CN103887379A - Method for reducing GaN epitaxial defects through wet etching - Google Patents
Method for reducing GaN epitaxial defects through wet etching Download PDFInfo
- Publication number
- CN103887379A CN103887379A CN201410123683.XA CN201410123683A CN103887379A CN 103887379 A CN103887379 A CN 103887379A CN 201410123683 A CN201410123683 A CN 201410123683A CN 103887379 A CN103887379 A CN 103887379A
- Authority
- CN
- China
- Prior art keywords
- gallium nitride
- sapphire wafer
- temperature
- wet etching
- gan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007547 defect Effects 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000001039 wet etching Methods 0.000 title claims abstract description 21
- 229910002601 GaN Inorganic materials 0.000 claims abstract description 99
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 53
- 239000010980 sapphire Substances 0.000 claims abstract description 53
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000000758 substrate Substances 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000002253 acid Substances 0.000 claims abstract description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- 239000010703 silicon Substances 0.000 claims abstract description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 22
- 239000000243 solution Substances 0.000 claims description 20
- 239000012670 alkaline solution Substances 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 14
- 238000000407 epitaxy Methods 0.000 claims description 13
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 229910052738 indium Inorganic materials 0.000 claims description 9
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 9
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 claims description 9
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 7
- 229910021529 ammonia Inorganic materials 0.000 claims description 7
- 229910052733 gallium Inorganic materials 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 claims description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 3
- 229910000077 silane Inorganic materials 0.000 claims description 3
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims 4
- 229910052749 magnesium Inorganic materials 0.000 claims 4
- 239000011777 magnesium Substances 0.000 claims 4
- 238000002844 melting Methods 0.000 claims 4
- 230000008018 melting Effects 0.000 claims 4
- 239000000203 mixture Substances 0.000 claims 4
- 238000004140 cleaning Methods 0.000 claims 1
- 239000003929 acidic solution Substances 0.000 description 9
- 229910004205 SiNX Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 208000012868 Overgrowth Diseases 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000009643 growth defect Effects 0.000 description 1
- OTRPZROOJRIMKW-UHFFFAOYSA-N triethylindigane Chemical compound CC[In](CC)CC OTRPZROOJRIMKW-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
Landscapes
- Led Devices (AREA)
- Weting (AREA)
Abstract
Description
技术领域technical field
本发明涉及LED外延生长技术领域,尤其涉及一种用湿法腐蚀减少GaN外延缺陷的方法。The invention relates to the technical field of LED epitaxial growth, in particular to a method for reducing GaN epitaxial defects by wet etching.
背景技术Background technique
GaN通常生长在蓝宝石基板上,具有相对高的缺陷密度1x108-9/cm2,原因是GaN和蓝宝石之间的较大的晶格失配。在LED器件特性方面,材料缺陷是一个重要的限制因素;当发光波长从蓝光延伸至紫外或绿光时,该问题变得更加严重。从已报道技术来看,解决该问题的方法是外延横向过生长(ELOG,Epitaxial Lateral Over Growth)、缺陷阻挡层(DBL,Defect Blocking Laxer)和蓝宝石图形化衬底(PSS,Pattern Sapphire Substrate)。GaN is typically grown on sapphire substrates with a relatively high defect density of 1x10 8-9 /cm 2 due to the large lattice mismatch between GaN and sapphire. Material defects are an important limiting factor in LED device characteristics; this problem becomes more serious when the emission wavelength is extended from blue to ultraviolet or green. From the reported technology, the method to solve this problem is epitaxial lateral overgrowth (ELOG, Epitaxial Lateral Over Growth), defect blocking layer (DBL, Defect Blocking La x er) and sapphire patterned substrate (PSS, Pattern Sapphire Substrate ).
ELOG方法使用一种氧化物图形化的GaN模板,这可使缺陷密度降低1-2个数量级。然而,缺陷减少只发生在氧化物覆盖的区域,通常限制在3-5μm的区域,很难延伸至连续的大块区域。这就限制了该技术在实际器件中的应用。The ELOG approach uses an oxide-patterned GaN template, which reduces defect density by 1-2 orders of magnitude. However, defect reduction occurs only in oxide-covered regions, typically limited to 3–5 μm regions, and is difficult to extend to continuous bulk regions. This limits the application of this technique in practical devices.
