CN103928830A - 一种全正色散、全保偏光纤激光器 - Google Patents

一种全正色散、全保偏光纤激光器 Download PDF

Info

Publication number
CN103928830A
CN103928830A CN201410187708.2A CN201410187708A CN103928830A CN 103928830 A CN103928830 A CN 103928830A CN 201410187708 A CN201410187708 A CN 201410187708A CN 103928830 A CN103928830 A CN 103928830A
Authority
CN
China
Prior art keywords
polarization
fiber
optical fiber
coupling
maintaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410187708.2A
Other languages
English (en)
Inventor
曾和平
沈旭玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Langyan Optoelectronics Technology Co Ltd
Original Assignee
Shanghai Langyan Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Langyan Optoelectronics Technology Co Ltd filed Critical Shanghai Langyan Optoelectronics Technology Co Ltd
Priority to CN201410187708.2A priority Critical patent/CN103928830A/zh
Publication of CN103928830A publication Critical patent/CN103928830A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

本发明公开了一种全正色散、全保偏光纤激光器,它包括第一光纤耦合法拉第偏振旋转镜、掺镱光纤、波分复用器、泵浦光隔离器、半导体激光器LD、保偏光纤耦合偏振分束器、保偏光纤耦合全反镜、保偏光纤耦合器、保偏单模光纤、第二光纤耦合法拉第偏振旋转镜及窄线宽带通滤波器,本发明通过腔结构设计,使得激光脉冲在光纤激光器腔内单次往返时,经历多次放大,增大了脉冲增益,使输出光脉冲单脉冲能量更高;通过驻波腔两端放置法拉第偏振旋转镜,使得整个光纤激光腔对环境引起的线性噪声和扰动得以补偿,不受外界影响。本发明结构简单,易于调试,受环境干扰小,在工业领域有广阔应用前景。

