特征。然而,这不排除识别这个人的脸部的重要性。如果一传入被用作为参照,则可能不需要将其它传入连接到该传入。图47中的神经元y可表示这一情形。应注意,关系方面学习神经元也可被用作为参照。
在又一方面,使用传入或模式匹配/学习神经元以外的单独的神经元是可能的,诸如来自皮层阵列或神经网络的另一部分的神经元、或者使用振荡周期性地受激励或者以其它方式受控制以与刺激的出现同时发生的神经元,诸如注意标记物。例如,可假设注意力可固定在脸上。视觉系统可正接收具有对应于该脸部的模式的传入。注意电路可为视觉系统提供与对这张脸的注意相符的参照。此参照可随后由关系方面学习神经元使用以存储能够在刺激(脸部)从视野中消失之后重放的信息。为了重放,注意电路可触发该参照,该参照如上所述地经由原始传入来触发重放。这可随后被用于对脸部模式的学习、学习完善、学习或记忆或信息的转移、或者关联。
图48解说根据本公开的某些方面的神经组件学习完善和快速学习的示例操作4800。在4802,可用一个或多个模式学习神经元来参照多个传入神经元输出中的模式。在4804,可用一个或多个关系神经元来匹配这多个传入神经元输出中的模式与一个或多个参照神经元的输出之间的一个或多个关系方面。在4806,可诱导这多个传入神经元中的一个或多个传入神经元输出与这一个或多个参照神经元所参照的模式基本相似的模式。在4808,可使用被诱导的基本相似的模式来完善这一个或多个模式学习神经元的学习。
规程流、重复重放以及引导流
在本公开的一个方面,可使用抑制来引导规程的进程。术语“规程”可被用于指代诸如具有原始刺激的关系方面学习、重放、记忆转移、或学习完善等等之类的过程。规程可由特定控制或输入(例如,刺激)触发,或者可仅仅是网络的振荡中的一个状态。无论怎样,一旦被触发,过程可受内部操作(基于网络的先前活动的状态转移)的控制或者受外部控制(本地阵列或网络区域的外部)的控制或者受两者的组合的控制,如图49中的规程流4900所解说的。
内部控制的示例是由先前激发所驱动(传入激发可驱动模式神经元激发,依此类推)的在环中在传入激发、模式神经元激发、关系方面神经元激发、(再次)传入激发等等之间的振荡。外部控制的示例可以是由于外部控制信号(阵列外部的其它神经元)导致而诱导模式神经元激发。还可使用组合,以使得最初的活动可由控制触发,但所发生的后续振荡可以是自身引起的。对此的变形可包括自触发但受控制的振荡。无论怎样,除了刺激以外,还可使用抑制来使规程流生效(决定接下来发生什么状态)。应注意,在上述描述中,具体的抑制(突触前)是被用于在暴露于原始刺激期间防止关系方面神经元触发重放(直接由刺激驱动,或者由激发并影响从关系方面学习神经元回到传入的连接的传入来驱动)。
然而,这一总体构思可用多个替代方式来应用并且被应用于其它规程。首先,记忆转移过程可被视为后者的一个示例。在记忆转移的重放期间,传入可回放该模式。与该模式可由可连接到关系方面学习神经元的模式匹配神经元(或参照)来匹配。因此,重放可再次调用重放。由于以上提到的具体抑制,可阻断反复的重放。如果反复重放是希望的,则可移除这一阻断,或者可添加另一控制来调用反复(例如,对参照或模式神经元的周期性刺激)。
然而,反复可能是不希望的,并且进一步,甚至连关系方面神经元的再次激发也可能是不希望的。这一点的原因是该(关系方面的)学习完善可能是不希望的(例如,在记忆转移期间)。为了阻断这种情况,规程中的先前事件(激发)可被用作为抑制不希望的事件的驱动物。具体来说,抑制性中间神经元可被连接以接收来自参照或模式匹配神经元的输入以及在相同的神经元和(到)关系方面神经元之间的激励连接上输出。通过指派与规程流中的步骤之间的时间相当的延迟,中间神经元可在恰当的时间阻断不希望的事件的起因。因此,可设计内部连通性以为任何特定规程确保希望的规程流。
阶层式和多层重放以及多部分模式补全
根据本公开的某些方面,阶层式和多层重放的概念可表示将以上描述的重放体系结构的概念应用于网络的多个层并且可能阶层式地在一个或多个层重放。多层的意思可包括在网络中的不同的概括或抽象级处的神经元。阶层式重放的意思是在特定模式学习或参照层(神经元)处诱导重放可随后进而诱导在那些模式学习或参照层神经元的传入中的已学习/参照的模式的重放。因此,在分层的网络中,重放可以按照由上到下的次序被诱导。
通过图50中解说的示例5000来描述阶层式重放。图50中的神经元x、y以及z可以是模式学习神经元(或参照)。然而,神经元x和y可学习或参照传入a和b中的模式,而神经元z可学习或参照神经元x和y中的模式。类似地,神经元p和q可以是网络的下部的关系方面神经元,而神经元t和u可以是上部的关系方面神经元。应注意,下层的模式重放可由上层的重放诱发。在一方面,上层处的重放可由神经元z的激发所调用。例如,激发顺序可如下进行:z→t,u→x,y→p,q→a,b,依此类推。
通过策略性的抑制性连通性或激励性推升,实现进一步的处理目标(诸如更大的模式补全)是可能的。对于模式补全,神经元x所匹配的模式可由于外部刺激的原因发生,并且可能期望作为结果,神经元y所匹配的模式被重放。由于神经元x所匹配的模式发生,因此神经元x可激发。通过推升灵敏度或降低神经元z的阈值,作为结果,这一神经元可被诱导激发。现在,这可诱导如上所述的阶层式重放,但有一些重要的区别之处。第一,神经元x的原始模式已发生。这可被用于通过抑制神经元x进一步激发(至少在短期内)来抑制神经元x所参照的模式的重放。第二,由于神经元y的模式还没有发生,因此神经元y可不被抑制以防激发。因此,神经元p和q可激发以仅调用神经元y所匹配/参照的模式的重放。图51中的示例流程图5100中可概述了该示例过程。
阶层式重放可提供用于额外的进一步处理的手段,包括可称为“关联补全”的过程。例如,机器可正在学习一模式序列(例如,鸟鸣或语音),该模式序列由经排序的部分列表A、B、C来抽象地注记。在一方面,部分B可接在部分A之后,并且部分C可接在部分B之后。不失一般性,可关注关联中的一步,例如关注于步骤A→B。在一方面,图50中解说的网络可学习神经元x和y处的模式A和B。此外,神经元z可学习次序A→B,因为它可以学习神经元x和y(参照A和B)的激发的时间方面。如果机器开始于单独重放模式A,则这可被用于触发相关联的B的重放,正如前文针对模式补全所描述的(除了第一部分也是重放以外)。通过向网络中添加元素,可基于B的重放调用C的重放,依此类推。实际上,序列的重放可一步步地调用。
现在,敏锐的读者可能会问:“B难道不会随后导致A的重放而不是C的重放,或者除了C的重放外还导致A的重放”。这种情况确实是可能的,除非做出修改以避免此情况,即维持序列的前向流动。一种这样做的方式可以是抑制每个层2神经元以免在其已经激发后的一个时间段内再次激发。这个时间段可对应于彼此相隔两个部分(即,中间有一个部分)远的部分之间的持续时长。
