CN103929641A - A Method of Intra-frame Coding Based on Virtual Reference Frame - Google Patents
A Method of Intra-frame Coding Based on Virtual Reference Frame Download PDFInfo
- Publication number
- CN103929641A CN103929641A CN201410196016.4A CN201410196016A CN103929641A CN 103929641 A CN103929641 A CN 103929641A CN 201410196016 A CN201410196016 A CN 201410196016A CN 103929641 A CN103929641 A CN 103929641A
- Authority
- CN
- China
- Prior art keywords
- prediction
- frame
- virtual reference
- reference frame
- block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 239000013598 vector Substances 0.000 claims abstract description 11
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 108700026244 Open Reading Frames Proteins 0.000 claims 1
- 238000012360 testing method Methods 0.000 abstract description 4
- 229910003460 diamond Inorganic materials 0.000 abstract 1
- 239000010432 diamond Substances 0.000 abstract 1
- 230000006835 compression Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 230000009466 transformation Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 241000777300 Congiopodidae Species 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 241000219357 Cactaceae Species 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
本发明提出了一种基于虚拟参考帧的帧内编码方法,对帧内视频边界的编码单元CU(Coding Unit)采用HEVC标准的预测模式进行编码,对其余的编码单元采用虚拟参考帧预测与标准预测相结合的方式进行编码。首先,构造待编码块的虚拟参考帧,虚拟参考帧的范围包括已编码区域的重建数据以及未编码区域的信息两部分构成,未编码区域的数据采用水平/垂直平铺的方式进行填充。其次,对待编码的CU进行基于虚拟参考帧的预测,预测方式采用快速菱形搜索方式,如果预测的残差足够小,就标记该块为INTER方式,并记录其运动矢量的数值;如果运动矢量为0,则标记其为SKIP块;如果预测的残差比较大,则采用HEVC标准的预测方式,并标记块的类型为INTRA块。经过测试,本发明提出的基于虚拟参考帧的预测编码能有效提高帧内编码的预测精度。The present invention proposes an intra-frame coding method based on a virtual reference frame, which encodes the coding unit CU (Coding Unit) of the intra-frame video boundary using the HEVC standard prediction mode, and uses the virtual reference frame prediction and standard prediction mode for the remaining coding units. Coding is done in a predictive way. First, construct a virtual reference frame of the block to be coded. The scope of the virtual reference frame includes the reconstruction data of the coded area and the information of the uncoded area. The data of the uncoded area is filled by horizontal/vertical tiling. Secondly, the CU to be encoded is predicted based on the virtual reference frame. The prediction method adopts the fast diamond search method. If the prediction residual is small enough, mark the block as INTER mode and record the value of its motion vector; if the motion vector is 0, it is marked as a SKIP block; if the predicted residual is relatively large, the HEVC standard prediction method is used, and the block type is marked as an INTRA block. After testing, the prediction coding based on the virtual reference frame proposed by the present invention can effectively improve the prediction accuracy of intra-frame coding.
Description
技术领域technical field
本发明涉及一种新的帧内编码方法,尤其涉及一种基于虚拟参考帧的帧内编码,属于计算机视觉技术领域。The invention relates to a new intra-frame encoding method, in particular to an intra-frame encoding based on a virtual reference frame, and belongs to the technical field of computer vision.
背景技术Background technique
计算机性能、网络带宽和移动终端处理能力的不断提高,对视频处理提出了速度、性能等方面的新需求。为了不断提高压缩性能,ITU和ISO组织推出了一系列视频编码标准,包括ITU组织的H.26x系列和ISO组织的MPEG-x系列标准,以及最新制定的HEVC标准。最新的HEVC标准致力于满足于用户的1)高清,2)3D,3)移动无线,以满足新的家庭影院、远程监控、数字广播、移动流媒体、便携摄像、医学成像等新领域的需求。在HEVC标准中有多种配置模式,包括HE(High Efficiency)高性能、LC(LowComplexity)低复杂度配置。The continuous improvement of computer performance, network bandwidth and mobile terminal processing capabilities has put forward new requirements for video processing in terms of speed and performance. In order to continuously improve compression performance, ITU and ISO organizations have introduced a series of video coding standards, including the H.26x series organized by ITU and the MPEG-x series standards organized by ISO, as well as the latest HEVC standard. The latest HEVC standard is committed to satisfying users' 1) high-definition, 2) 3D, 3) mobile wireless to meet the needs of new fields such as home theater, remote monitoring, digital broadcasting, mobile streaming media, portable video, medical imaging, etc. . There are multiple configuration modes in the HEVC standard, including HE (High Efficiency) high performance and LC (Low Complexity) low complexity configuration.
这些编码标准所采用的基本编码框架相同,多采用运动补偿+DCT的基本框架。这种框架下视频帧一般分为l(Intra-frame)、P(Predictive-frame)、B(BidirectionaIIy predicted-frame)三种类型:l帧在预测时,不参考其它帧的信息,通过变换、量化等过程完成编码;P帧以前向已编码帧的重建图像为参考,进行运动补偿后编码残差;B帧则以前后双向已编码帧的重建图像为参考,进行运动补偿后编码残差。The basic coding framework adopted by these coding standards is the same, and the basic framework of motion compensation + DCT is mostly used. Under this framework, video frames are generally divided into three types: l (Intra-frame), P (Predictive-frame), and B (BidirectionaIIy predicted-frame): l frame is predicted without referring to other frame information, through transformation, Quantization and other processes complete the encoding; P frames refer to the reconstructed images of the previous encoded frames, and encode residuals after motion compensation; B frames refer to the reconstructed images of forward and backward bidirectional encoded frames, and encode residuals after motion compensation.