Description

一种全正色散、全保偏光纤激光器
技术领域
    本发明涉及超快激光技术领域,特别是涉及一种采用驻波腔结构及全保偏光纤的全正色散、全保偏光纤激光器。
背景技术
    相比传统固体激光器,光纤激光器具有结构紧凑、免调节、易维护、低损耗、光束质量好等优点,被广泛应用于材料精细加工、超快光学、时频域激光精密控制、光通信等重要领域。近些年,光纤锁模技术的长足发展,通过光纤激光器腔内色散管理和腔内非线性效应的合理应用平衡下,使光纤激光器在单脉冲能量、脉冲宽度和长期稳定性输出方面得到较好的改善。
    在色散管理的光纤激光器中,一般通过光栅对、棱镜等光学器件引入负色散对光纤激光器腔内色散进行补偿。在引入这些色散块件的同时,破坏了光纤激光器的全光纤性,从而增加了光纤激光器锁模调节难度。而且,此类光纤激光器受环境噪声和温度变化的影响将直接导致光纤激光器锁模状态的不稳定。全保偏、全正色散光纤激光器的研发使全光纤结构光纤激光器得以实现。 在光纤锁模激光器中,全正色散光纤激光器在不需要色散补偿的情况下,由于不受孤子效应对光纤激光器单脉冲能量的限制,光纤激光器输出的单脉冲能量往往可以达到nJ甚至更高量级。又由于不需要负色散块件的引入,使用全保偏光纤激光器得以实现不受环境噪声和温度变化的影响。
在全正色散、全保偏光纤激光器中,光脉冲在腔内循环过程中,在增益介质中的放大增益应尽可能的大,从而使得光纤激光器输出脉冲带有较大的线性啁啾,而这个线性啁啾脉冲可以通过在腔外啁啾补偿,使脉冲宽度得以压缩。在已实现全正色散、全保偏光纤激光器中,脉冲在腔内往返增益受增益介质、泵浦功率和脉冲放大次数等等现实因素限制。
发明内容
    本发明的目的是提供一种脉冲在腔内循环过程中,得到多次放大增益,增加泵浦效率,输出更高单脉冲能量的全正色散、全保偏光纤激光器,该激光器具有精细全光纤激光器腔结构,其单脉冲输出能量高、消光比优、结构简单、长期稳定性好。
实现本发明目的的具体技术方案是:
一种全正色散、全保偏光纤激光器,特点是:该激光器包括第一光纤耦合法拉第偏振旋转镜、掺镱光纤、波分复用器、泵浦光隔离器、半导体激光器LD、保偏光纤耦合偏振分束器、保偏光纤耦合全反镜、保偏光纤耦合器、保偏单模光纤、第二光纤耦合法拉第偏振旋转镜及窄线宽带通滤波器,所述光纤耦合法拉第偏振旋转镜、掺镱光纤、波分复用器、保偏光纤耦合偏振分束器、窄线宽带通滤波器、保偏光纤耦合器、保偏单模光纤、光纤耦合法拉第偏振旋转镜依次连接,半导体激光器LD、泵浦光隔离器依次连接波分复用器,保偏光纤耦合全反镜连接保偏光纤耦合偏振分束器,保偏光纤耦合器与保偏单模光纤之间为熔接;
所述半导体激光器LD为抽运泵浦,掺镱光纤为保偏增益光纤;保偏光纤耦合器、保偏单模光纤、第二光纤耦合法拉第偏振旋转镜、窄线宽带通滤波器、保偏光纤耦合偏振分束器、波分复用器、掺镱光纤、第一光纤耦合法拉第偏振旋转镜及保偏光纤耦合全反镜构成驻波腔;其中,保偏光纤耦合器、保偏单模光纤及第二光纤耦合法拉第偏振旋转镜组成锁模机制。
    本发明采用驻波腔结构设计,使得激光脉冲在光纤激光器腔内单次往返时,经历多次放大,增大了脉冲增益,使输出光脉冲单脉冲能量更高。通过放置驻波腔两端镜为法拉第偏振旋转镜,使得整个光纤激光腔对环境引起的线性噪声和扰动得以补偿,不受外界影响。形成一个长期稳定的,高单脉冲能量输出的全光纤激光器。
与现有技术相比,本发明具有以下优点:
1、本发明光学腔内使用了保偏光纤、相关保偏器件和保偏光纤耦合偏振分束器,有效地控制了光脉冲在腔内振荡的偏振状态,得到高消光比的光脉冲输出。
2、本发明在驻波腔注入泵浦光初期,腔内由于受激布里渊效应,产生100KHz以下纳秒自调Q现象。
3、本发明驻波器内,当来自保偏光纤耦合器的反射光的增益大于调Q脉冲光增益时,调Q现象被抑制,从而腔内转变成锁模脉冲振荡。
4、本发明可以实现自启动锁模,由自调Q现象演变为稳定锁模现象。
5、本发明使光脉冲在腔内往返中,多次得到增益,增大了腔内增益效果。
6、本发明使光纤激光器的输出脉冲稳定性提高,调节腔内参数可以实现纳秒、皮秒和飞秒脉冲激光的输出。
7、本发明采用保偏器件及腔内偏振控制,使得光纤激光器抗环境干扰能力增强,长期稳定能力加强。
8、本发明为全保偏光纤结构,具有尺寸小,重量轻,集成度高,易于维护和搭建等特点。
9、本发明工作波段可以为1000 nm附近或者1500 nm附近,也可以是其它波段,根据不同掺杂稀土元素(镱、铒、铥、钬、镨等)而定。
附图说明
图1本发明结构示意图;