现在,敏锐的读者可能会问:“这样难道不会避免诸如A→A→B或A→B→A→C之类的序列的重放”。答案是不一定。如果只有一个神经元与部分A匹配,那么这会成为问题。然而,如果多个层2神经元被允许学习模式A,则通过横向抑制以使得不同神经元在序列中的不同点学习模式A,则这个问题可被克服。
最后,还可提供控制输入来将重放限制于网络特定的几级。例如,可控制重放以通过抑制下层参照神经元的激发来将其局限于上层(概念抽象或模式识别的较高层)。
图52解说根据本公开的某些方面的神经模式序列补全的示例操作5200。在5202,可用第二层参照神经元来参照一组一个或多个第一层神经元中的模式的各部分的每个序列。在5204,可学习该模式的一个或多个元素与该模式的各部分的序列的参照之间的关系方面。在5206,可用第三层参照神经元来参照第二层参照神经元的模式序列。在5208,可学习该模式序列的一个或多个元素与第二层参照神经元的模式序列的参照之间的关系方面。在5210,可在第一层神经元中在产生该模式的先前部分之后重放该模式的后续部分。
图53解说根据本公开的某些方面的神经模式阶层式重放的示例操作5300。在5302,可用第二层参照神经元来参照一组一个或多个第一层神经元中的模式的各部分的每个序列。在5304,可学习每个模式的一个或多个元素与该模式的各部分的序列的参照之间的关系方面。在5306,可用第三层参照神经元来参照第二层参照神经元的模式序列。在5308,可学习该模式序列的一个或多个元素与对第二层参照神经元中的模式序列的参照之间的关系方面。在5310,可基于第三层参照神经元来调用第二层中的模式序列的参照的重放。在5312,可基于对第二层中的模式序列的参照的重放的调用来重放第一层中的模式的各部分的序列。
图54解说根据本公开的某些方面的可在没有阶层的情况下执行的神经模式序列补全的示例操作5400。在5402,可用多个参照神经元来参照多个传入神经元中的模式的多个部分。在5404,可用一个或多个关系方面神经元基于传入神经元与这一个或多个关系方面神经元之间的延迟小于第一值而将模式的各部分中的一个或多个部分关联到参照神经元的子集。在5406,可用这一个或多个关系方面神经元基于该延迟大于第二值而将模式中的一个或多个剩余部分关联到参照神经元的该子集。在5408,可基于传入神经元激发该模式的这一个或多个部分的各元素来由参照神经元的该子集诱导该模式的这一个或多个剩余部分的重放。
图55解说根据本公开的某些方面的使用通用处理器5502对以上提及的用于神经组件重放、学习完善、记忆转移、关联性学习、模式比较、模式补全、模式划分、模式概括、在有阶层的情况下的模式序列补全、以及模式阶层式重放的方法的示例软件实现5500。与计算网络(神经网络)的每个连接(突触)相关联的权重和延迟可被存储在存储器块5504中,而与正在通用处理器5502处执行的以上提及的方法有关的指令可从程序存储器5506中被加载。
在本公开的一方面,加载到通用处理器5502中的指令可包括用于用一个或多个模式学习神经元来参照多个传入神经元输出中的模式的代码,用于用一个或多个关系方面神经元来匹配所述多个传入神经元输出中的模式与一个或多个参照神经元的输出之间的一个或多个关系方面的代码,用于诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式的代码,用于使用被诱导的基本相似的模式来完善所述一个或多个模式学习神经元的学习的代码,用于通过诱导所述多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的第一模式来将所述模式转移到一个或多个被转移方神经元的代码,以及用于使用结构可塑性用一个或多个关系方面神经元来学习所述多个传入神经元输出中的模式与所述一个或多个参照神经元的输出之间的该一个或多个关系方面的代码。在另一方面,加载到通用处理器5502中的指令可包括用于在刺激之下,学习一组输入中的模式的子集的代码,用于学习所述模式的元素与所述模式的该子集之间的关系方面的代码,用于在没有刺激的情况下,使用已学习到的关系方面来重放所述一组输入中的所述模式的代码,以及用于在没有刺激的情况下,完善对所述一组输入中的所述模式的学习的代码。
在又一方面,加载到通用处理器5502中的指令可包括用于用第一刺激来参照一组一个或多个输入中的第一模式的代码,用于学习所述一组输入中的第一模式的一个或多个元素与所述第一模式的参照之间的关系方面的代码,用于用第二刺激来参照所述一组一个或多个输入中的第二模式的代码,用于学习所述一组输入中的第二模式的一个或多个元素与所述第二模式的参照之间的关系方面的代码,用于在没有第一和第二刺激的情况下,使用已学习到的关系方面来重放所述一组输入中的所述第一和第二模式的代码,用于基于所述重放将所述第一和第二模式相关联的代码,用于将第一模式与第二模式作比较的代码,用于响应于暴露于所述第二模式或所述第二刺激中的至少一者来重放第一模式中的、而在第二模式中缺失了或降级的至少一个元素的代码,用于修改所述第一模式或所述第二模式中的至少一者以增加所述第一和第二模式之间的区别的代码,用于在使用所述一个或多个参照神经元进行修改之后,用第一刺激参照所述第一模式并且用第二刺激参照所述第二模式的代码,其中所述第一刺激可异于所述第二刺激,以及用于学习所述第一和第二模式的概括的代码。
在又一方面,加载到通用处理器5502中的指令可包括用于用第二层参照神经元来参照一组一个或多个第一层神经元中的模式的各部分的每个序列的代码,用于学习每个模式的一个或多个元素与所述模式的各部分的序列的参照之间的关系方面的代码,用于用第三层参照神经元来参照所述第二层参照神经元中的模式序列的代码,用于学习所述模式序列的一个或多个元素与所述第二层参照神经元中的模式序列的参照之间的关系方面的代码,用于基于所述第三层参照神经元调用对所述第二层中的所述模式序列的参照的重放的代码,用于基于对所述第二层中的所述模式序列的参照的重放的调用来重放所述第一层中的所述模式的各部分的序列的代码,以及用于在第一层神经元中在产生所述模式的先前部分之后重放所述模式的后续部分的代码。
在又一方面,加载到通用处理器5502中的指令可包括用于用多个参照神经元来参照多个传入神经元中的模式的多个部分的代码,用于用一个或多个关系方面神经元基于所述传入神经元和所述一个或多个关系方面神经元之间的延迟小于第一值将所述模式的各部分中的一个或多个部分关联到所述参照神经元的子集的代码,用于用所述一个或多个关系方面神经元基于所述延迟大于第二值将所述模式中的一个或多个剩余部分关联到所述参照神经元的该子集相关联的代码,以及用于基于所述传入神经元激发所述模式的该一个或多个部分的元素来由所述参照神经元的该子集诱导所述模式中的该一个或多个剩余部分的重放的代码。
图56解说根据本公开的某些方面的对以上提及的用于神经组件重放、学习完善、记忆转移、关联性学习、模式比较、模式补全、模式划分、模式概括、在有阶层的情况下的模式序列补全、以及模式阶层式重放的方法的示例实现5600,其中存储器5602可经由互连网络5604与计算网络(神经网络)的个体的(分布式的)处理单元(神经处理器)5606来对接。与计算网络(神经网络)的一个或多个连接(突触)相关联的一个或多个权重和延迟可经由互联网络5604的(诸)连接从存储器5602被加载到每个处理单元(神经处理器)5606中。