DBL方法是在GaN外延生长期间插入短时间的SiNx生长,此SiNx很容易在缺陷区域生长,起到屏蔽缺陷的作用;后续的GaN生长缺陷降低约一个数量级。然而,在缺陷处形成的SiNx本质上具有统计规律,所以很难控制。The DBL method is to insert short-term SiNx growth during the GaN epitaxial growth. This SiNx is easy to grow in the defect area and plays the role of shielding defects; the subsequent GaN growth defects are reduced by about an order of magnitude. However, the SiNx formed at the defect is statistical in nature, so it is difficult to control.
PSS方法采用三维图形阵列的蓝宝石衬底,比如圆顶形状。三维圆顶型几何图形起到两个作用或目的。第一,3D圆顶促使GaN横向生长,这里的横向生长类似于之前提到的ELOG方法,并导致缺陷减少。第二,3D圆顶几何图形可大大地帮助光逃逸,从而增加总的光输出功率。目前,该方法已成功地应用于生产,但是它增加了大量的衬底费用。The PSS method employs a sapphire substrate with an array of three-dimensional patterns, such as dome shapes. The three-dimensional dome-shaped geometry serves two functions or purposes. First, the 3D dome promotes GaN lateral growth, which here is similar to the previously mentioned ELOG method and leads to defect reduction. Second, the 3D dome geometry can greatly assist light escape, thereby increasing the total light output power. At present, this method has been successfully applied to production, but it adds a lot of substrate costs.
因此,如何有效的减少蓝宝石上GaN外延缺陷一直是业界关注的焦点,从而提高LED的发光效率。Therefore, how to effectively reduce GaN epitaxial defects on sapphire has always been the focus of attention in the industry, so as to improve the luminous efficiency of LEDs.
我司曾申请1项申请号为:201310449306.0的专利,其中采用了碱性溶液湿法腐蚀的方法解决上述问题。GaN外延中常常存在三种位错:刃型位错、螺型位错和混合位错。碱性溶液腐蚀可解决刃型位错和混合位错,但不能减轻螺型位错。Our company has applied for a patent with the application number: 201310449306.0, in which the method of wet etching with alkaline solution is used to solve the above problems. There are often three types of dislocations in GaN epitaxy: edge dislocations, screw dislocations and mixed dislocations. Alkaline solution corrosion can resolve edge dislocations and mixed dislocations, but cannot alleviate screw dislocations.
发明内容Contents of the invention
为了解决背景技术中所存在的技术问题,本发明提出了一种用湿法腐蚀减少GaN外延缺陷的方法,使用酸性溶液,可解决螺型位错和混合位错。In order to solve the technical problems in the background technology, the present invention proposes a method for reducing GaN epitaxial defects by wet etching, using an acidic solution to solve screw dislocations and mixed dislocations.
本发明的技术解决方案是:一种用湿法腐蚀减少GaN外延缺陷的方法,其特殊之处在于:所述方法包括以下步骤:The technical solution of the present invention is: a method for reducing GaN epitaxial defects by wet etching, which is special in that the method includes the following steps:
1)在蓝宝石晶片上生长非掺杂氮化镓;1) Growth of non-doped gallium nitride on sapphire wafer;
2)蓝宝石晶片放入酸性溶液,之后取出用离子水清洗甩干;2) Put the sapphire wafer into the acidic solution, then take it out and wash it with ionized water and dry it;
3)将步骤2)清洗甩干后的蓝宝石晶片再进行生长;3) The sapphire wafer after step 2) is washed and dried before growing;
4)将GaN基键合在硅基板上,利用高温晶格失配应力剥离蓝宝石基片。4) Bond the GaN base on the silicon substrate, and use high temperature lattice mismatch stress to peel off the sapphire substrate.
上述步骤2)之前还包括将步骤1)生长了非掺杂氮化镓的蓝宝石晶片放入熔融的碱性溶液,之后取出用离子水清洗甩干。The above step 2) also includes putting the sapphire wafer on which non-doped gallium nitride has been grown in step 1) into a molten alkaline solution, and then taking it out, washing it with ionized water and drying it.
上述步骤2)之后还包括将步骤2)清洗后的蓝宝石晶片放入熔融的碱性溶液,之后取出用离子水清洗甩干。After the above step 2), it also includes putting the sapphire wafer cleaned in step 2) into a molten alkaline solution, and then taking it out, washing it with ion water and drying it.
上述步骤1)的具体步骤是:The specific steps of the above step 1) are:
1.1)将蓝宝石晶片放入MOCVD中;1.1) Put the sapphire wafer into MOCVD;
1.2)调节MOCVD中温度至500-600℃,压力600乇,使GaN在蓝宝石晶片上生长30nm;1.2) Adjust the temperature in MOCVD to 500-600°C and the pressure to 600 Torr, so that GaN can grow 30nm on the sapphire wafer;
1.3)将MOCVD中温度升高至1000-1100℃、压力400乇,生长非掺杂氮化镓1.2um。1.3) Raise the temperature in MOCVD to 1000-1100°C and pressure 400 Torr to grow non-doped gallium nitride 1.2um.