在三种类型的视频帧中,I帧是关键帧,起到码流容错的作用。I帧编码过程中一般只利用了空间相关性,所以压缩比一般比较低。虽然在一个视频序列里,l帧的个数比较少,但其每帧编码位数却远高于P、B帧。例如,在H.264标准中,I帧的编码位率是P帧的3~5倍;在HEVC标准中,随着新的帧间预测技术的引入,I帧与P帧的压缩比进一步扩大,在某些视频中,可以达到1∶10。对于输出码率恒定(CBR)的视频流,I帧的码率突然增大,将直接导致减少后续P/B帧的编码位数的下降,进而影响到恢复图像和预测图像的质量。提高l帧的压缩比,不仅对于视频质量的稳定性与连续性起到了至关重要的作用。Among the three types of video frames, the I frame is a key frame, which plays a role in error tolerance of the code stream. Generally, only spatial correlation is used in the I frame encoding process, so the compression ratio is generally relatively low. Although in a video sequence, the number of l frames is relatively small, but the number of coding bits per frame is much higher than that of P and B frames. For example, in the H.264 standard, the encoding bit rate of I frames is 3 to 5 times that of P frames; in the HEVC standard, with the introduction of new inter-frame prediction technology, the compression ratio of I frames and P frames is further expanded , in some videos, it can reach 1:10. For a video stream with a constant output bit rate (CBR), a sudden increase in the bit rate of the I frame will directly reduce the number of coding bits for the subsequent P/B frames, thereby affecting the quality of the restored image and the predicted image. Improving the compression ratio of l frames not only plays a vital role in the stability and continuity of video quality.
预测是视频中常用的提高压缩比的方法,即根据图像特点,利用视频帧之间及其内部的相关性,以已编码对象为参考,保留较少的差分信息,减少最终编码位数。如何在已编码的图像中找到当前待预测对象的最佳匹配源,最大限度地去除冗余信息,使差分信息量达到最小值,这是预测的关键所在。由于I帧在序列中的作用,不能采用P/B帧的方式进行帧间预测,只能采用帧内预测,即在当前图像内部寻找相似对象。帧内预测多采用“空间相邻点预测”,也即基于图像的空域相关性,认为图像上各点与其空间相邻点具有相似性,通过搜索找到相似点后,进行差分编码。Prediction is a commonly used method to improve the compression ratio in video, that is, according to the characteristics of the image, using the correlation between video frames and within them, using the encoded object as a reference, retaining less differential information and reducing the number of final encoding bits. How to find the best matching source of the object to be predicted in the encoded image, remove redundant information as much as possible, and minimize the amount of differential information is the key to prediction. Due to the role of I frames in the sequence, P/B frames cannot be used for inter-frame prediction, and only intra-frame prediction can be used, that is, to find similar objects within the current image. Intra-frame prediction mostly uses "spatial adjacent point prediction", that is, based on the spatial correlation of the image, it is considered that each point on the image has similarity with its spatial adjacent points, and after finding similar points through searching, differential coding is performed.
H.264标准中采用的帧内预测以16×16的宏块及4×4的块为基本预测单元,对块内各点在9个方向上进行预测。以4×4块为例,如图1(a)所示,a,b,…,p为当前待预测块,周围17个点Q,l,…,P为已编码点。对a-p逐点,沿图1(b)所示的0,1,…,8及方向2(DC预测)共九个方向,取P-Q-H中的点,用适当的预测公式计算预测值,与原始采样值做差分,差值最小的模式为最终预测模式,最后对预测残差系数进行DCT编码。The intra-frame prediction adopted in the H.264 standard takes the 16×16 macroblock and the 4×4 block as the basic prediction unit, and predicts each point in the block in nine directions. Taking a 4×4 block as an example, as shown in Figure 1(a), a, b, ..., p are the current block to be predicted, and the surrounding 17 points Q, l, ..., P are coded points. For a-p point by point, along the nine directions of 0, 1, ..., 8 and direction 2 (DC prediction) shown in Fig. The sampling values are differentiated, and the mode with the smallest difference is the final prediction mode, and finally DCT coding is performed on the prediction residual coefficients.
