CN103930810B - 具有大纤芯和平坦基谐模的微结构光纤,其生产方法以及其在激光微细加工中的使用 - Google Patents
具有大纤芯和平坦基谐模的微结构光纤,其生产方法以及其在激光微细加工中的使用 Download PDFInfo
- Publication number
- CN103930810B CN103930810B CN201280045944.XA CN201280045944A CN103930810B CN 103930810 B CN103930810 B CN 103930810B CN 201280045944 A CN201280045944 A CN 201280045944A CN 103930810 B CN103930810 B CN 103930810B
- Authority
- CN
- China
- Prior art keywords
- fibre core
- optical fibers
- micron
- microstructured optical
- index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 81
- 239000000835 fiber Substances 0.000 title claims abstract description 66
- 238000004519 manufacturing process Methods 0.000 title description 11
- 239000010813 municipal solid waste Substances 0.000 claims abstract description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 37
- 230000003287 optical effect Effects 0.000 claims description 34
- 239000000377 silicon dioxide Substances 0.000 claims description 16
- 235000012239 silicon dioxide Nutrition 0.000 claims description 15
- 229910052732 germanium Inorganic materials 0.000 claims description 7
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 239000011574 phosphorus Substances 0.000 claims description 6
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 4
- 238000003672 processing method Methods 0.000 claims description 3
- 238000013461 design Methods 0.000 abstract description 6
- 239000011162 core material Substances 0.000 description 51
- 230000008859 change Effects 0.000 description 18
- 230000007547 defect Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 230000009021 linear effect Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
- G02B6/02319—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
- G02B6/02338—Structured core, e.g. core contains more than one material, non-constant refractive index distribution in core, asymmetric or non-circular elements in core unit, multiple cores, insertions between core and clad
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01211—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
- C03B37/0122—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
- G02B6/02319—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
- G02B6/02333—Core having higher refractive index than cladding, e.g. solid core, effective index guiding
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
- G02B6/02342—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
- G02B6/02347—Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding
- G02B6/02352—Complex periodic lattices or multiple interpenetrating periodic lattices, e.g. unit cell having more than two materials, partially internally coated holes, for multiple bandgaps
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
- G02B6/02342—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
- G02B6/02361—Longitudinal structures forming multiple layers around the core, e.g. arranged in multiple rings with each ring having longitudinal elements at substantially the same radial distance from the core, having rotational symmetry about the fibre axis
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
- G02B6/02342—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
- G02B6/0238—Longitudinal structures having higher refractive index than background material, e.g. high index solid rods