在本公开的一方面,处理单元5606可被配置成用一个或多个模式学习神经元来参照多个传入神经元输出中的模式,用一个或多个关系方面神经元来匹配所述多个传入神经元输出中的模式与一个或多个参照神经元的输出之间的一个或多个关系方面,诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式,使用被诱导的基本相似的模式来完善所述一个或多个模式学习神经元的学习,通过诱导所述多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的第一模式来将所述模式转移到一个或多个被转移方神经元,以及使用结构可塑性用一个或多个关系方面神经元来学习所述多个传入神经元输出中的模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面。在另一方面,处理单元5606可被配置成在刺激之下,学习一组输入中的模式的子集,学习所述模式的元素与所述模式的该子集之间的关系方面,在没有刺激的情况下,使用已学习到的关系方面来重放所述一组输入中的所述模式,以及在没有刺激的情况下,完善对所述一组输入中的所述模式的学习。
在又一方面,处理单元5606可被配置成用第一刺激来参照一组一个或多个输入中的第一模式,学习所述一组输入中的第一模式的一个或多个元素与所述第一模式的参照之间的关系方面,用第二刺激来参照所述一组一个或多个输入中的第二模式,学习所述一组输入中的第二模式的一个或多个元素与所述第二模式的参照之间的关系方面,在没有第一和第二刺激的情况下,使用已学习到的关系方面来重放所述一组输入中的所述第一和第二模式,基于所述重放将所述第一和第二模式相关联,将第一模式与第二模式作比较,响应于暴露于所述第二模式或所述第二刺激中的至少一者来重放第一模式中的、而在第二模式中缺失了或降级的至少一个元素,修改所述第一模式或所述第二模式中的至少一者以增加所述第一和第二模式之间的区别,在使用所述一个或多个参照神经元进行修改之后,用第一刺激参照所述第一模式并且用第二刺激参照所述第二模式,其中所述第一刺激可异于所述第二刺激,以及学习所述第一和第二模式的概括。
在又一方面,处理单元5606可被配置成用第二层参照神经元来参照一组一个或多个第一层神经元中的模式的各部分的每个序列,学习每个模式的一个或多个元素与所述模式的各部分的序列的参照之间的关系方面,用第三层参照神经元来参照所述第二层参照神经元中的模式序列,学习所述模式序列的一个或多个元素与所述第二层参照神经元中的模式序列的参照之间的关系方面,基于所述第三层参照神经元调用对所述第二层中的所述模式序列的参照的重放,基于对所述第二层中的所述模式序列的参照的重放的调用来重放所述第一层中的所述模式的各部分的序列,以及在第一层神经元中在产生所述模式的先前部分之后重放所述模式的后续部分。
在又一方面,处理单元5606可被配置成用多个参照神经元来参照多个传入神经元中的模式的多个部分,用一个或多个关系方面神经元基于所述传入神经元和所述一个或多个关系方面神经元之间的延迟小于第一值将所述模式的各部分中的一个或多个部分关联到所述参照神经元的子集,用所述一个或多个关系方面神经元基于所述延迟大于第二值将所述模式中的一个或多个剩余部分关联到所述参照神经元的该子集,以及基于所述传入神经元激发所述模式的该一个或多个部分的元素来由所述参照神经元的该子集诱导所述模式中的该一个或多个剩余部分的重放。
图57解说了根据本公开的某些方面的基于分布式权重/延迟存储器5702和分布式处理单元(神经处理器)5704对以上所提及的用于神经时间编码的方法的示例实现5700。如图57中所解说的,一个存储器组5702可直接与计算网络(神经网络)的一个处理单元5704对接,其中该存储器组5702可存储与该处理单元(神经处理器)5704相关联的一个或多个连接(突触)的一个或多个权重和延迟。
在本公开的一方面,处理单元5704可被配置成用一个或多个模式学习神经元来参照多个传入神经元输出中的模式,用一个或多个关系方面神经元来匹配所述多个传入神经元输出中的模式以及一个或多个参照神经元的输出之间的一个或多个关系方面,诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式,使用被诱导的基本相似的模式来完善所述一个或多个模式学习神经元的学习,通过诱导所述多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的第一模式来将所述模式转移到一个或多个被转移方神经元,以及使用结构可塑性用一个或多个关系方面神经元来学习所述多个传入神经元输出中的模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面。在另一方面,处理单元5704可被配置成在刺激之下,学习一组输入中的模式的子集,学习所述模式的元素和所述模式的该子集之间的关系方面,在没有刺激的情况下,使用已学习到的关系方面来重放所述一组输入中的所述模式,以及在没有刺激的情况下,完善对所述一组输入中的所述模式的学习。
在又一方面,处理单元5704可被配置成用第一刺激来参照一组一个或多个输入中的第一模式,学习所述一组输入中的第一模式的一个或多个元素与所述第一模式的参照之间的关系方面,用第二刺激来参照所述一组一个或多个输入中的第二模式,学习所述一组输入中的第二模式的一个或多个元素与所述第二模式的参照之间的关系方面,在没有第一和第二刺激的情况下,使用已学习到的关系方面来重放所述一组输入中的所述第一和第二模式,基于所述重放将所述第一和第二模式相关联,将第一模式与第二模式作比较,响应于暴露于所述第二模式或所述第二刺激中的至少一者来重放第一模式中的、而在第二模式中缺失了或降级的至少一个元素,修改所述第一模式或所述第二模式中的至少一者以增加所述第一和第二模式之间的区别,在使用所述一个或多个参照神经元进行修改之后,用第一刺激参照所述第一模式并且用第二刺激参照所述第二模式,其中所述第一刺激异于所述第二刺激,以及学习所述第一和第二模式的概括。
在又一方面,处理单元5704可被配置成用第二层参照神经元来参照一组一个或多个第一层神经元中的模式的各部分的每个序列,学习每个模式的一个或多个元素与所述模式的各部分的序列的参照之间的关系方面,用第三层参照神经元来参照所述第二层参照神经元中的模式序列,学习所述模式序列的一个或多个元素与所述第二层参照神经元中的模式序列的参照之间的关系方面,基于所述第三层参照神经元来调用对所述第二层中的所述模式序列的参照的重放,基于对所述第二层中的所述模式序列的参照的重放的调用来重放所述第一层中的所述模式的各部分的序列,以及在第一层神经元中在产生所述模式的先前部分之后重放所述模式的后续部分。