图2本发明多次增益过程示意图;
图3本发明实施例示意图。
具体实施方式
    下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述,以便同类技术人员更好理解本发明。
    参阅图1,本发明利用非线性偏振旋转实现激光器锁模并增多光脉冲在腔内单次往返通过增益的目的,其包括第一光纤耦合法拉第偏振旋转镜1、掺镱光纤2、波分复用器3、泵浦光隔离器4、半导体激光器LD 5、保偏光纤耦合偏振分束器6、保偏光纤耦合全反镜7、保偏光纤耦合器8、保偏单模光纤10、第二光纤耦合法拉第偏振旋转镜11及窄线宽带通滤波器12,所述半导体激光器LD 5出射泵浦光经过泵浦光隔离器4通过波分复用器3耦合进驻波腔内;光脉冲在腔内单次的往返振荡循环过程中,经光纤耦合法拉第偏振旋转镜1、保偏光纤耦合偏振分束器6和保偏光纤耦合全反镜7,两次经历增益光纤2使得增益变大。其半导体激光器LD 5出射泵浦光在注入驻波腔初期,腔内受激布里渊效应,产生100KHz以下纳秒自调Q现象。保偏光纤耦合器8工作在慢轴,光脉冲经过保偏单模光纤10并经第二光纤耦合法拉第偏振旋转镜11反射后,偏振状态旋转900,外界环境对引入的线性偏振扰动得到补偿,线性偏振的脉冲光将全部由保偏光纤耦合器8损耗,只有部分经过非线性偏振旋转光得以透射光纤耦合器8。当来自保偏光纤耦合器8的透射光的增益大于调Q脉冲光增益时,调Q现象被抑制,腔内转变成锁模脉冲振荡。锁模后的部分脉冲从保偏光纤耦合器8耦合输出。
保偏状态的光脉冲光从偏振分束器6出射进入波分复用器3,取该偏振状态为垂直偏振状态,在增益光纤2中得到一次放大,经法拉第偏振旋转镜1反射后,变为水平偏振入射至偏振分束器6,全反射至全反镜7,并重新反射再次经过增益光纤,使光脉冲再次被增益放大,再经法拉第偏振旋转镜1反射后,变回垂直偏振状态入射至偏振分束器6,实现脉冲在腔内循环多次增益的效果。由保偏光纤耦合器8、熔接9、保偏单模光纤10及第二光纤耦合法拉第偏振旋转镜11组成非线性偏振旋转锁模机制;驻波腔两端的法拉第偏振旋转镜1、11补偿环境线性噪声和扰动,易于工作在长期稳定的状态。窄线宽带通滤波器12起减少脉冲线性啁啾和脉冲宽度的功能。
参阅图2,本发明光脉冲在腔内偏振态变化及多次放大过程及原理:由图中a可以看出,光脉冲以水平偏振态入射至偏振分束片6,直接透射至法拉第偏振旋转镜1,在图中b,经法拉第偏振镜反射,光脉冲偏振态旋转90度为垂直方向反射回到偏振分束片6,并被反射至全反镜7,经全反镜7和偏振分束片6反射至法拉第偏振反射镜1,在图中c,光脉冲偏振再次旋转90度为水平反射至偏振分束片6,并透射而出。由此可见,光偏振分束片6和法拉第偏振镜之间设置增益介质时,光脉冲在腔内一次往返时,将四次通过增益介质,分别为两次经过两个正交偏振方向的增益,使得增益效率大大提高。
实施例
参阅图3,本实施例由976nm半导体激光器LD 5即抽运泵浦、976nm高功率光隔离器4、单模增益光纤2即高掺杂增益介质、两个法拉第偏振旋转全反镜1、11、偏振分束器6和光纤光栅13、波分复用器3、光纤激光器耦合输出器8、两保偏光纤轴间角为300的熔接状态9及保偏单模光纤10构成。法拉第偏振旋转镜1和11为驻波腔的腔镜。两腔镜使得整个光纤激光腔对环境引起的线性噪声和扰动得以补偿,不受外界影响,使本发明能够长期稳定工作。水平偏振的脉冲光从偏振分束器6出射进入波分复用器3,在增益光纤2中得到一次放大,经法拉第偏振旋转镜1反射后,变为垂直偏振入射至偏振分束器6,全反射至光纤光栅13,等效于光纤全反镜7,并重新反射再次经过增益光纤2,使光脉冲再次被增益放大,再经法拉第偏振旋转镜1反射后,变回垂直偏振状态入射至偏振分束器6,实现脉冲光在腔内往返一次多次增益的效果,使泵浦效率得到提高。由光纤激光器耦合输出器8、熔接状态9、保偏单模光纤10及法拉第偏振旋转镜11组成的非线性偏振旋转锁模器件,可以使低功率脉冲成分得以损耗,而功率较高的脉冲中心得以反射透过,形成锁模机制,使本发明达成锁模状态。光纤光栅13起减少脉冲线性啁啾和脉冲宽度的功能。光纤光栅13的作用除了充当高反镜外,由于它的窄带带通滤波效果,同时也起着滤波器的作用。使用光纤光栅也有助于光纤激光器调Q效应和光纤激光器锁模状态的初始化。光纤光栅13取代了图1中窄线宽带通滤波器12,具有等效功能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可做出若干改进和腔结构变化,这些改进和变化也应视为本发明的保护范围。