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/032—Optical fibres with cladding with or without a coating with non solid core or cladding
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/02—Pure silica glass, e.g. pure fused quartz
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/31—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/34—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
- C03B2201/36—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers doped with rare earth metals and aluminium, e.g. Er-Al co-doped
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/14—Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/22—Radial profile of refractive index, composition or softening point
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/42—Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
- G02B6/02342—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
- G02B6/02347—Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03605—Highest refractive index not on central axis
- G02B6/03611—Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49764—Method of mechanical manufacture with testing or indicating
- Y10T29/49769—Using optical instrument [excludes mere human eyeballing]
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Lasers (AREA)
- Laser Beam Processing (AREA)
Abstract
一种光纤,包括:具有指数N和10微米或更大直径的纤芯(2),该纤芯(2)被具有指数N+Δn和厚度ΔR的环(4)所包围;以及包围该环并且包括例如气隙(8)的光学包层(6)。根据本发明,Δn>10‑3并且=α/(Δn)β[1],其中,5x10‑4微米<α<5x10‑2微米并且0.5<β<1.5。α和β取决于:微结构光纤要传导的光的波长λ、该微结构光纤中的缺失性夹杂物的数量、气隙的直径d、气隙的间距Λ和N。为了设计该光纤,选择λ、缺失性气隙的数量、d/Λ、纤芯掺杂量、Λ和Δn;并且使用等式[1]确定ΔR,从而得到平坦基谐模。
Description
技术领域
本发明涉及具有大纤芯、适于得到平坦基谐模的微结构光纤以及生产这种光纤的方法。
术语“大纤芯”代表其直径等于至少10微米的纤芯。术语“平坦基谐模”代表其强度具有平坦的横向剖面的基谐模;应当注意,在这种情况下,基谐模直径表现出相对于纤芯直径较小的差异;并且如果纤芯直径较大(大于或者等于10微米),则基谐模直径也较大。
本发明尤其适用于激光微细加工方法,例如,激光标记方法和激光切割方法,或者与光-生物组织相互作用相关的用于治疗和诊断的方法。
背景技术
为了得到具有平坦基谐模的光纤,众所周知的是在纤芯周围放置环,其光学指数略大于该纤芯的光学指数。
在这方面,可参考文献[1],其像下文中要引用的其它文献[2]至[7]一样,将在本发明的结尾处提及。
然而,文献[1]中所述的光纤具有纤芯直径小的缺点。
从文献[2]和[3]中获知在掺杂有稀土元素的大纤芯周围使用环。然而,这些文献中所讨论的光纤是多模光纤,为了在该光纤的输出端得到单模,即,基谐模,要使用增益进行鉴别。实际上,与其它模相比,平坦基谐模在掺杂纤芯上具有更好的重叠。
这构成了现有技术中所知的平坦大模的唯一实验性实施方式。在光纤输出端得到的模的实验图像存在于文献[4]的附图7中。所得到的剖面非常不完整。这归因于光纤的实际实施方式不适于得到完整的指数阶跃。
从文献[5]获知适于通过气隙方式来限制模以及通过环来使模平坦的光纤。所述微结构的气隙的直径d与这些气隙的间距Λ相比的比例d/Λ在0.4左右;由此将产生针对这种结构的多模纤芯。然而,没有给出实验演示。
此外,文献[5]中所述的光纤的参数显得不实际。特别是,环与纤芯之间光学指数的差异极小——等于3x10-4——因而在生产中很难或者甚至不可能得到。
从文献[6]获知具有很小的掺杂纤芯(直径几微米)并且无环的微结构光纤。
实际上,迄今为止,尚未获知用于在无源光纤的输出端得到具有至少10微米直径的单个平坦模的令人满意的解决方案。
文献[1]和[6]中所提出的无源纤芯光纤仅适于得到小的模尺寸(有效面积小于100平方微米);
为了得益于增益鉴别,当需要放大时从文献[2]获知的光纤设计的多模方面才需要用到这种光纤。然而,在某些情况下(例如,空间成型、功率运输和非线性放大),有必要使用无源光纤;注意,在某些情况下,曲率鉴别也是有可能的。
非常困难或者不可能实验地实现文献[5]中所提出的光纤参数,特别是环与纤芯之间光学指数的差异。
作为一般规则,现有技术中所提出的设计是不现实的,因为其没有考虑到生产限制。现有技术只包括平坦基谐模光纤的一种实验性实施方式(参见文献[2])。
然而,该实施方式相对不可信,因为在光纤输出端得到的光纤不能被认为是平坦的(参见文献[4])。此外,文献[2]的作者承认所述光纤的实际实施方式不适于得到充分地控制的指数阶跃。
发明内容
本发明涉及不具有上述缺点的微结构光纤。
具体地,本发明涉及具有大纤芯和平坦基谐模的微结构光纤,其包括:
纤芯,该纤芯的直径为至少10微米;
包围纤芯的环,该环的光学指数比纤芯的光学指数高出值Δn,并且该环的外半径比内半径大出值ΔR;以及
光学包层,该光学包层包围环并且包括包含有例如纵向气隙的夹杂物的基质,其中,夹杂物的光学指数不同于基质的光学指数,包层的等效平均光学指数nFSM小于纤芯的光学指数,
其特征在于,Δn大于10-3并且ΔR通过等式ΔR=α/(Δn)β与Δn关联,其中,α在从5x10-4微米到5x10-2微米的区间内,β在从0.5到1.5的区间内,并且α和β取决于:微结构光纤要传导的光的波长λ、微结构光纤中的缺失性夹杂物的数量(由于纤芯和环的存在)、夹杂物的直径d,夹杂物的间距Λ和纤芯的光学指数。
根据本发明的微结构光纤的一个优选实施例,缺失性夹杂物的数量等于7。然后,该光纤被视为具有7个缺陷。
根据本发明的微结构光纤的纤芯可以被掺杂或者不被掺杂。
例如,可以通过发光的实体(例如,稀土元素离子)或者不通过这样的实体对其进行掺杂。
根据本发明的第一具体实施例,纤芯由未掺杂的二氧化硅制成,β等于1并且α由以下公式给出:
α=2.489x10-2(d/Λ)0.25λ2/Λ