在最新的HEVC标准中,引入了CU(编码单元),PU(预测单元),TU(变换单元),三个新的概念。编码单元类似于H.264/AVC中的宏块概念,其大小最大可以为64×64;预测单元是进行预测的基本单元;变换单元是进行变换和量化的基本单元。三个单元的分离,使得变换、预测和编码各个处理环节更加灵活,也更符合视频图像的纹理特征。预测单元的大小可以为4×4,8×8,16×16,32×32,64×64,块的大小不同,预测的模式也不相同,分别为17,34,34,34,和3种模式可选.统一的帧内预测角度为:+/-[0,2,5,9,13,17,21,26,32]/32。In the latest HEVC standard, three new concepts, CU (Coding Unit), PU (Prediction Unit), and TU (Transform Unit), are introduced. The coding unit is similar to the macroblock concept in H.264/AVC, and its size can be up to 64×64; the prediction unit is the basic unit for prediction; the transformation unit is the basic unit for transformation and quantization. The separation of the three units makes the processing links of transformation, prediction and encoding more flexible and more in line with the texture characteristics of video images. The size of the prediction unit can be 4×4, 8×8, 16×16, 32×32, 64×64, the size of the block is different, and the prediction mode is also different, respectively 17, 34, 34, 34, and 3 Two modes are optional. The unified intra prediction angle is: +/-[0, 2, 5, 9, 13, 17, 21, 26, 32]/32.
H.264/HEVC标准进行帧内编码时,对每一待编码的象素点均采用多种预测模式,但只是利用了待预测块的上一行,左一列数据,在这个数据范围内,采用近乎穷举的预测点搜索方法进行预测,如果图像相邻点间相关性很差,这种预测不仅不会使图像数据量减少还会因记录模式信息等因素引入更多的冗余信息。When the H.264/HEVC standard performs intra-frame coding, multiple prediction modes are used for each pixel to be coded, but only the upper row and left column data of the block to be predicted are used. Within this data range, using The nearly exhaustive prediction point search method is used for prediction. If the correlation between adjacent points of the image is poor, this kind of prediction will not only reduce the amount of image data, but also introduce more redundant information due to factors such as recording mode information.
也就是说,帧内编码的核心是:是否存在足够的相似点,以提高预测的准确度,直接决定预测的效果;如何找到相似点的位置,它决定整个预测过程的运算复杂度。In other words, the core of intra-frame coding is: whether there are enough similarities to improve the accuracy of prediction, which directly determines the effect of prediction; how to find the position of similarity, which determines the computational complexity of the entire prediction process.
发明内容Contents of the invention
本发明的目的是提供一种基于虚拟参考帧的帧内预测编码方法。该方法通过对HEVC标准进行分析,改变帧内编码时的预测方式,给出适合于帧内编码的编码结构,该结构中,将利用更多的可参考数据,提高预测的准确度,减少数据的冗余。The purpose of the present invention is to provide an intra-frame predictive encoding method based on a virtual reference frame. This method analyzes the HEVC standard, changes the prediction method during intra-frame coding, and provides a coding structure suitable for intra-frame coding. In this structure, more reference data will be used to improve the accuracy of prediction and reduce data. redundancy.
通过对HEVC标准进行分析发现,在帧内编码时,帧内预测只利用了当前块的上一行,左一列数据,其上方及左方的广阔区域数据都没有加以利用。本发明的基于虚拟参考帧的帧内编码方法,利用已经重建的区域,再加上虚构出来的一块右方及下方的区域,作为当前待编码块(或待编码像素点)的参考块,完成帧内预测。这种方法结合当前的帧内预测方法,可明显提高压缩效率。Through the analysis of the HEVC standard, it is found that during intra-frame coding, intra-frame prediction only uses the data of the upper row and the left column of the current block, and the data of the wide area above and to the left are not used. The intra-frame encoding method based on the virtual reference frame of the present invention utilizes the reconstructed area, plus a fictitious area on the right and below, as the reference block of the current block to be encoded (or pixel to be encoded), and completes Intra prediction. This method, combined with the current intra-frame prediction method, can significantly improve the compression efficiency.
为实现上述目的,本发明采用下述的技术方案。其特征在于包括以下步骤:In order to achieve the above object, the present invention adopts the following technical solutions. It is characterized in that it comprises the following steps:
步骤一:对帧内位于视频边界的编码单元CU(Coding Unit)采用HEVC标准的预测模式进行编码;Step 1: Encode the coding unit CU (Coding Unit) located at the video boundary in the frame using the HEVC standard prediction mode;
步骤二:,对其余的编码单元进行预测方式判断,首先对待预测数据在虚拟参考帧内进行搜索匹配,所述虚拟参考帧的数据由已知数据或是已编码区域的重建数据,以及虚构出来的一块右方及下方区域构成,上述两个区域与待编码的单元有一定的空间相关性,其次,对搜索匹配获得的匹配数据与待预测数据之间的残差进行判断,如果残差小于预定阈值,就采用虚拟参考帧的方式进行预测,并对残差和运动矢量进行编码;反之,若残差大于预定阈值,将进一步采用HEVC标准的预测模式进行预测,通过比较两种预测方式的残差大小,选取残差较小的一种方式进行帧内预测,然后对预测的残差数据进行量化,熵编码;Step 2: Judging the prediction mode of the remaining coding units, first search and match the data to be predicted in the virtual reference frame, the data of the virtual reference frame is obtained from known data or reconstruction data of the coded area, and fictitious The above two areas have a certain spatial correlation with the unit to be encoded. Secondly, judge the residual between the matching data obtained by searching and matching and the data to be predicted. If the residual is less than Predetermined threshold, the virtual reference frame is used for prediction, and the residual and motion vector are encoded; on the contrary, if the residual is greater than the predetermined threshold, the HEVC standard prediction mode will be further used for prediction. By comparing the two prediction methods Residual size, select a method with a smaller residual for intra-frame prediction, then quantize the predicted residual data, and entropy code;
步骤三:在编码码流输出前,如果采用HEVC标准的预测模式进行编码,则CU类型为INTRA块;如果是基于虚拟参考帧进行编码,则CU类型为INTER,并给出运动矢量值。Step 3: Before the coded stream is output, if the prediction mode of the HEVC standard is used for coding, the CU type is INTRA block; if the coding is based on a virtual reference frame, the CU type is INTER, and the motion vector value is given.