Claims (1)

1.一种全正色散、全保偏光纤激光器,其特征在于:该激光器包括第一光纤耦合法拉第偏振旋转镜(1)、掺镱光纤(2)、波分复用器(3)、泵浦光隔离器(4)、半导体激光器LD(5)、保偏光纤耦合偏振分束器(6)、保偏光纤耦合全反镜(7)、保偏光纤耦合器(8)、保偏单模光纤(10)、第二光纤耦合法拉第偏振旋转镜(11)及窄线宽带通滤波器(12),所述光纤耦合法拉第偏振旋转镜(1)、掺镱光纤(2)、波分复用器(3)、保偏光纤耦合偏振分束器(6)、窄线宽带通滤波器(12)、保偏光纤耦合器(8)、保偏单模光纤(10)、光纤耦合法拉第偏振旋转镜(11)依次连接,半导体激光器LD(5)、泵浦光隔离器(4)依次连接波分复用器(3),保偏光纤耦合全反镜(7)连接保偏光纤耦合偏振分束器(6),保偏光纤耦合器(8)与保偏单模光纤(10)之间为熔接(9);
所述半导体激光器LD(5)为抽运泵浦,掺镱光纤(2)为保偏增益光纤;保偏光纤耦合器(8)、保偏单模光纤(10)、第二光纤耦合法拉第偏振旋转镜(11)、窄线宽带通滤波器(12)、保偏光纤耦合偏振分束器(6)、波分复用器(3)、掺镱光纤(2)、第一光纤耦合法拉第偏振旋转镜(1)及保偏光纤耦合全反镜(7)构成驻波腔;其中,保偏光纤耦合器(8)、保偏单模光纤(10)及第二光纤耦合法拉第偏振旋转镜(11)组成锁模机制。
CN201410187708.2A 2014-05-06 2014-05-06 一种全正色散、全保偏光纤激光器 Pending CN103928830A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410187708.2A CN103928830A (zh) 2014-05-06 2014-05-06 一种全正色散、全保偏光纤激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410187708.2A CN103928830A (zh) 2014-05-06 2014-05-06 一种全正色散、全保偏光纤激光器

Publications (1)

Publication Number Publication Date
CN103928830A true CN103928830A (zh) 2014-07-16

Family

ID=51146957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410187708.2A Pending CN103928830A (zh) 2014-05-06 2014-05-06 一种全正色散、全保偏光纤激光器

Country Status (1)