在又一方面,处理单元5704可被配置成用多个参照神经元来参照多个传入神经元中的模式的多个部分,用一个或多个关系方面神经元基于所述传入神经元和所述一个或多个关系方面神经元之间的延迟小于第一值将所述模式的各部分中的一个或多个部分关联到所述参照神经元的子集,用所述一个或多个关系方面神经元基于所述延迟大于第二值将所述模式中的一个或多个剩余部分关联到所述参照神经元的该子集联,以及基于所述传入神经元激发所述模式的该一个或多个部分的元素来由所述参照神经元的子集诱导所述模式中的该一个或多个剩余部分的重放。
应理解,虽然特定术语被用于描述本公开的各组件,诸如神经元或突触,但本公开的各个概念可以等价的替代形式、采用等价的单元或元件来实现。
虽然本文中的实施例被示出用于尖峰神经网络,但将这些概念用于其它神经网络类型(包括但不限于基于速率的神经网络)也落在本公开的范围内。
以上所描述的方法的各种操作可由能够执行相应功能的任何合适的装置来执行。这些装置可包括各种硬件和/或软件组件和/或模块,包括但不限于电路、专用集成电路(ASIC)或处理器。一般而言,在附图中解说操作的场合,那些操作可具有带相似编号的相应配对装置加功能组件。例如,图8、16、23、24、29、35、36、41、42、44、45、48、52、53和54中解说的操作800、1600、2300、2400、2900、3500、3600、4100、4200、4400、4500、4800、5200、5300和5400对应于图8A、16A、23A、24A、29A、35A、36A、41A、42A、44A、45A、48A、52A、53A和54A中解说的组件800A、1600A、2300A、2400A、2900A、3500A、3600A、4100A、4200、4400A、4500A、4800A、5200A、5300A和5400A。
如本文所使用的,术语“确定”涵盖各种各样的动作。例如,“确定”可包括演算、计算、处理、推导、研究、查找(例如,在表、数据库或其他数据结构中查找)、探知及诸如此类。而且,“确定”可包括接收(例如,接收信息)、访问(例如,访问存储器中的数据)及诸如此类。而且,“确定”还可包括解析、选择、选取、确立及类似动作。
如本文中所使用的,引述一列项目中的“至少一个”的短语是指这些项目的任何组合,包括单个成员。作为示例,“a、b或c中的至少一个”旨在涵盖:a、b、c、a-b、a-c、b-c、以及a-b-c。
结合本公开所描述的各种解说性逻辑框、模块、以及电路可用设计成执行本文所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列信号(FPGA)或其他可编程逻辑器件(PLD)、分立的门或晶体管逻辑、分立的硬件组件或其任何组合来实现或执行。通用处理器可以是微处理器,但在替换方案中,处理器可以是任何市售的处理器、控制器、微控制器或状态机。处理器还可以被实现为计算设备的组合,例如DSP与微处理器的组合、多个微处理器、与DSP核心协同的一个或多个微处理器或任何其它此类配置。
结合本公开描述的方法或算法的步骤可直接在硬件中、在由处理器执行的软件模块中、或在这两者的组合中实施。软件模块可驻留在本领域所知的任何形式的存储介质中。可使用的存储介质的一些示例包括随机存取存储器(RAM)、只读存储器(ROM)、闪存、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动盘、CD-ROM,等等。软件模块可包括单条指令、或许多条指令,且可分布在若干不同的代码段上,分布在不同的程序间以及跨多个存储介质分布。存储介质可被耦合到处理器以使得该处理器能从/向该存储介质读写信息。替换地,存储介质可以被整合到处理器。
本文所公开的方法包括用于达成所描述的方法的一个或多个步骤或动作。这些方法步骤和/或动作可以彼此互换而不会脱离权利要求的范围。换言之,除非指定了步骤或动作的特定次序,否则具体步骤和/或动作的次序和/或使用可以改动而不会脱离权利要求的范围。
所描述的功能可在硬件、软件、固件或其任何组合中实现。如果在软件中实现,则各功能可作为一条或多条指令或代码存储在计算机可读介质上或藉其进行传送。计算机可读介质包括计算机存储介质和通信介质两者,这些介质包括促成计算机程序从一地向另一地转移的任何介质。存储介质可以是能被计算机访问的任何可用介质。作为示例而非限定,这样的计算机可读介质可包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储或其他磁存储设备、或能被用来携带或存储指令或数据结构形式的期望程序代码且能被计算机访问的任何其他介质。任何连接也被正当地称为计算机可读介质。例如,如果软件是使用同轴电缆、光纤电缆、双绞线、数字订户线(DSL)、或无线技术(诸如红外(IR)、无线电、以及微波)从web网站、服务器、或其他远程源传送而来,则该同轴电缆、光纤电缆、双绞线、DSL或无线技术(诸如红外、无线电、以及微波)就被包括在介质的定义之中。如本文中所使用的盘(disk)和碟(disc)包括压缩碟(CD)、激光碟、光碟、数字多用碟(DVD)、软盘、和蓝光碟,其中盘(disk)常常磁性地再现数据,而碟(disc)用激光来光学地再现数据。因此,在一些方面,计算机可读介质可包括非瞬态计算机可读介质(例如,有形介质)。另外,对于其他方面,计算机可读介质可包括瞬态计算机可读介质(例如,信号)。以上的组合也应被包括在计算机可读介质的范围内。
因此,某些方面可包括用于执行本文中给出的操作的计算机程序产品。例如,此种计算机程序产品可包括其上存储(和/或编码)有指令的计算机可读介质,这些指令能由一个或多个处理器执行以执行本文中所描述的操作。对于某些方面,计算机程序产品可包括包装材料。
软件或指令还可以在传输介质上传送。例如,如果软件是使用同轴电缆、光纤电缆、双绞线、数字订户线(DSL)、或诸如红外、无线电、以及微波等无线技术从web站点、服务器或其它远程源传送而来的,则该同轴电缆、光纤电缆、双绞线、DSL、或诸如红外、无线电以及微波等无线技术就被包括在传输介质的定义里。
此外,应当领会,用于执行本文中所描述的方法和技术的模块和/或其它恰适装置能由用户终端和/或基站在适用的场合下载和/或以其他方式获得。例如,此类设备能被耦合至服务器以促成用于执行本文中所描述的方法的装置的转移。替换地,本文所述的各种方法能经由存储装置(例如,RAM、ROM、诸如压缩碟(CD)或软盘等物理存储介质等)来提供,以使得一旦将该存储装置耦合至或提供给用户终端和/或基站,该设备就能获得各种方法。此外,能利用适于向设备提供本文中所描述的方法和技术的任何其他合适的技术。
应该理解的是,权利要求并不被限定于以上所解说的精确配置和组件。可在以上所描述的方法和设备的布局、操作和细节上作出各种改动、更换和变形而不会脱离权利要求的范围。
尽管上述内容针对本公开的各方面,然而可设计出本公开的其他和进一步的方面而不会脱离其基本范围,且其范围是由所附权利要求来确定的。