上述蓝宝石晶片放入熔融的碱性溶液的时间是5-15分钟,碱性溶液的温度是300-400℃,碱性溶液是KOH或NaOH;The time for the above-mentioned sapphire wafer to be put into the molten alkaline solution is 5-15 minutes, the temperature of the alkaline solution is 300-400°C, and the alkaline solution is KOH or NaOH;
上述蓝宝石晶片放入熔融的KOH溶液的时间是10分钟,KOH溶液的温度是350℃。The above-mentioned sapphire wafer was put into the molten KOH solution for 10 minutes, and the temperature of the KOH solution was 350°C.
上述步骤2)中蓝宝石晶片放入酸性溶液的时间是10—60分钟,酸性溶液的温度是100—300℃。The time for putting the sapphire wafer into the acid solution in the above step 2) is 10-60 minutes, and the temperature of the acid solution is 100-300°C.
上述步骤2)中酸性溶液是H3PO4。The acidic solution in the above step 2) is H 3 PO 4 .
上述步骤3)具体步骤是:将蓝宝石晶片重新放入MOCVD腔室中生长,依次生长非掺杂氮化镓、掺硅氮化镓、多量子阱和掺镁氮化镓;所述依次生长非掺杂氮化镓、掺硅氮化镓、多量子阱和掺镁氮化镓的具体参数是:气压400乇、温度1050℃、通入气体为三甲基镓和氨气,生成1.5-2.5um非掺杂氮化镓;气压300乇、温度1050℃、通入气体三甲基镓、氨气和N型掺杂源硅烷,生成2-3um掺硅氮化镓;气压200乇、温度950℃、通入气体为三甲基镓、氨气和P型掺杂源二茂镁,生成0.3um掺镁氮化镓;多量子阱的参数:10对铟镓氮(InGaN3nm)/氮化镓(GaN12nm),每对的厚度为15nm;铟镓氮的生长条件为:气压300乇、温度760℃、通入气体三甲基铟、三乙基镓、氨气,生成3nm铟镓氮;氮化镓的生长条件为:气压300乇、温度865℃、通入气体三乙基镓、氨气,生成12nm氮化镓。The specific steps of the above step 3) are: put the sapphire wafer back into the MOCVD chamber for growth, and sequentially grow non-doped gallium nitride, silicon-doped gallium nitride, multiple quantum wells and magnesium-doped gallium nitride; the sequential growth of non-doped gallium nitride The specific parameters of doped gallium nitride, silicon-doped gallium nitride, multiple quantum wells and magnesium-doped gallium nitride are: pressure 400 torr, temperature 1050 ℃, the gas fed is trimethylgallium and ammonia, and the generated 1.5-2.5 um non-doped gallium nitride; pressure 300 torr, temperature 1050 ℃, gas trimethylgallium, ammonia gas and N-type doping source silane, to generate 2-3um silicon-doped gallium nitride; pressure 200 torr, temperature 950 ℃, the feeding gas is trimethylgallium, ammonia gas and P-type doping source magnesocene to generate 0.3um magnesium-doped gallium nitride; the parameters of multiple quantum wells: 10 pairs of indium gallium nitride (InGaN3nm)/gallium nitride (GaN12nm), the thickness of each pair is 15nm; the growth conditions of indium gallium nitrogen are: pressure 300 Torr, temperature 760 ℃, gas trimethylindium, triethylgallium, ammonia, to generate 3nm indium gallium nitrogen; nitrogen The growth conditions of gallium nitride are: pressure 300 Torr, temperature 865°C, gas triethylgallium, ammonia gas, to generate 12nm gallium nitride.
上述步骤2)中蓝宝石晶片放入H3PO4溶液的时间是15分钟,H3PO4溶液的温度是200℃。The time for the sapphire wafer to be placed in the H 3 PO 4 solution in the above step 2) is 15 minutes, and the temperature of the H 3 PO 4 solution is 200°C.