为了节省解码的运算量,对一种特殊的INTER类型CU进行标识,即运动矢量为0的SKIP块。In order to save the computational load of decoding, a special INTER type CU is identified, that is, a SKIP block whose motion vector is 0.
利用未编码数据构造虚拟参考帧时,采用水平平铺和垂直平铺的方法,水平平铺是将当前块左边的数据复制到当前块的右侧及下方,垂直平铺的方式是将当前块上方的数据复制到当前块的右侧及下方。When using uncoded data to construct a virtual reference frame, the method of horizontal tiling and vertical tiling is adopted. The horizontal tiling is to copy the data on the left side of the current block to the right and below the current block. The data above is copied to the right and below the current block.
本发明所提供的基于虚拟参考帧的帧内预测算法可以克服原有标准中帧内预测只利用了当前块的上一行,左一列数据,其上方及左方的广阔区域数据都没有加以利用的缺点,利用已经重建的区域,再加上虚构出来的一块右方及下方的区域,作为当前待编码块的参考块,完成帧内预测。这种方法结合当前的帧内预测方法,可明显提高压缩效率。The intra-frame prediction algorithm based on the virtual reference frame provided by the present invention can overcome the problem in the original standard that the intra-frame prediction only uses the data of the upper row and the left column of the current block, and the data of the wide area above and to the left are not utilized. The disadvantage is to use the reconstructed area, plus a fictitious area on the right and below, as the reference block of the current block to be encoded to complete intra-frame prediction. This method, combined with the current intra-frame prediction method, can significantly improve the compression efficiency.
附图说明Description of drawings
图1是H.264标准中的空间相邻点预测;Figure 1 is the prediction of spatial adjacent points in the H.264 standard;
图2是HEVC标准中的帧内预测;Figure 2 is intra-frame prediction in the HEVC standard;
图3是虚拟参考帧中各块的相对位置;Fig. 3 is the relative position of each block in the virtual reference frame;
图4是基于虚拟参考帧的编码框架;Fig. 4 is the coding frame based on virtual reference frame;
图5是基于虚拟参考帧的帧内编码流程;FIG. 5 is an intra-frame coding process based on a virtual reference frame;
具体实施方式Detailed ways
前已述及,本发明根据基于虚拟参考帧的帧内编码方法,实现了在不增加运算复杂度的前提下,提高预测效果,降低I帧的输出码流。As mentioned above, according to the intra-frame encoding method based on the virtual reference frame, the present invention improves the prediction effect and reduces the output code stream of the I frame without increasing the computational complexity.
下面结合附图说明本发明的实现方式。The implementation of the present invention will be described below in conjunction with the accompanying drawings.
步骤一:虚拟参考帧的构造Step 1: Construction of virtual reference frame
本发明的核心是利用已经编码和未编码区域完成对当前块的帧内预测,有别于标准中的只利用已编码区域进行帧内预测。相当于帧内编码算法引入了运动估计的概念,从本质上改变了了帧内预测的预测方法,也即不采用固定的插值模式和固定的角度进行预测,而是将当前待预测块看成是帧间块的类型,在一定的搜索范围内进行预测,如果搜索到了最佳匹配块,那么该块就是其预测参考块,进而完成预测,提高I帧的编码效率。因而本发明的第一步是构造虚拟参考帧。The core of the present invention is to use coded and uncoded areas to complete the intra-frame prediction of the current block, which is different from the standard in which only coded areas are used for intra-frame prediction. It is equivalent to the introduction of the concept of motion estimation into the intra-frame coding algorithm, which essentially changes the prediction method of intra-frame prediction, that is, instead of using a fixed interpolation mode and a fixed angle for prediction, the current block to be predicted is regarded as It is a type of inter-frame block, which is predicted within a certain search range. If the best matching block is searched, then this block is its prediction reference block, and then the prediction is completed to improve the coding efficiency of the I frame. Thus the first step of the present invention is to construct a virtual reference frame.
要构造虚拟参考帧,需要利用已经重建的区域,再加上虚构出来的一块右方及下方的区域,作为当前待编码块的参考帧。图3指出了各块所在的位置,图3所示的最大范围定义为当前待编码块Current的虚拟参考帧。To construct a virtual reference frame, it is necessary to use the reconstructed area, plus an imaginary area on the right and below, as the reference frame of the current block to be encoded. Figure 3 indicates the location of each block, and the maximum range shown in Figure 3 is defined as the virtual reference frame of the current block Current to be encoded.