Country Link
CN (1) CN103928830A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684679A (zh) * 2017-02-28 2017-05-17 中国科学院国家授时中心 一种用于光频传递的全光纤化窄线宽光纤激光装置及方法
CN107332103A (zh) * 2017-06-22 2017-11-07 四川大学 一种双波长交替调q激光器及其激光输出方法
CN111180984A (zh) * 2020-02-17 2020-05-19 北京工业大学 一种基于保偏光纤交叉熔接技术的全光纤超快激光器
CN112952539A (zh) * 2021-04-16 2021-06-11 福州市纳飞光电科技有限公司 一种多次增益光纤放大器
CN113009631A (zh) * 2021-03-02 2021-06-22 杭州奥创光子技术有限公司 一种多功能光隔离器、放大器、激光器及调试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587497B1 (en) * 2000-01-28 2003-07-01 The United States Of America As Represented By The Secretary Of The Air Force Birefringence compensation using a single pump
CN101335424A (zh) * 2008-07-11 2008-12-31 华中科技大学 偏振耦合的并联式调q固体激光器
CN101826696A (zh) * 2009-03-02 2010-09-08 北京大学 一种高能量低重复频率的光纤激光器
CN103236629A (zh) * 2013-04-24 2013-08-07 广东汉唐量子光电科技有限公司 一种偏振稳定的光纤激光级联放大器
CN203883306U (zh) * 2014-05-06 2014-10-15 上海朗研光电科技有限公司 一种全正色散、全保偏光纤激光器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587497B1 (en) * 2000-01-28 2003-07-01 The United States Of America As Represented By The Secretary Of The Air Force Birefringence compensation using a single pump
CN101335424A (zh) * 2008-07-11 2008-12-31 华中科技大学 偏振耦合的并联式调q固体激光器
CN101826696A (zh) * 2009-03-02 2010-09-08 北京大学 一种高能量低重复频率的光纤激光器
CN103236629A (zh) * 2013-04-24 2013-08-07 广东汉唐量子光电科技有限公司 一种偏振稳定的光纤激光级联放大器
CN203883306U (zh) * 2014-05-06 2014-10-15 上海朗研光电科技有限公司 一种全正色散、全保偏光纤激光器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684679A (zh) * 2017-02-28 2017-05-17 中国科学院国家授时中心 一种用于光频传递的全光纤化窄线宽光纤激光装置及方法
CN106684679B (zh) * 2017-02-28 2020-01-21 中国科学院国家授时中心 一种用于光频传递的全光纤化窄线宽光纤激光装置及方法
CN107332103A (zh) * 2017-06-22 2017-11-07 四川大学 一种双波长交替调q激光器及其激光输出方法
CN107332103B (zh) * 2017-06-22 2019-04-05 四川大学 一种双波长交替调q激光器及其激光输出方法
CN111180984A (zh) * 2020-02-17 2020-05-19 北京工业大学 一种基于保偏光纤交叉熔接技术的全光纤超快激光器
CN113009631A (zh) * 2021-03-02 2021-06-22 杭州奥创光子技术有限公司 一种多功能光隔离器、放大器、激光器及调试方法
CN112952539A (zh) * 2021-04-16 2021-06-11 福州市纳飞光电科技有限公司 一种多次增益光纤放大器

Similar Documents

Publication Publication Date Title
CN107230927B (zh) 基于SMF-SIMF-GIMF-SMF光纤结构的2μm锁模光纤激光器
CN103928830A (zh) 一种全正色散、全保偏光纤激光器
CN103972779B (zh) 偏振合束非线性旋转锁模方法
CN105261921A (zh) 一种短谐振腔全光纤窄线宽单频激光器
CN104466636A (zh) 一种单频调q脉冲光纤激光器
JP6607534B2 (ja) 受動モードロックファイバレーザ装置
WO2019102174A2 (en) Apparatus for providing optical radiation
CN108011288A (zh) 基于单壁碳纳米管的色散管理型飞秒锁模脉冲光纤激光器
KR101394720B1 (ko) 비선형 편광 회전과 포화흡수체의 결합 모드잠금에 의해 생성되는 고출력 광섬유 펨토초 레이저 공진기
CN102368585A (zh) 高重复频率被动锁模超短脉冲全光纤激光器
CN109149336B (zh) 基于sbs和法布里珀罗干涉仪的被动调q锁模激光器
CN203883307U (zh) 一种偏振合束非线性旋转锁模激光器
CN103794981A (zh) 高能量混合式掺铥脉冲激光单频放大器
CN203039222U (zh) 一种偏振态稳定控制的自启动锁模光纤激光器
CN203883306U (zh) 一种全正色散、全保偏光纤激光器
CN103151683A (zh) 一种偏振态稳定控制的自启动锁模光纤激光器
CN103904549A (zh) 一种偏振自动稳定控制的全光纤级联激光放大方法及装置
CN109560453B (zh) 基于sbs和法布里珀罗干涉仪的被动调q锁模环形激光器
CN203826765U (zh) 一种偏振自动稳定控制的全光纤级联激光放大装置
Cheng et al. Dissipative soliton resonance in an all-normal-dispersion graphene oxide mode-locked Yb-doped fiber laser
CN103825177B (zh) 一种基于多个非线性放大环形镜的脉冲全保偏光纤激光器
KR20140049994A (ko) 비선형 편광 회전과 포화흡수체의 결합 모드잠금에 의해 생성되는 고출력 광섬유 펨토초 레이저 공진기
CN215221259U (zh) 一种亚百飞秒光纤激光脉冲产生装置
Zhao et al. 1.04 km ultra-long cladding-pumped thulium-doped fiber laser with large energy noise-like-toped dissipative soliton resonances
CN217934562U (zh) 一种光纤激光器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140716