其中,当d,Λ和λ以微米表示时,α也同样以微米表示。
根据本发明的第二具体实施方式,纤芯由掺杂有例如镱、铝或者其他诸如磷或锗的共掺质的二氧化硅制成,从而将纯二氧化硅的光学指数增大大约1.5x10-3,β等于0.905并且α由以下公式给出:
α=1.046x10-2(λ/Λ)0.19
其中,当Λ和λ以微米表示时,α也同样以微米表示。
根据本发明的第三具体实施方式,纤芯由掺杂有例如镱、铝或者其他诸如磷或锗的共掺质的二氧化硅制成,从而将纯二氧化硅的光学指数增大大约 5x10-3,β等于0.87并且α由以下公式给出:
α=1.327x10-2(λ/Λ)0.05
其中,当Λ和λ以微米表示时,α也同样以微米表示。
本发明也涉及用于生产根据本发明的微结构光纤的方法,其中,
选择λ;
选择缺失性夹杂物的数量;
选择比例d/Λ;
选择纤芯的掺杂量T,T大于或者等于0;
选择Λ;
选择Δn;
利用所述等式确定ΔR以在光纤的输入端被射入具有波长λ的光时在该光纤的输出端得到平坦基谐模;以及
在由此选择了夹杂物的数量以及参数d、T、Λ、Δn并且以上述方式确定了参数ΔR的情况下,生产微结构光纤。
本发明还涉及一种激光微细加工方法,其中,使用根据本发明的微结构光纤来传导由激光器发射出的光。
附图说明
通过参考附图阅读下文中给出的对实施方式的示例(只作为表示而不作为限制)的描述,将更清楚地理解本发明,其中:
图1A是根据本发明的微结构光纤的一个示例的示意性截面图,以及图1B针对该示例的光纤示出了光学指数的径向剖面;
图2针对图1A中的光纤示出了适于得到平坦剖面的环的厚度ΔR在缺陷为7并且间距Λ取不同值的情况下相对于指数反差Δn的变化;
图3A示出了当Λ等于30微米以及Δn等于2x10-3时该光纤中所传导的模的横向剖面,以及图3B示出了所述光纤中的光强度I沿与图3A中的水平轴x形成角度π/6(30°)的图3A中的轴线X的变化;
图4示出了当Λ等于30微米时相对于Δn和ΔR以a%表示的均方根(RMS)平整度变化的示图;以及
图5示出了根据本发明的光纤的光学指数的径向剖面。
具体实施方式
图1A是适于得到平坦基谐模、具有大直径的微结构光纤发明的示例的示意性截面图。图1B示出了图1A中所表示的光纤沿水平截面的指数剖面,即,随半径R(径向剖面)而变的光学指数n的变化。
微结构的好处特别在于即使针对较大的纤芯(相对于在光纤中传播的光的波长λ)也能提供准单模特性。
图1A中所示的光纤包括:
中心部分,该中心部分由光学指数被标注为N的纤芯2和光学指数等于N+Δn的环4组成,其中,Δn(指数阶跃)确定地为正;以及
包围环4的光学包层6,该光学包层6包括夹杂空气并且具有小于纤芯2的光学指数N的等效平均光学指数nFSM。
更具体地,在图1A所示的示例中,光学包层6包括平行于光纤的轴线的纵向气隙8。包层6由与纤芯相同的材料组成,但是由于这些气隙的存在,其指数nFSM小于N。
在该示例中,纤芯2由纯二氧化硅制成;环4具有亚微米厚度并且其由掺杂有少量锗的二氧化硅制成;环的内半径被标注为R1,其外半径被标注为R2,从而其厚度为ΔR(ΔR=R2-R1);并且包层6是空气-二氧化硅型的。注意,纤芯2的直径等于2R1,其中根据本发明2R1≥10微米。
微结构参数为气隙8的直径d和气隙8的间距Λ。
从图1A可以看出,为了形成被环4包围的纤芯2,七个中央气隙或者毛细孔由实心材料来代替,从而形成纤芯并且形成环。该光纤被视为具有7个缺陷。
这种几何结构适于在不过度地扩大气隙网络的间距Λ的情况下扩大基谐模的尺寸。应当注意,对于这样的几何结构,要求比例d/Λ等于0.046以在不论λ/Λ 为何值的情况下得到单一传播模(参见文献[7])。
比例d/Λ应当尽可能地小(通常d/Λ小于0.25)以使得传导模的数量尽可能地小。
环4的外半径R2由光纤的生产来限定。由于用来形成包层6的毛细孔的定位,在限定该环4、具有半径R2的外部柱面与所遇到的第一个气隙的中心之间需要至少等于Λ/2的间距,相当于最大外半径等于
当环的基谐模达到其截止波长时(即,当该模的有效指数变得等于纤芯材料的折射指数时),得到平坦模。针对于变量对(Δn;ΔR)对基谐模横向强度剖面的平整度进行优化。图2给出了针对于d/Λ=0.25的优化的示例。应当注意,Δn(指数阶跃或者指数反差)是环4的光学指数与纤芯2的光学指数之间的差异,以及ΔR是该环的厚度。
更具体地,图2给出了以下情况中时适于得到平坦剖面的环的厚度(随指数反差而变):针对缺陷为7;针对气隙之间的若干间距Λ,即,Λ=8.5微米(曲线I)、Λ=17微米(曲线II)和Λ=30微米(曲线III);并且针对d/Λ=0.25。
图3A示出了在间距Λ为30微米、指数反差Δn为2x10-3以及比例d/Λ为0.25的情况下在图1A中所示的微结构光纤中传导的模的横向剖面。对于这一指数反差,图2验证了环的厚度ΔR应该等于305纳米。
图3B示出了沿着图3A中的轴线X的光强度I(单位W/m2)的变化,该轴线X与图3A中的水平轴x形成π/6弧度(30°)的角度。
应当注意,由于对称的原因,图3A中仅示出了光纤的四分之一。对于整个结构,在这种情况下,得到的基谐模的有效面积为6420平方微米。
图1A所示的结构以及图2中给出的随指数反差而变的环厚度的变化适于得到平坦基谐模。不同于现有技术中存在的设计方案,在本发明中计算光学参数时考虑了生产限制。
因此出现了现有技术中所知的设计提升。这一提升使得解决生产具有平坦基谐模的光纤的问题成为可能,该问题以前并未得到解决。
可从图2中读出的指数反差Δn适于使用外部气相沉积(OVP)技术通过以下方式得到:在纯二氧化硅(指数N)周围沉积具有指数N+Δn的二氧化硅,或者在具有指数N-Δn的掺杂二氧化硅纤芯周围沉积纯二氧化硅(指数N)。现有的生产技术适于将环的尺寸控制在几个百分比之内并且适于得到5x10-4内的指数反差。
图4是具有7个缺陷、30微米的间距Λ以及0.25的比例d/Λ的光纤的平整度变化(以%表示的均方根变化)的示图,该平整度变化随参数Δn和ΔR而变。
在图4中,看出Δn在2x10-3附近变化以及ΔR在300纳米附近变化。在调制率的基础上计算这些变化,其中<>相当于在模表面的80%上计算的平均值。
因此,即使对于比通常生产精度更大范围的ΔR(半径微分)值,由Mspa所定义的变化值也小于7%。
不同于现有技术中的光纤,本发明中的光纤的结构参数以及关于这些参数的不确定性与当前的生产技术是兼容的。
特别地,尽管文献[5]中所公开的光纤的尺寸似乎接近于根据本发明的光纤的尺寸,但是不同于根据本发明的光纤,从文献[5]中获知的光纤在实验上是不可行的。
还应当注意,在本发明中,为了得到考虑生产限制的尺寸,需要进行数值优化。因此,所使用的参数不是利用现有技术中所知的规律或数值直接得到的。
也应当注意,尽管对平坦基谐模光纤表示了极大的兴趣,但是现有技术仅包括这种光纤的一个实验性实施例(参见文献[2])。而且,这一已知的实验性实施例相对不可信,因为在光纤的输出端得到的光线的强度是非常轻微地平坦的(参见文献[4])。这清楚地验证了该尺寸并不明显。
形成根据本发明的光纤的尺寸的推理过程如下所示:
选择在光纤中传导的光的波长λ(例如,λ=1微米或者λ=1.55微米);
选择气隙结构中由固态纤芯所代替的毛细孔的数量(例如,7个缺陷);
选择比例d/Λ(例如,d/Λ=0.12);
选择具有发光离子的纤芯的掺杂量T(T>0),确定纤芯的指数N(参见图5),以及
选择气隙之间的间距Λ,确定气隙d的直径、光学包层的外半径R2(图5)以及等效平均指数nFSM。
因此,在环的厚度ΔR与指数反差Δn之间存在等式。该等式如下:
参数α(以微米表示)和β的值取决于上面所选择的参数(波长λ、缺陷值、比例d/Λ、产生自可能的掺杂的纤芯的光学指数的值N以及气隙之间的间距Λ)。
对于不同的配置,按以下方式给出参数α和β的值。
I)纤芯由未掺杂二氧化硅制成。