第一行块:UL为UP Left块即左上块;UP为上块;UR为Up Right块即右上块;The first row of blocks: UL is the UP Left block, that is, the upper left block; UP is the upper block; UR is the Up Right block, that is, the upper right block;
第二行块:L为Left块;Current为当前待编码块;R为Right即右块;The second row of blocks: L is the Left block; Current is the current block to be encoded; R is the Right block;
第三行块:DL为左下块;Down为下块,DR为右下块。Blocks in the third row: DL is the lower left block; Down is the lower block; DR is the lower right block.
BM块为Best Match块,即为当前块找到的最佳匹配块,图3中的BM1和BM2代表了最佳匹配块可能处的不同位置,如果是BM1位置,其数据用到了已经编码的UL,UP,L块信息外,还将会使用到未编码块Current的信息;如果是BM2位置,除了将用到已经编码的UP,UR,还将会使用到未编码的Current块和R块的信息。The BM block is the Best Match block, which is the best matching block found for the current block. BM1 and BM2 in Figure 3 represent different possible positions of the best matching block. If it is the BM1 position, its data uses the encoded UL , UP, L block information, will also use the current information of the unencoded block; if it is BM2 position, in addition to the encoded UP, UR, will also use the unencoded Current block and R block information.
除了图示的BM1和BM2两个位置外,BM块还可以图3中的任意位置。图3所示的范围定义为当前待编码块Current的虚拟参考帧,也是当前待编码块将要预测的范围,在该范围内进行搜索,以求达到当前块的最佳的帧内预测效果。虚拟参考帧是指根据当前待预测块的大小,一般情况下范围不超过±64×64的大小,最小的范围可以到±8×8。为了提高块搜索的精度,采用了前向预测+后向预测概念。In addition to the illustrated two positions of BM1 and BM2, the BM block can also be in any position in FIG. 3 . The range shown in FIG. 3 is defined as the virtual reference frame of the current block Current to be coded, and also the range to be predicted by the current block to be coded. The search is performed within this range to achieve the best intra-frame prediction effect of the current block. The virtual reference frame refers to the size of the current block to be predicted. Generally, the range does not exceed ±64×64, and the smallest range can reach ±8×8. In order to improve the accuracy of block search, the concept of forward prediction + backward prediction is adopted.
前向预测:是指预测时利用的信息为前面能够取得重建内容的块,以图3为例,即Current块在UL,UP,UR,L中找到可以用来预测的信息,不可以用到R、Current、DL、Down、DR块的内容。Forward prediction: It means that the information used in the prediction is the block that can obtain the reconstructed content before. Take Figure 3 as an example, that is, the Current block finds information that can be used for prediction in UL, UP, UR, and L, and cannot be used Contents of R, Current, DL, Down, DR blocks.
后向预测是指预测时利用后面尚未编码的信息,即Current块可以在R、Current、DL、Down、DR块中找到用来预测的信息。Backward prediction refers to the use of information that has not yet been encoded during prediction, that is, the Current block can find the information used for prediction in the R, Current, DL, Down, and DR blocks.
这里的后向预测有别于B帧的后向预测概念,如果在编码B帧时用到了后向预测,则在解码端需要解码帧的顺序进行调整才可以正确解码。为了不给解码端造成不必要的麻烦,将不对编码块的顺序做任何调整。The backward prediction here is different from the backward prediction concept of B frames. If backward prediction is used when encoding B frames, the order of decoding frames needs to be adjusted at the decoding end to decode correctly. In order not to cause unnecessary trouble to the decoding end, no adjustment will be made to the order of the coding blocks.
如何利用尚未编码的Current、R等块位置的信息来进行后向预测Current块,这就成为了本发明在构造虚拟参考帧的一个重点。解决这个问题的关键是如何构造不存在的数据,具体方法有下面3种:How to use the unencoded Current, R and other block position information to perform backward prediction of the Current block has become a focus of the present invention in constructing a virtual reference frame. The key to solving this problem is how to construct data that does not exist. There are three specific methods:
(1)为了减少计算量,可以采用了水平平铺和垂直平铺的方法。水平平铺就是将L块复制到Current、R块及下方的DL、Down、DR块;垂直平铺就是将UP块复制到Current、Down块,以及将UR块的信息复制到R和DR块,将L块的信息平铺到DL块。(1) In order to reduce the amount of calculation, the method of horizontal tiling and vertical tiling can be adopted. Horizontal tiling is to copy the L block to the Current, R blocks and the DL, Down, and DR blocks below; vertical tiling is to copy the UP block to the Current, Down blocks, and copy the information of the UR block to the R and DR blocks. Tile the information of the L block to the DL block.
(2)根据块的纹理统计特性来选取合适信息进行复制。(2) Select appropriate information for copying according to the texture statistical properties of the block.
(3)直接将Current,R,DL,Down,DR块的信息填写成128或者其它数值。(3) Directly fill in the information of the Current, R, DL, Down, and DR blocks as 128 or other values.
以上三种方法各有优缺点,第(1)种数值构造方式简单,只涉及数据的复制,但不够精确;第(2)种数值构造复杂,需要进行图像特征的统计,但数据相对精确;第(3)种数值构造简单,但数据之间的相关性弱些。综合考虑计算量和数据的相关性,本发明将使用(1)来构造尚未编码的数据。The above three methods have their own advantages and disadvantages. The (1) numerical structure method is simple and only involves data replication, but it is not accurate enough; the (2) numerical structure is complex and requires statistics of image features, but the data is relatively accurate; The numerical structure of type (3) is simple, but the correlation between the data is weaker. Considering the amount of calculation and the correlation of data comprehensively, the present invention will use (1) to construct unencoded data.