Claims (46)

1.一种神经组件重放的方法,包括:
用一个或多个参照神经元来参照多个传入神经元输出中的模式;
使用结构可塑性用一个或多个关系方面神经元来学习所述多个传入神经元输出中的该模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面;以及
诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式。
2.如权利要求1所述的方法,其特征在于:
使用无监督的学习来学习所述模式、所述参照、或所述关系方面中的至少一者,
所述无监督的学习包括由尖峰定时依赖可塑性以及所述结构可塑性控制与神经元相关联的突触的权重、延迟、以及输入,以及
所述结构可塑性受到所述神经元或其过程之间的结构关系的约束,所述结构关系包括延迟的可变性、延迟的范围、输入、权重范围、或权重可变性中的至少一者。
3.如权利要求1所述的方法,其特征在于,所述结构可塑性的约束模型包括对于以下各项中的至少一者的限制:对应于平行或十字树突棘和轴突过程的延迟、基于树突棘或轴突过程的接近度或范围的输入神经元、或与基底或顶端树突过程有关的延迟。
4.如权利要求1所述的方法,其特征在于:
所述关系方面神经元中的每一个关系方面神经元或所述参照神经元中的每一个参照神经元中的至少一者潜在地连接到多个模式匹配神经元,
所述潜在的连接包括可重用的突触连接,以及
以新延迟来重用所述突触,所述新延迟基于所述突触连接的权重以及所述突触所连接的神经元的结构约束或所述神经元的过程。
5.如权利要求1所述的方法,其特征在于:
所述关系方面神经元中的每一个关系方面神经元或所述参照神经元中的每一个参照神经元中的至少一者潜在地连接到多个模式匹配神经元,
所述潜在的连接包括具有可变延迟的突触连接,以及
所述延迟基于所述突触连接的权重以及所述突触连接的神经元的结构约束或所述神经元的过程来改变。
6.如权利要求1所述的方法,其特征在于:
所述关系方面神经元中的每一个关系方面神经元或所述参照神经元中的每一个参照神经元中的至少一者由多个连接来潜在地连接到多个模式匹配神经元,
所述潜在的连接包括具有延迟的突触连接,以及
所述多个连接具有基于所述突触连接的神经元的结构约束或所述神经元的过程来设置的延迟范围。
7.如权利要求1所述的方法,其特征在于,所述一个或多个关系方面神经元具有与参照神经元轴突过程平行的树突过程,从而允许包括神经元之间的可变延迟在内的多个突触连接参数。
8.如权利要求1所述的方法,其特征在于,所述一个或多个关系方面神经元与末梢树突过程相关联,从而将所述一个或多个关系方面神经元连接到具有比顶端过程大的延迟的传入轴突。
9.如权利要求1所述的方法,其特征在于,所述一个或多个关系方面神经元具有垂直延伸到所述传入神经元的树突的轴突,从而招致与其连接时有延迟。
10.如权利要求1所述的方法,其特征在于,所述一个或多个参照神经元具有十字树突过程,所述十字树突过程铺开以连接到具有变化的延迟分布的多个传入神经元轴突。
11.如权利要求1所述的方法,其特征在于,所述一个或多个参照神经元受到与所述一个或多个参照神经元相邻的其它参照神经元的横向抑制。
12.如权利要求1所述的方法,其特征在于,从所述传入神经元到与所述传入神经元配对的所述一个或多个关系方面神经元的子集的输入的延迟包括受约束的共同延迟。
13.如权利要求1所述的方法,其特征在于,从所述关系方面神经元到所述传入神经元的反馈连接受到以下各项中的至少一者的突触前抑制:来自相邻传入的抑制性反馈,来自所述参照神经元的抑制性反馈,或接收来自一个或多个传入、所述一个或多个关系方面神经元、或所述一个或多个参照神经元的输入的一个或多个中间神经元。
14.如权利要求1所述的方法,其特征在于,所述传入神经元中的一个传入神经元和与这一个传入神经元配对的关系方面神经元中的一个关系方面神经元之间的连通性方面是在发展过程中学习的。
15.如权利要求14所述的方法,其特征在于,所述连通性方面包括延迟。
16.一种用于神经组件重放的装置,包括:
配置成用一个或多个参照神经元来参照多个传入神经元输出中的模式的第一电路;
配置成使用结构可塑性用一个或多个关系方面神经元来学习所述多个传入神经元输出中的该模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面的第二电路;以及
配置成诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式的第三电路。
17.如权利要求16所述的装置,其特征在于:
使用无监督的学习来学习所述模式、所述参照、或所述关系方面中的至少一者,
所述无监督的学习包括由尖峰定时依赖可塑性以及所述结构可塑性控制与神经元相关联的突触的权重、延迟、以及输入,以及
所述结构可塑性受到所述神经元或其过程之间的结构关系的约束,所述结构关系包括延迟的可变性、延迟的范围、输入、权重范围、或权重可变性中的至少一者。
18.如权利要求16所述的装置,其特征在于,所述结构可塑性的约束模型包括对于以下各项中的至少一者的限制:对应于平行或十字树突棘和轴突过程的延迟、基于树突棘或轴突过程的接近度或范围的输入神经元、或与基底或顶端树突过程有关的延迟。
19.如权利要求16所述的装置,其特征在于:
所述关系方面神经元中的每一个关系方面神经元或所述参照神经元中的每一个参照神经元中的至少一者潜在地连接到多个模式匹配神经元,
所述潜在的连接包括可重用的突触连接,以及
以新延迟来重用所述突触,所述新延迟基于所述突触连接的权重以及所述突触所连接的神经元的结构约束或所述神经元的过程。
20.如权利要求16所述的装置,其特征在于:
所述关系方面神经元中的每一个关系方面神经元或所述参照神经元中的每一个参照神经元中的至少一者潜在地连接到多个模式匹配神经元,
所述潜在的连接包括具有可变延迟的突触连接,以及
所述延迟基于所述突触连接的权重以及所述突触连接的神经元的结构约束或所述神经元的过程来改变。
21.如权利要求16所述的装置,其特征在于:
所述关系方面神经元中的每一个关系方面神经元或所述参照神经元中的每一个参照神经元中的至少一者由多个连接来潜在地连接到多个模式匹配神经元,
所述潜在的连接包括具有延迟的突触连接,以及
所述多个连接具有基于所述突触连接的神经元的结构约束或所述神经元的过程来设置的延迟范围。
22.如权利要求16所述的装置,其特征在于,所述一个或多个关系方面神经元具有与参照神经元轴突过程平行的树突过程,从而允许包括神经元之间的可变延迟在内的多个突触连接参数。
23.如权利要求16所述的装置,其特征在于,所述一个或多个关系方面神经元与末梢树突过程相关联,从而将所述一个或多个关系方面神经元连接到具有比顶端过程大的延迟的传入轴突。
24.如权利要求16所述的装置,其特征在于,所述一个或多个关系方面神经元具有垂直延伸到所述传入神经元的树突的轴突,从而招致与其连接时有延迟。
25.如权利要求16所述的装置,其特征在于,所述一个或多个参照神经元具有十字树突过程,所述十字树突过程铺开以连接到具有变化的延迟分布的多个传入神经元轴突。