α由以下公式给出:
α=2.489x10-2(d/Λ)0.25λ2/Λ
其中,当d、Λ和λ以微米表示时,α也以微米表示;以及β等于1。
II)纤芯由掺杂二氧化硅制成(例如,掺杂有镱、铝或者其他诸如磷或锗的共掺质);以及掺杂产生了相对于纯二氧化硅大约为δn=1.5x10-3的指数差异。
α由以下公式给出:
α=1.046x10-2(λ/Λ)0.19
其中,当Λ和λ以微米表示时,α也以微米表示;以及β等于0.905。
III)纤芯被掺杂(例如,掺杂有镱、铝或者其他诸如磷或锗的共掺质);以及掺杂产生了相对于纯二氧化硅大约为δn=5x10-3的指数差异。
α由以下公式给出:
α=1.327x10-2(λ/Λ)0.05
其中,当Λ和λ以微米表示时,α也以微米表示;以及β等于0.87。
作为一般规律,纤芯的掺杂越大,随λ而变的α的变化越小(相对于环,光学包层的结构对参数Δn和ΔR的最优值的影响较小)。
重点注意的是,产生自等式(1)和上述值的环的厚度ΔR与光学反差Δn之间的变化不同于文献[5]中特有的分析公式给出的变化。对由此产生的设计而言,由该公式给出的结果过于近似而不能产生平坦基谐模。
要指出的是,作为一般规律,Δn>10-3,5x10-4微米<α<5x10-2微米,以及0.5<β<1.5。
本发明在光纤激光系统领域中具有多种利益和应用:
适于将其强度具有高斯剖面的光线转化为其强度具有平坦剖面(空间成形)的光线;
适于优化用于激光器微细加工应用(尤其是标记和焊接)的光线的远场强度;
相对于无源光纤(即,不发光的光纤),其基谐模具有等效有效面积,但是其基谐模呈高斯分布,由于平坦模导致的峰值强度的减小适于增加能量(或功率)、适于被传播(因此使用高能束流传输应用)或者适于基于非线性放大在装置的输出端被得到(尤其是使用四波混频的装置和使用拉曼效应的装置);以及
如果光纤纤芯掺杂有发光离子,则本发明适于产生平坦模激光器和放大器,适于增大可以从这样的系统中提取的能量(或功率)。
在上面给出的示例中,考虑了具有7个缺陷(7个缺失性气隙)的微结构光纤。然而,本发明并不限于该值,该光纤可以具有另一数值的缺陷,例如19,甚至1。
而且,在上面给出的示例中,考虑了微结构光纤的光学包层中的空气夹杂物(纵向气隙)。然而,其它的夹杂物也是可能的,例如,掺杂二氧化硅夹杂物或者诸如氩气的其它气体的夹杂物。
本发明描述中所引用的文献如下所示:
A.K.Ghatak,I.C.Goyal and R.Jindal,“获得平模场的波导折射率分布图设计”,Proc.SPIE3666,40-44(1998);
J.W.Dawson,R.Beach,I.Jovanovic,B.Wattellier,Z.Liao,S.A.Payne andC.P.J.Barty,“用于高输出能量脉冲光纤激光器的大平坦模光纤”,paper CWD5,CLEO2003;
J.W.Dawson,R.J.Beach,S.A.Payne,M.D.Feit,C.P.J.Barty and Z.M.Liao,“平坦模圆柱和带状光纤及放大器”,US2004/0247272(9December2004);
J.W.Dawson,R.Beach,I.Jovanovic,B.Wattelier,Z.Liao,S.A.Payne andC.P.J.Barty,“用于减小光纤激光器中的非线性影响的大平坦模光纤”,Proc.SPIE5335,132-139(2004);
C.Wang,F.Zhang,Y.Lu,C.Liu,R.Geng and T.Ning,“用于光纤激光器的具有平坦基谐模的光子晶体光纤”,Opt.Commun.282,2232-2235(2009);
X.Lu,Q.Zhou,J.Qiu,C.Zhu and D.Fan,“波束成形微结构光纤设计准则及特性”,Opt.Commun.259,636-639(2006);
K.Saitoh,Y.Tsuchida,M.Koshiba and N.Asger Mortensen,“不截止单模多洞光纤:纤芯设计的影响”,Opt.Express26,10833(2005)。
Claims (12)
1.一种具有大纤芯和平坦基谐模的微结构光纤,所述平坦基谐模代表强度具有平坦的横向剖面的基谐模,包括:
纤芯(2),所述纤芯(2)的直径为至少10微米;
包围所述纤芯的环(4),所述环(4)的光学指数比所述纤芯的光学指数高出值Δn,并且所述环(4)的外半径比内半径大出值ΔR;以及
光学包层(6),所述光学包层(6)包围所述环并且包括包含有夹杂物的基质,其中,所述夹杂物的光学指数不同于所述基质的光学指数,所述包层的等效平均光学指数nFSM小于所述纤芯的光学指数,
其特征在于,Δn大于10-3并且ΔR通过等式ΔR=α/(Δn)β与Δn关联,其中,α在从5x10-4微米到5x10-2微米的区间内,β在从0.5到1.5的区间内,并且α和β取决于所述微结构光纤要传导的光的波长λ、所述微结构光纤中的缺失性夹杂物的数量、所述夹杂物的直径d、所述夹杂物的间距Λ和所述纤芯(2)的光学指数。
2.根据权利要求1所述的微结构光纤,其中,所述缺失性夹杂物的数量为7。
3.根据权利要求1和2中任一项所述的微结构光纤,其中,所述纤芯(2)没有被掺杂。
4.根据权利要求3所述的微结构光纤,其中,所述纤芯(2)由未掺杂的二氧化硅制成,β等于1并且α由以下公式给出:
α=2.489x10-2(d/Λ)0.25λ2/Λ
其中,当d,Λ和λ以微米表示时,α也同样以微米表示。
5.根据权利要求1和2中任一项所述的微结构光纤,其中,所述纤芯(2)被掺杂。
6.根据权利要求5所述的微结构光纤,其中,所述纤芯(2)由掺杂的二氧化硅制成,从而将纯二氧化硅的光学指数增大1.5x10-3,β等于0.905并且α由以下公式给出:
α=1.046x10-2(λ/Λ)0.19
其中,当Λ和λ以微米表示时,α也同样以微米表示。
7.根据权利要求5所述的微结构光纤,其中,所述纤芯(2)由掺杂的二氧化硅制成,从而将纯二氧化硅的光学指数增大5x10-3,β等于0.87并且α由以下公式给出:
α=1.327x10-2(λ/Λ)0.05
其中,当Λ和λ以微米表示时,α也同样以微米表示。
8.根据权利要求1所述的微结构光纤,其中,所述夹杂物为纵向气隙(8)。
9.根据权利要求6所述的微结构光纤,其中,所述掺杂的二氧化硅掺杂有镱和下列共掺质中的一种:铝或磷或锗。
10.根据权利要求7所述的微结构光纤,其中,所述掺杂的二氧化硅掺杂有镱和下列共掺质中的一种:铝或磷或锗。
11.用于生产根据权利要求1所述的微结构光纤的方法,其中,
选择λ;
选择缺失性夹杂物的数量;
选择比例d/Λ;
选择所述纤芯(2)的掺杂量T,T大于或者等于0;
选择Λ;
选择Δn;
利用所述等式确定ΔR以在所述光纤的输入端被射入具有波长λ的光时在所述光纤的输出端得到平坦基谐模;以及
在由此选择了所述夹杂物的数量以及所述参数d、T、Λ、Δn并且以上述方式确定了所述参数ΔR的情况下,生产所述微结构光纤。
12.一种激光微细加工方法,其中,使用根据权利要求1至10中任一项所述的微结构光纤来传导由激光器发射出的光。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1158356A FR2980277B1 (fr) | 2011-09-20 | 2011-09-20 | Fibre optique microstructuree a grand coeur et a mode fondamental aplati, et procede de conception de celle ci, application a la microfabrication par laser |
FR1158356 | 2011-09-20 | ||