步骤二:基于虚拟参考帧的预测过程Step 2: Prediction process based on virtual reference frame
图4是基于虚拟参考帧的帧内编码框架,在该图中,只针对帧类型为I帧进行处理,其它的帧类型不采用本框架。其它帧类型,仍采用标准的方法进行编码。对输入的I帧,以编码单元CU为单位,进行虚拟参考帧预测与HEVC标准预测相结合的方式进行预测,取残差系统低的方式做为最终的预测模式。对残差系数进行变换、量化、熵编码进行输出,进行码流的输出。FIG. 4 is an intra-frame coding framework based on a virtual reference frame. In this figure, only I-frames are processed, and other frame types do not use this framework. For other frame types, the standard method is still used for encoding. For the input I frame, the coding unit CU is used as the unit to predict the combination of virtual reference frame prediction and HEVC standard prediction, and take the method with the lowest residual system as the final prediction mode. The residual coefficients are transformed, quantized, and entropy encoded for output, and the code stream is output.
图5是基于虚拟参考帧的帧内编码流程,在该流程中包含预测类型的判定和块类型的语法标注。Fig. 5 is an intra-frame encoding process based on a virtual reference frame, which includes the determination of the prediction type and the syntax annotation of the block type.
对采集输入视频序列,确定帧类型,当前为I帧时,编码过程中将其划分为N×N小块,其中第i行,第j列的当前块记做Curi,j。For collecting the input video sequence, determine the frame type. When the current frame is an I frame, it is divided into N×N small blocks during the encoding process, and the current block in the i-th row and j-th column is denoted as Cur i, j .
第一步:对当前块Curi,j进行判断,判断内容为是否为边界?是否为LCU级?若为边界或LCU级都将采用HEVC标准的方法进行帧内预测,记录其Modei,j=INTRA。判断准则是:若当前块的UL块,UP块,UR块,L块有一个不存在,则说明处于Curi,j为边界块;否则说明Curi,j不为边界块也不为LCU级,则可以进行搜索预测,进入下一步。first step: Judgment is made on the current block Cur i, j , whether the judgment content is a boundary? Is it LCU level? If it is boundary or LCU level, the HEVC standard method will be used for intra prediction, and its Mode i, j = INTRA will be recorded. Judgment criteria are: if one of the UL block, UP block, UR block, and L block of the current block does not exist, it means that Cur i, j is a boundary block; otherwise, Cur i, j is neither a boundary block nor an LCU level , then the search prediction can be carried out, and the next step is entered.
第二步:创建虚拟参考帧,在本发明中采用水平平铺的方式来创建,水平平铺当前current块和R块。设定搜索范围,若块尺寸为32×32,则搜索范围为64×64,其他块大小时,搜索范围为32×32。Step 2: Create a virtual reference frame, which is created by horizontal tiling in the present invention, and the current block and the R block are horizontally tiled. Set the search range. If the block size is 32×32, the search range is 64×64. For other block sizes, the search range is 32×32.
第三步:对当前块Curi,j进行预测,预测的方式采用整像素和亚像素运动估计的方法,匹配准则采用SAD值最小的方法,记录其水平和垂直运动矢量VectX,VectY;Step 3: Predict the current block Cur i, j , the prediction method adopts the method of integer pixel and sub-pixel motion estimation, the matching criterion adopts the method with the smallest SAD value, and records its horizontal and vertical motion vectors VectX, VectY;
第四步:根据运动矢量类型判断其预测模式,预测模式Modei,j为3种类型,即Inter,Intra,Skip。若SAD值小于设定的阈值,则记录VectX,VectY,同时标记Modei,j=Inter。若VectX=VectY=0,则为Modei,j=Skip块,同时标记该块模式为Modei,j=Inter。若SAD值大于设定的阈值,则说明没有得到最佳匹配块,Modei,j=Intra,采用标准的预测模式进行预测。Step 4: Determine the prediction mode according to the type of the motion vector. There are three types of prediction modes Mode i, j , namely Inter, Intra, and Skip. If the SAD value is less than the set threshold, VectX and VectY are recorded, and Mode i, j =Inter is marked at the same time. If VectX=VectY=0, then it is a Mode i, j = Skip block, and at the same time mark the block mode as Mode i, j = Inter. If the SAD value is greater than the set threshold, it means that the best matching block is not obtained, Mode i, j = Intra, and a standard prediction mode is used for prediction.
第五步.根据不同的类型进入不同的编码处理过程Step 5. Enter different encoding processes according to different types
Modei,j=Skip即在码流里只记录其Modei,j信息,不用写入码流。Mode i, j = Skip means that only the Mode i, j information is recorded in the code stream without writing into the code stream.
Modei,j=Intra采用HEVC标准的方法进行预测,直接进行变换处理,码流里包含Modei,j信息和处理后的数据信息。Mode i, j = Intra uses the HEVC standard method for prediction and direct conversion processing, and the code stream contains Mode i, j information and processed data information.