26.如权利要求16所述的装置,其特征在于,所述一个或多个参照神经元受到与所述一个或多个参照神经元相邻的其它参照神经元的横向抑制。
27.如权利要求16所述的装置,其特征在于,从所述传入神经元到与所述传入神经元配对的所述一个或多个关系方面神经元的子集的输入的延迟包括受约束的共同延迟。
28.如权利要求16所述的装置,其特征在于,从所述关系方面神经元到所述传入神经元的反馈连接受到以下各项中的至少一者的突触前抑制:来自相邻传入的抑制性反馈,来自所述参照神经元的抑制性反馈,或接收来自一个或多个传入、所述一个或多个关系方面神经元、或所述一个或多个参照神经元的输入的一个或多个中间神经元。
29.如权利要求16所述的装置,其特征在于,所述传入神经元中的一个传入神经元和与这个传入神经元配对的关系方面神经元中的一个关系方面神经元之间的连通性方面是在发展过程中学习的。
30.如权利要求29所述的装置,其特征在于,所述连通性方面包括延迟。
31.一种用于神经组件重放的设备,包括:
用于用一个或多个参照神经元来参照多个传入神经元输出中的模式的装置;
用于使用结构可塑性用一个或多个关系方面神经元来学习所述多个传入神经元输出中的该模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面的装置;以及
用于诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式的装置。
32.如权利要求31所述的设备,其特征在于:
使用无监督的学习来学习所述模式、所述参照、或所述关系方面中的至少一者,
所述无监督的学习包括由尖峰定时依赖可塑性以及所述结构可塑性控制与神经元相关联的突触的权重、延迟、以及输入,以及
所述结构可塑性受到所述神经元或其过程之间的结构关系的约束,所述结构关系包括延迟的可变性、延迟的范围、输入、权重范围、或权重可变性中的至少一者。
33.如权利要求31所述的设备,其特征在于,所述结构可塑性的约束模型包括对于以下各项中的至少一者的限制:对应于平行或十字树突棘和轴突过程的延迟、基于树突棘或轴突过程的接近度或范围的输入神经元、或与基底或顶端树突过程有关的延迟。
34.如权利要求31所述的设备,其特征在于:
所述关系方面神经元中的每一个关系方面神经元或所述参照神经元中的每一个参照神经元中的至少一者潜在地连接到多个模式匹配神经元,
所述潜在的连接包括可重用的突触连接,以及
以新延迟来重用所述突触,所述新延迟基于所述突触连接的权重以及所述突触所连接的神经元的结构约束或所述神经元的过程。
35.如权利要求31所述的设备,其特征在于:
所述关系方面神经元中的每一个关系方面神经元或所述参照神经元中的每一个参照神经元中的至少一者潜在地连接到多个模式匹配神经元,
所述潜在的连接包括具有可变延迟的突触连接,以及
所述延迟基于所述突触连接的权重以及所述突触连接的神经元的结构约束或所述神经元的过程来改变。
36.如权利要求31所述的设备,其特征在于:
所述关系方面神经元中的每一个关系方面神经元或所述参照神经元中的每一个参照神经元中的至少一者由多个连接来潜在地连接到多个模式匹配神经元,
所述潜在的连接包括具有延迟的突触连接,以及
所述多个连接具有基于所述突触连接的神经元的结构约束或所述神经元的过程来设置的延迟范围。
37.如权利要求31所述的设备,其特征在于,所述一个或多个关系方面神经元具有与参照神经元轴突过程平行的树突过程,从而允许包括神经元之间的可变延迟在内的一系列突触连接参数。
38.如权利要求31所述的设备,其特征在于,所述一个或多个关系方面神经元与末梢树突过程相关联从而将所述一个或多个关系方面神经元连接到具有比顶端过程大的延迟的传入轴突。
39.如权利要求31所述的设备,其特征在于,所述一个或多个关系方面神经元具有垂直延伸到所述传入神经元的树突的轴突,从而招致与其连接是有延迟。
40.如权利要求31所述的设备,其特征在于,所述一个或多个参照神经元具有十字树突过程,所述十字树突过程铺开以连接到具有变化的延迟分布的多个传入神经元轴突。
41.如权利要求31所述的设备,其特征在于,所述一个或多个参照神经元受到与所述一个或多个参照神经元相邻的其它参照神经元的横向抑制。
42.如权利要求31所述的设备,其特征在于,从所述传入神经元到与所述传入神经元配对的所述一个或多个关系方面神经元的子集的输入的延迟包括受约束的共同延迟。
43.如权利要求31所述的设备,其特征在于,从所述关系方面神经元到所述传入神经元的反馈连接受到以下各项中的至少一者的突触前抑制:来自相邻传入的抑制性反馈,来自所述参照神经元的抑制性反馈,或接收来自一个或多个传入、所述一个或多个关系方面神经元、或所述一个或多个参照神经元的输入的一个或多个中间神经元。
44.如权利要求31所述的设备,其特征在于,所述传入神经元中的一个传入神经元和与这一个传入神经元配对的关系方面神经元中的一个关系方面神经元之间的连通性方面是在发展过程中学习的。
45.如权利要求44所述的设备,其特征在于,所述连通性方面包括延迟。
46.一种用于神经组件重放的计算机程序产品,其包括计算机可读介质,所述计算机可读介质包括用于执行以下动作的代码:
用一个或多个参照神经元来参照多个传入神经元输出中的模式;
使用结构可塑性用一个或多个关系方面神经元来学习所述多个传入神经元输出中的该模式与所述一个或多个参照神经元的输出之间的一个或多个关系方面;以及
诱导所述多个传入神经元中的一个或多个传入神经元输出与所述一个或多个参照神经元所参照的模式基本相似的模式。
CN201280055315.5A 2011-11-09 2012-11-09 无监督的神经重放、学习完善、关联以及记忆转移的方法和装置:结构可塑性和结构约束建模 Expired - Fee Related CN103930910B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/292,191 2011-11-09
US13/292,191 US9015091B2 (en) 2011-11-09 2011-11-09 Methods and apparatus for unsupervised neural replay, learning refinement, association and memory transfer: structural plasticity and structural constraint modeling
PCT/US2012/064506 WO2013071149A1 (en) 2011-11-09 2012-11-09 Methods and apparatus for unsupervised neural replay, learning refinement, association and memory transfer: structural plasticity and structural constraint modeling