PCT/EP2012/068370 WO2013041533A1 (fr) | 2011-09-20 | 2012-09-18 | Fibre optique microstructuree a grand cœur et a mode fondamental aplati, et procede de fabrication de celle ci, application a la microfabrication par laser |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103930810A CN103930810A (zh) | 2014-07-16 |
CN103930810B true CN103930810B (zh) | 2017-03-29 |
Family
ID=46852021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280045944.XA Expired - Fee Related CN103930810B (zh) | 2011-09-20 | 2012-09-18 | 具有大纤芯和平坦基谐模的微结构光纤,其生产方法以及其在激光微细加工中的使用 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9244219B2 (zh) |
EP (1) | EP2758816B1 (zh) |
JP (1) | JP6121426B2 (zh) |
CN (1) | CN103930810B (zh) |
FR (1) | FR2980277B1 (zh) |
WO (1) | WO2013041533A1 (zh) |
Families Citing this family (176)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2987905B1 (fr) * | 2012-03-08 | 2015-03-20 | Commissariat Energie Atomique | Dispositif de conversion du profil spatial transverse d'intensite d'un faisceau lumineux, utilisant de preference une fibre optique microstructuree |
US9113347B2 (en) | 2012-12-05 | 2015-08-18 | At&T Intellectual Property I, Lp | Backhaul link for distributed antenna system |
US10009065B2 (en) | 2012-12-05 | 2018-06-26 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US8897697B1 (en) | 2013-11-06 | 2014-11-25 | At&T Intellectual Property I, Lp | Millimeter-wave surface-wave communications |
US9209902B2 (en) | 2013-12-10 | 2015-12-08 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
JP5946196B2 (ja) * | 2014-04-01 | 2016-07-05 | 日本電信電話株式会社 | ファイバおよびファイバ増幅器 |
US10069271B2 (en) | 2014-06-02 | 2018-09-04 | Nlight, Inc. | Scalable high power fiber laser |
CN105720463B (zh) | 2014-08-01 | 2021-05-14 | 恩耐公司 | 光纤和光纤传输的激光器中的背向反射保护与监控 |
US9692101B2 (en) | 2014-08-26 | 2017-06-27 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US10063280B2 (en) | 2014-09-17 | 2018-08-28 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9628854B2 (en) | 2014-09-29 | 2017-04-18 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9973299B2 (en) | 2014-10-14 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9762289B2 (en) | 2014-10-14 | 2017-09-12 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
US9577306B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9564947B2 (en) | 2014-10-21 | 2017-02-07 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with diversity and methods for use therewith |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
US9627768B2 (en) | 2014-10-21 | 2017-04-18 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9520945B2 (en) | 2014-10-21 | 2016-12-13 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US9680670B2 (en) | 2014-11-20 | 2017-06-13 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US9654173B2 (en) | 2014-11-20 | 2017-05-16 | At&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US9544006B2 (en) | 2014-11-20 | 2017-01-10 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9837783B2 (en) | 2015-01-26 | 2017-12-05 | Nlight, Inc. | High-power, single-mode fiber sources |
US10144036B2 (en) | 2015-01-30 | 2018-12-04 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US10050404B2 (en) | 2015-03-26 | 2018-08-14 | Nlight, Inc. | Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss |
EP3285101A4 (en) | 2015-04-14 | 2019-01-02 | Nippon Telegraph and Telephone Corporation | Photonic crystal fiber |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9948354B2 (en) | 2015-04-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10679767B2 (en) | 2015-05-15 | 2020-06-09 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US10348391B2 (en) | 2015-06-03 | 2019-07-09 | At&T Intellectual Property I, L.P. | Client node device with frequency conversion and methods for use therewith |
US10812174B2 (en) | 2015-06-03 | 2020-10-20 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US10103801B2 (en) | 2015-06-03 | 2018-10-16 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US10154493B2 (en) | 2015-06-03 | 2018-12-11 | At&T Intellectual Property I, L.P. | Network termination and methods for use therewith |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9608692B2 (en) | 2015-06-11 | 2017-03-28 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10142086B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US10520671B2 (en) | 2015-07-08 | 2019-12-31 | Nlight, Inc. | Fiber with depressed central index for increased beam parameter product |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US9836957B2 (en) | 2015-07-14 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US9608740B2 (en) | 2015-07-15 | 2017-03-28 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US10784670B2 (en) | 2015-07-23 | 2020-09-22 | At&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US10020587B2 (en) | 2015-07-31 | 2018-07-10 | At&T Intellectual Property I, L.P. | Radial antenna and methods for use therewith |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US10079661B2 (en) | 2015-09-16 | 2018-09-18 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a clock reference |
US10009063B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
US10051629B2 (en) | 2015-09-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an in-band reference signal |
US10136434B2 (en) | 2015-09-16 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
US9705571B2 (en) | 2015-09-16 | 2017-07-11 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system |
US10009901B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
US10768433B2 (en) | 2015-09-24 | 2020-09-08 | Nlight, Inc. | Beam parameter product (bpp) control by varying fiber-to-fiber angle |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9882277B2 (en) | 2015-10-02 | 2018-01-30 | At&T Intellectual Property I, Lp | Communication device and antenna assembly with actuated gimbal mount |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US10074890B2 (en) | 2015-10-02 | 2018-09-11 | At&T Intellectual Property I, L.P. | Communication device and antenna with integrated light assembly |
US10051483B2 (en) | 2015-10-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for directing wireless signals |
US10665942B2 (en) | 2015-10-16 | 2020-05-26 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting wireless communications |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US11179807B2 (en) | 2015-11-23 | 2021-11-23 | Nlight, Inc. | Fine-scale temporal control for laser material processing |
US10434600B2 (en) | 2015-11-23 | 2019-10-08 | Nlight, Inc. | Fine-scale temporal control for laser material processing |