Modei,j=Inter,采用本发明的基于虚拟参考帧的方式进行预测,并对残差进行变换处理,码流里包含Modei,j信息和残差处理后的数据信息以及运动矢量VectX,VectY信息。Mode i, j =Inter, adopt the method based on the virtual reference frame of the present invention to predict, and carry out transformation processing to the residual, the code stream contains Mode i, data information after j information and residual processing and motion vector VectX, VectY information.
第六步:输出压缩码流Step 6: Output compressed code stream
性能分析performance analysis
采用本发明方法对HEVC标准的HM进行实现、测试并与标准算法HM6.0结果相比较。对恢复图像质量,本发明采用BDBR作为衡量指标。配置文件:Low_delay_P_Main.cfg,低延迟;编码帧类型:IPIPIP…;编码帧数:共20帧,10个I帧,10个P帧。测试序列分别为CLASS A~E,其中CLASS A为超清视频序列″Traffic″(4096x2048p30fps),″PeopleOnStreet″(3840x2160p30fps).中截取的2560x1600的序列;CLASSB为1920x1080p24fps:″ParkScene″,″Kimono″,1920x108050-60fps:″Cactus″,″BasketballDrive″,″BQTerrace″;CLASS C为832x480p30-60fps(WVGA):″BasketballDrill″,″BQMall″,″PartyScene″,″RaceHorses″;CLASS D为416x240p30-60fps(WQVGA):″BasketballPaSS″,″BQSquare″,″BlowingBubbles″,″RaceHorses″;CLASS E为1280x720p60fps videoconferencing scenes:″Vidyo1″,″Vidyo3″and″Vidyo4″不同的视频类型分辨率不同,帧频不同。The method of the invention is used to realize and test the HM of the HEVC standard and compare it with the result of the standard algorithm HM6.0. For the restored image quality, the present invention adopts BDBR as a measure index. Configuration file: Low_delay_P_Main.cfg, low delay; encoded frame type: IPIPIP…; encoded frame number: 20 frames in total, 10 I frames, 10 P frames. The test sequences are CLASS A~E, among which CLASS A is the 2560x1600 sequence intercepted in the ultra-clear video sequence "Traffic" (4096x2048p30fps), "PeopleOnStreet" (3840x2160p30fps); CLASSB is 1920x1080p24fps: "ParkScene", "Kimono", 1920x108050-60fps: "Cactus", "BasketballDrive", "BQTerrace"; CLASS C is 832x480p30-60fps (WVGA): "BasketballDrill", "BQMall", "PartyScene", "RaceHorses"; CLASS D is 416x240p30-60fps (WQVGA ): "BasketballPaSS", "BQSquare", "BlowingBubbles", "RaceHorses"; CLASS E is 1280x720p60fps video conferencing scenes: "Vidyo1", "Vidyo3" and "Vidyo4" Different video types have different resolutions and different frame rates.
表1~表3给出了不同搜索范围的情况下的测试结果,表1~3的搜索范围依次为64,32,16。以表1为例,第一列为视频类别CLASS A~E,第二~四列,与标准HEVC HM6.0具有相同PSNR值的基础上,亮度分量Y、色度分量U、色度分量V,三个分量所节省的位率百分比。Tables 1 to 3 show the test results under different search ranges. The search ranges in Tables 1 to 3 are 64, 32, and 16 in turn. Taking Table 1 as an example, the first column is the video category CLASS A~E, and the second to fourth columns. On the basis of the same PSNR value as the standard HEVC HM6.0, the luminance component Y, chrominance component U, and chrominance component V , the percentage of bitrate saved by the three components.
表1搜索范围64,BDBR=-0.85%Table 1 Search Range 64, BDBR=-0.85%
表2搜索范围32,BDBR=-0.78%Table 2 Search Range 32, BDBR=-0.78%
表3搜索范围16,BDBR=-0.6%Table 3 Search Range 16, BDBR=-0.6%
表1~表3给出了在不同搜索范围下的BDBR值,表示了在同样的客观质量下,两种方法的码率节省情况。搜索范围越大,BDBR值越多,说明了,本文算法与标准的预测算法相比,节省的码率在0.5%以上。Tables 1 to 3 show the BDBR values under different search ranges, indicating the bit rate savings of the two methods under the same objective quality. The larger the search range, the more BDBR values, which shows that compared with the standard prediction algorithm, the algorithm in this paper can save more than 0.5% of the code rate.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410196016.4A CN103929641A (en) | 2014-05-12 | 2014-05-12 | A Method of Intra-frame Coding Based on Virtual Reference Frame |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410196016.4A CN103929641A (en) | 2014-05-12 | 2014-05-12 | A Method of Intra-frame Coding Based on Virtual Reference Frame |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103929641A true CN103929641A (en) | 2014-07-16 |
Family
ID=51147699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410196016.4A Pending CN103929641A (en) | 2014-05-12 | 2014-05-12 | A Method of Intra-frame Coding Based on Virtual Reference Frame |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103929641A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016026457A1 (en) * | 2014-08-22 | 2016-02-25 | 中兴通讯股份有限公司 | Predictive coding/decoding method, corresponding coder/decoder, and electronic device |
CN106375764A (en) * | 2016-08-31 | 2017-02-01 | 中国科学技术大学 | A Video Intra Coding Method Combining Directional Prediction and Block Copy Prediction |
CN106791829A (en) * | 2016-11-18 | 2017-05-31 | 华为技术有限公司 | The method for building up and equipment of virtual reference frame |
CN110072112A (en) * | 2019-03-12 | 2019-07-30 | 浙江大华技术股份有限公司 | Intra-frame prediction method, encoder and storage device |