Publications (2)

Publication Number Publication Date
CN103930910A true CN103930910A (zh) 2014-07-16
CN103930910B CN103930910B (zh) 2016-12-14

Family

ID=47216427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280055315.5A Expired - Fee Related CN103930910B (zh) 2011-11-09 2012-11-09 无监督的神经重放、学习完善、关联以及记忆转移的方法和装置:结构可塑性和结构约束建模

Country Status (6)

Country Link
US (1) US9015091B2 (zh)
EP (1) EP2776984A1 (zh)
JP (1) JP5934378B2 (zh)
KR (1) KR101582061B1 (zh)
CN (1) CN103930910B (zh)
WO (1) WO2013071149A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104779950A (zh) * 2015-05-05 2015-07-15 西南大学 基于忆阻交叉架构的图片均值学习电路
CN107111783A (zh) * 2015-01-14 2017-08-29 国际商业机器公司 神经元存储器电路
CN108853678A (zh) * 2015-03-21 2018-11-23 徐志强 用于提高大脑“注意”切换能力的神经训练装置
CN110337638A (zh) * 2017-03-28 2019-10-15 赫尔实验室有限公司 基于神经模型的控制器

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9443190B2 (en) 2011-11-09 2016-09-13 Qualcomm Incorporated Methods and apparatus for neural pattern sequence completion and neural pattern hierarchical replay by invoking replay of a referenced neural pattern
US9424513B2 (en) 2011-11-09 2016-08-23 Qualcomm Incorporated Methods and apparatus for neural component memory transfer of a referenced pattern by including neurons to output a pattern substantially the same as the referenced pattern
US9424511B2 (en) 2011-11-09 2016-08-23 Qualcomm Incorporated Methods and apparatus for unsupervised neural component replay by referencing a pattern in neuron outputs
US9015091B2 (en) * 2011-11-09 2015-04-21 Qualcomm Incorporated Methods and apparatus for unsupervised neural replay, learning refinement, association and memory transfer: structural plasticity and structural constraint modeling
US8959040B1 (en) * 2012-03-08 2015-02-17 Hrl Laboratories, Llc Spike timing dependent plasticity apparatus, system and method
US8868477B2 (en) * 2012-03-29 2014-10-21 International Business Machines Coproration Multi-compartment neurons with neural cores
US8977583B2 (en) 2012-03-29 2015-03-10 International Business Machines Corporation Synaptic, dendritic, somatic, and axonal plasticity in a network of neural cores using a plastic multi-stage crossbar switching
US9275329B2 (en) * 2013-08-12 2016-03-01 Qualcomm Incorporated Behavioral homeostasis in artificial nervous systems using dynamical spiking neuron models
US11501143B2 (en) 2013-10-11 2022-11-15 Hrl Laboratories, Llc Scalable integrated circuit with synaptic electronics and CMOS integrated memristors
US20150134582A1 (en) * 2013-11-08 2015-05-14 Qualcomm Incorporated Implementing synaptic learning using replay in spiking neural networks
US10474948B2 (en) 2015-03-27 2019-11-12 University Of Dayton Analog neuromorphic circuit implemented using resistive memories
US10885429B2 (en) 2015-07-06 2021-01-05 University Of Dayton On-chip training of memristor crossbar neuromorphic processing systems
US10176425B2 (en) 2016-07-14 2019-01-08 University Of Dayton Analog neuromorphic circuits for dot-product operation implementing resistive memories
US10846590B2 (en) * 2016-12-20 2020-11-24 Intel Corporation Autonomous navigation using spiking neuromorphic computers
US11301750B2 (en) * 2017-03-31 2022-04-12 Ecole Polytechnique Federale De Lausanne (Epfl) Simplification of neural models that include arborized projections
US11742901B2 (en) * 2020-07-27 2023-08-29 Electronics And Telecommunications Research Institute Deep learning based beamforming method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1150847A (zh) * 1994-05-02 1997-05-28 摩托罗拉公司 使用神经网络的计算机和使用该神经网络的方法
US6041322A (en) * 1997-04-18 2000-03-21 Industrial Technology Research Institute Method and apparatus for processing data in a neural network
WO2004097733A2 (en) * 2003-04-30 2004-11-11 Darwinian Neural Network Industries Ltd Neural networks