US9912419B1 (en) | 2016-08-24 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US10291311B2 (en) | 2016-09-09 | 2019-05-14 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
US11032819B2 (en) | 2016-09-15 | 2021-06-08 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
US10730785B2 (en) | 2016-09-29 | 2020-08-04 | Nlight, Inc. | Optical fiber bending mechanisms |
US10732439B2 (en) | 2016-09-29 | 2020-08-04 | Nlight, Inc. | Fiber-coupled device for varying beam characteristics |
US10423015B2 (en) | 2016-09-29 | 2019-09-24 | Nlight, Inc. | Adjustable beam characteristics |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
FR3064112B1 (fr) * | 2017-03-16 | 2021-06-18 | Commissariat Energie Atomique | Dispositif imageur optique |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200600861A (en) * | 2004-06-30 | 2006-01-01 | Univ Nat Sun Yat Sen | Broadband ultra-flattened dispersion micro-structured fiber |
CN101303432A (zh) * | 2008-06-25 | 2008-11-12 | 天津大学 | 小芯径集束型的大有效模场面积和高非线性光子晶体光纤 |
CN101836143A (zh) * | 2007-10-03 | 2010-09-15 | 巴斯大学 | 空心芯光子晶体光纤 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5835655A (en) | 1995-01-26 | 1998-11-10 | Corning Incorporated | Large effective area waveguide fiber |
JP2000111753A (ja) * | 1998-09-30 | 2000-04-21 | Fujikura Ltd | レーザ光伝送用光ファイバ |
ATE418743T1 (de) * | 2001-03-30 | 2009-01-15 | Ocg Technology Licensing Llc | Ringkernfaser |
JP3640943B2 (ja) * | 2002-08-20 | 2005-04-20 | 三菱電線工業株式会社 | フォトニッククリスタルファイバ |
US20040247272A1 (en) | 2003-06-03 | 2004-12-09 | The Regents Of The University Of California | Flattened mode cylindrical and ribbon fibers and amplifiers |
US7280730B2 (en) * | 2004-01-16 | 2007-10-09 | Imra America, Inc. | Large core holey fibers |
EP1877845A2 (en) * | 2005-05-03 | 2008-01-16 | THE ARIZONA BOARD OF REGENTS on behalf of THE UNIVERSITY OF ARIZONA | Microstructured optical fibers and manufacturing methods thereof |
US7171091B1 (en) * | 2005-08-15 | 2007-01-30 | The United States Of America As Represented By The Secretary Of The Air Force | Tuned cladding fiber amplifier and laser |
US7142757B1 (en) * | 2005-09-20 | 2006-11-28 | The United States Of America As Represented By The Secretary Of The Air Force | Large flattened mode tuned cladding photonic crystal fiber laser and amplifier |
US8755658B2 (en) * | 2007-02-15 | 2014-06-17 | Institut National D'optique | Archimedean-lattice microstructured optical fiber |
FR2941539B1 (fr) * | 2009-01-23 | 2011-02-25 | Draka Comteq France | Fibre optique monomode |
US20100247046A1 (en) * | 2009-03-31 | 2010-09-30 | Imra America, Inc. | Wide bandwidth, low loss photonic bandgap fibers |
US8068705B2 (en) * | 2009-09-14 | 2011-11-29 | Gapontsev Valentin P | Single-mode high-power fiber laser system |
-
2011
- 2011-09-20 FR FR1158356A patent/FR2980277B1/fr not_active Expired - Fee Related
-
2012
- 2012-09-18 EP EP12759468.7A patent/EP2758816B1/fr not_active Not-in-force
- 2012-09-18 JP JP2014530273A patent/JP6121426B2/ja active Active
- 2012-09-18 WO PCT/EP2012/068370 patent/WO2013041533A1/fr active Application Filing
- 2012-09-18 US US14/346,309 patent/US9244219B2/en not_active Expired - Fee Related
- 2012-09-18 CN CN201280045944.XA patent/CN103930810B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200600861A (en) * | 2004-06-30 | 2006-01-01 | Univ Nat Sun Yat Sen | Broadband ultra-flattened dispersion micro-structured fiber |