TWI690199B (en) * | 2016-08-31 | 2020-04-01 | 北京奇藝世紀科技有限公司 | Video coding intra prediction method and device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105247569A (en) * | 2013-03-29 | 2016-01-13 | 谷歌公司 | Motion-compensated frame interpolation using smoothness constraints |
-
2014
- 2014-05-12 CN CN201410196016.4A patent/CN103929641A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105247569A (en) * | 2013-03-29 | 2016-01-13 | 谷歌公司 | Motion-compensated frame interpolation using smoothness constraints |
Non-Patent Citations (2)
Title |
---|
SIU-LEONG YU AND CHRISTOS CHRYSAFIS: "New Intra Prediction using Intra-Macroblock Motion Compensation", 《JOINT VIDEO TEAM (JVT) OF ISO/IEC MPEG & ITU-T VCEG》 * |
叶迎宪等: "基于线性插值填充的帧内运动补偿", 《计算机应用》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016026457A1 (en) * | 2014-08-22 | 2016-02-25 | 中兴通讯股份有限公司 | Predictive coding/decoding method, corresponding coder/decoder, and electronic device |
CN106375764A (en) * | 2016-08-31 | 2017-02-01 | 中国科学技术大学 | A Video Intra Coding Method Combining Directional Prediction and Block Copy Prediction |
CN106375764B (en) * | 2016-08-31 | 2018-04-10 | 中国科学技术大学 | A kind of bonding position prediction and block replicate the video intra-frame encoding method of prediction |
TWI690199B (en) * | 2016-08-31 | 2020-04-01 | 北京奇藝世紀科技有限公司 | Video coding intra prediction method and device |
US10681367B2 (en) | 2016-08-31 | 2020-06-09 | Beijing Qiyi Century Science & Technology Co., Ltd. | Intra-prediction video coding method and device |
CN106791829A (en) * | 2016-11-18 | 2017-05-31 | 华为技术有限公司 | The method for building up and equipment of virtual reference frame |
CN106791829B (en) * | 2016-11-18 | 2020-01-21 | 华为技术有限公司 | Method and equipment for establishing virtual reference frame |
CN110072112A (en) * | 2019-03-12 | 2019-07-30 | 浙江大华技术股份有限公司 | Intra-frame prediction method, encoder and storage device |
US12155861B2 (en) | 2019-03-12 | 2024-11-26 | Zhejiang Dahua Technology Co., Ltd. | Systems and methods for image coding |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11363294B2 (en) | Image processing method and image processing device | |
CN103248893B (en) | From H.264/AVC standard to code-transferring method and transcoder thereof the fast frame of HEVC standard | |
US10142654B2 (en) | Method for encoding/decoding video by oblong intra prediction | |
US8582904B2 (en) | Method of second order prediction and video encoder and decoder using the same | |
CN114009040B (en) | Encoder, decoder and corresponding methods | |
CN101742319B (en) | Background modeling-based static camera video compression method and background modeling-based static camera video compression system | |
TWI841033B (en) | Method and apparatus of frame inter prediction of video data | |
CN105706450A (en) | Encoder decisions based on results of hash-based block matching | |
CN103442228B (en) | Code-transferring method and transcoder thereof in from standard H.264/AVC to the fast frame of HEVC standard | |
CN103929641A (en) | A Method of Intra-frame Coding Based on Virtual Reference Frame | |
CN107087200A (en) | Skip coding mode early decision method for high-efficiency video coding standards | |
CN103002283A (en) | Side Information Generation Method for Multi-View Distributed Video Compression | |
CN117480778A (en) | Residual coding and video coding methods, devices, equipment and systems | |
CN114793282A (en) | Neural network based video compression with bit allocation | |
CN107018412B (en) | A kind of DVC-HEVC video transcoding method based on key frame coding unit partition mode | |
CN101588487A (en) | Video intraframe predictive coding method | |
CN110913232B (en) | Selection method and device of TU division mode and readable storage medium | |
KR20130103140A (en) | Preprocessing method before image compression, adaptive motion estimation for improvement of image compression rate, and image data providing method for each image service type | |
CN107343202B (en) | Feedback-free distributed video encoding and decoding method based on additional code rate | |
CN103634608B (en) | A Residual Transformation Method for Lossless Mode of High Performance Video Coding | |
CN104219530A (en) | HEVC multiple-description coding scheme based on prediction mode copying | |
CN109495745B (en) | A Lossless Compression and Decoding Method Based on Inverse Quantization/Inverse Transform | |
CN103841421A (en) | USDC data processing method | |
CN104038768B (en) | The many reference field rapid motion estimating methods and system of a kind of coding mode | |
Arrivukannamma et al. | A study on CODEC quality metric in video compression techniques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140716 |