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7089218B1 (en) * 2004-01-06 2006-08-08 Neuric Technologies, Llc Method for inclusion of psychological temperament in an electronic emulation of the human brain
JP3647584B2 (ja) 1996-12-26 2005-05-11 富士通株式会社 学習型自己定位装置
JP2005190429A (ja) 2003-12-26 2005-07-14 Hiroshima Univ 参照データ認識・学習方法及びパターン認識システム
JP2008542859A (ja) 2005-05-07 2008-11-27 エル ターラー、ステフエン 有用な情報を自律的にブートストラッピングする装置
JP4201012B2 (ja) 2006-04-06 2008-12-24 ソニー株式会社 データ処理装置、データ処理方法、およびプログラム
EP2259214B1 (en) * 2009-06-04 2013-02-27 Honda Research Institute Europe GmbH Implementing a neural associative memory based on non-linear learning of discrete synapses
US20120117012A1 (en) * 2010-04-08 2012-05-10 Neurosciences Research Foundation, Inc. Spike-timing computer modeling of working memory
US8382484B2 (en) * 2011-04-04 2013-02-26 Sheepdog Sciences, Inc. Apparatus, system, and method for modulating consolidation of memory during sleep
US9147155B2 (en) * 2011-08-16 2015-09-29 Qualcomm Incorporated Method and apparatus for neural temporal coding, learning and recognition
US9015091B2 (en) * 2011-11-09 2015-04-21 Qualcomm Incorporated Methods and apparatus for unsupervised neural replay, learning refinement, association and memory transfer: structural plasticity and structural constraint modeling
US9424511B2 (en) * 2011-11-09 2016-08-23 Qualcomm Incorporated Methods and apparatus for unsupervised neural component replay by referencing a pattern in neuron outputs
US9424513B2 (en) * 2011-11-09 2016-08-23 Qualcomm Incorporated Methods and apparatus for neural component memory transfer of a referenced pattern by including neurons to output a pattern substantially the same as the referenced pattern
US9443190B2 (en) * 2011-11-09 2016-09-13 Qualcomm Incorporated Methods and apparatus for neural pattern sequence completion and neural pattern hierarchical replay by invoking replay of a referenced neural pattern
US8909575B2 (en) * 2012-02-29 2014-12-09 Qualcomm Incorporated Method and apparatus for modeling neural resource based synaptic placticity
WO2014081671A1 (en) * 2012-11-20 2014-05-30 Qualcomm Incorporated Dynamical event neuron and synapse models for learning spiking neural networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1150847A (zh) * 1994-05-02 1997-05-28 摩托罗拉公司 使用神经网络的计算机和使用该神经网络的方法
US5740325A (en) * 1994-05-02 1998-04-14 Motorola Inc. Computer system having a polynomial co-processor
US6041322A (en) * 1997-04-18 2000-03-21 Industrial Technology Research Institute Method and apparatus for processing data in a neural network
WO2004097733A2 (en) * 2003-04-30 2004-11-11 Darwinian Neural Network Industries Ltd Neural networks

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107111783A (zh) * 2015-01-14 2017-08-29 国际商业机器公司 神经元存储器电路
CN107111783B (zh) * 2015-01-14 2020-04-03 国际商业机器公司 神经元存储器电路
CN108853678A (zh) * 2015-03-21 2018-11-23 徐志强 用于提高大脑“注意”切换能力的神经训练装置
CN104779950A (zh) * 2015-05-05 2015-07-15 西南大学 基于忆阻交叉架构的图片均值学习电路
CN104779950B (zh) * 2015-05-05 2017-08-08 西南大学 基于忆阻交叉架构的图片均值学习电路
CN110337638A (zh) * 2017-03-28 2019-10-15 赫尔实验室有限公司 基于神经模型的控制器

Also Published As

Publication number Publication date
KR20140092880A (ko) 2014-07-24
CN103930910B (zh) 2016-12-14
US9015091B2 (en) 2015-04-21
KR101582061B1 (ko) 2015-12-31
EP2776984A1 (en) 2014-09-17
US20130117213A1 (en) 2013-05-09
JP5934378B2 (ja) 2016-06-15
JP2014535116A (ja) 2014-12-25
WO2013071149A1 (en) 2013-05-16

Similar Documents

Publication Publication Date Title
CN103930909A (zh) 无监督的神经重放、学习完善、关联以及记忆转移的方法和装置:神经关联学习、模式补全、划分、概括以及阶层式重放
CN103930910A (zh) 无监督的神经重放、学习完善、关联以及记忆转移的方法和装置:结构可塑性和结构约束建模
CN103930908A (zh) 无监督的神经重放、学习完善、关联以及记忆转移的方法和装置:神经组件重放
CN103930907A (zh) 无监督的神经重放、学习完善、关联以及记忆转移的方法和装置:神经组件记忆转移
Miikkulainen et al. Computational maps in the visual cortex
CN106462797A (zh) 共同特征上的定制分类器
TW201426576A (zh) 用於設計湧現式多層尖峰網路的方法和裝置
JP2017513127A (ja) スパイキング深層信念ネットワーク(dbn)におけるトレーニング、認識、および生成
US9652711B2 (en) Analog signal reconstruction and recognition via sub-threshold modulation
US20150212861A1 (en) Value synchronization across neural processors
US11615298B2 (en) STDP with synaptic fatigue for learning of spike-time-coded patterns in the presence of parallel rate-coding
KR20160138042A (ko) 스파이킹 뉴럴 네트워크들을 사용하는 이미지들의 불변의 객체 표현
CN109214407A (zh) 事件检测模型、方法、装置、计算设备及存储介质
CN106980831A (zh) 基于自编码器的自亲缘关系识别方法
JP6117392B2 (ja) 1次視覚野単純細胞および他の神経回路の入力シナプスの教師なしトレーニングのための方法および装置
CN105981056A (zh) 尖峰神经网络中的听觉源分离
Jiang et al. A computational model of emotion based on audio‐visual stimuli understanding and personalized regulation with concurrency
Dorogyy et al. Designing spiking neural networks
Liu Deep spiking neural networks
Berradi et al. Deep unsupervised feature extraction of sensory signals
Rong Predictive-Modeling Technologies in Web Power Engineering
Motaghian et al. Application of Modular and Sparse Complex Networks in Enhancing Connectivity Patterns of Liquid State Machines

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161214

Termination date: 20181109