CN101836143A (zh) * | 2007-10-03 | 2010-09-15 | 巴斯大学 | 空心芯光子晶体光纤 |
CN101303432A (zh) * | 2008-06-25 | 2008-11-12 | 天津大学 | 小芯径集束型的大有效模场面积和高非线性光子晶体光纤 |
Non-Patent Citations (1)
Title |
---|
Photonic crystal fiber for fundamental mode operation of multicore fiber lasers and amplifiers;Chun-can Wang et al;《Optics Communications》;ELSEVIER;20081231(第281期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
US20140233900A1 (en) | 2014-08-21 |
JP6121426B2 (ja) | 2017-04-26 |
JP2014531618A (ja) | 2014-11-27 |
WO2013041533A1 (fr) | 2013-03-28 |
FR2980277B1 (fr) | 2013-10-11 |
FR2980277A1 (fr) | 2013-03-22 |
EP2758816B1 (fr) | 2015-11-25 |
EP2758816A1 (fr) | 2014-07-30 |
US9244219B2 (en) | 2016-01-26 |
CN103930810A (zh) | 2014-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103930810B (zh) | 具有大纤芯和平坦基谐模的微结构光纤,其生产方法以及其在激光微细加工中的使用 | |
Russell | Photonic-crystal fibers | |
Hensley et al. | Photonic band-gap fiber gas cell fabricated using femtosecond micromachining | |
US8755658B2 (en) | Archimedean-lattice microstructured optical fiber | |
EP2201416A1 (en) | Hollow-core photonic crystal fibre | |
JP5612654B2 (ja) | ファイバ・レーザおよびファイバ増幅器用の希土類がドープされ有効区域が大きい光ファイバ | |
Valentin et al. | Top-hat beam output of a single-mode microstructured optical fiber: Impact of core index depression | |
Abdelaziz et al. | Enhanced effective area photonic crystal fiber with novel air hole design | |
Hao et al. | Optimized design of unsymmetrical gap nodeless hollow core fibers for optofluidic applications | |
US9488780B2 (en) | Device for converting the transverse spatial profile of intensity of a light beam, preferably using a microstructured optical fibre | |
WO2002088801A2 (en) | Higher-order-mode dispersion compensating photonic crystal fibres | |
Wang et al. | Design and analysis for large-mode-area photonic crystal fiber with negative-curvature air ring | |
Rostami et al. | Correspondence between effective mode area and dispersion variations in defected core photonic crystal fibers | |
Raja et al. | Extremely large mode-area bent hybrid leakage channel fibers for lasing applications | |
CA2677014C (en) | Archimedean-lattice microstructured optical fiber | |
You et al. | Wideband, large mode field and single vector mode transmission in a 37-cell hollow-core photonic bandgap fiber | |
Ji et al. | A six-strut suspended core fiber for cylindrical vector mode generation and propagation | |
Jafari et al. | Wideband Dispersion Compensation in Hexagonal Lattice Photonic Crystal Fiber | |
Foued et al. | Low-loss single-mode hybrid-lattice hollow-core photonic-crystal fibre | |
Zhao et al. | Large mode area and nearly zero flattened dispersion photonic crystal fiber by diminishing the pitch of the innermost air-holes-ring | |
Kühlthau et al. | Design, production, and characterization of a Large-Mode Area tubular Inhibited-Coupling Guiding Hollow-Core Fiber with low dispersion | |
CN115180816B (zh) | 用于制备高数值孔径空气包层光纤的方法 | |
Tan et al. | Characterization of bent large-mode-area photonic crystal fiber | |
Wang et al. | Crescent-Shaped Anti-Resonant Hollow Core Fiber | |
Röhrer et al. | Design, production, and characterization of specialty optical fibers at the IFSW: Hollow‐core fibers for the delivery of high‐brightness beams from ultrafast lasers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170329 Termination date: 20200918 |