本发明提出一种用湿法腐蚀减少GaN外延缺陷的方法,通过GaN/蓝宝石界面刻蚀降低GaN缺陷密度的方法---U-GaN生长结束后,进行湿法腐蚀(磷酸+硫酸溶液或KOH湿法腐蚀);透过GaN缺陷蚀刻至GaN/蓝宝石界面,并沿着界面蚀刻,紧接着晶圆再次进入外延设备重新进行GaN外延生长---U-GaN,从而填满U-GaN表面;The present invention proposes a method for reducing GaN epitaxial defects by wet etching, and a method for reducing GaN defect density through GaN/sapphire interface etching --- after U-GaN growth is completed, wet etching (phosphoric acid + sulfuric acid solution or KOH Wet etching); etch through GaN defects to the GaN/sapphire interface, and etch along the interface, and then the wafer enters the epitaxial equipment again for GaN epitaxial growth---U-GaN, so as to fill the U-GaN surface;
被刻蚀的通道,重新生长的GaN會直接在刻蚀過的GaN上生长GaN,而不會在蓝宝石上生长。这样GaN部分应力被释放,重新生长的GaN會有較低的缺陷密度,此製程會在蓝宝石界面的GaN处留下倒金字塔結構,该倒金字塔結構可以增加光提取效率。用此方法生长的GaN外延优点:1)缺陷降低1-2个数量级(从109/cm2→108-107/cm2);2)GaN和蓝宝石基板之間的晶格失配应力大大减少;3)增加外延电致光功率(EL-LOP20mA);4)利用倒装技术可剥离蓝宝石基片,进行二次外延生长。In the etched channel, the re-grown GaN will grow GaN directly on the etched GaN, not on the sapphire. In this way, part of the stress of GaN is released, and the regrown GaN will have a lower defect density. This process will leave an inverted pyramid structure at the GaN at the sapphire interface, which can increase the light extraction efficiency. Advantages of GaN epitaxy grown by this method: 1) Defects are reduced by 1-2 orders of magnitude (from 10 9 /cm 2 → 10 8 -10 7 /cm 2 ); 2) Lattice mismatch stress between GaN and sapphire substrate Greatly reduced; 3) Increase the epitaxial electro-optical power (EL-LOP20mA); 4) Use flip-chip technology to peel off the sapphire substrate for secondary epitaxial growth.
使用酸性溶液,可解决螺型位错和混合位错。结合碱性和酸性溶液同时腐蚀后,可同时降低三种类型的位错密度,提高GaN的晶体质量,最终提升LED的亮度。同时本发明与使用碱性溶液相比,由于物料价格和使用温度的降低,则使成本明显降低,可以较快的进行批量生产;其次实验操作会更简单及腐蚀效果会更好控制。Using acidic solutions, screw dislocations and mixed dislocations can be resolved. Combining alkaline and acidic solutions for simultaneous etching can reduce the three types of dislocation densities at the same time, improve the crystal quality of GaN, and finally increase the brightness of LEDs. At the same time, compared with the use of alkaline solution, the cost of the present invention is significantly reduced due to the reduction of the material price and the use temperature, and mass production can be carried out quickly; secondly, the experimental operation will be simpler and the corrosion effect will be better controlled.
附图说明Description of drawings
图1是本发明的原理示意图;Fig. 1 is a schematic diagram of the principle of the present invention;
图2—图5是本发明的方法示意图;Fig. 2-Fig. 5 is the method schematic diagram of the present invention;
具体实施方式Detailed ways
参见图1—图5,本发明提供一种用湿法腐蚀减少GaN外延缺陷的方法,包括以下步骤:Referring to Fig. 1-Fig. 5, the present invention provides a kind of method that reduces GaN epitaxy defect with wet etching, comprises the following steps:
1)在蓝宝石晶片上生长非掺杂氮化镓;具体步骤是:1) Growing non-doped gallium nitride on a sapphire wafer; the specific steps are:
1.1)将蓝宝石晶片放入MOCVD中;1.1) Put the sapphire wafer into MOCVD;
1.2)调节MOCVD中温度至500-600℃,压力600乇,使GaN在蓝宝石晶片上生长30nm;1.2) Adjust the temperature in MOCVD to 500-600°C and the pressure to 600 Torr, so that GaN can grow 30nm on the sapphire wafer;
1.3)将MOCVD中温度升高至1000-1100℃、压力400乇,生长非掺杂氮化镓1.2um。1.3) Raise the temperature in MOCVD to 1000-1100°C and pressure 400 Torr to grow non-doped gallium nitride 1.2um.
2)_将蓝宝石晶片放入酸性溶液,之后取出用离子水清洗甩干;蓝宝石晶片放入酸性溶液的时间是10—60分钟,酸性溶液的温度是100—300℃。酸性溶液是H3PO4。蓝宝石晶片放入H3PO4溶液的时间是15分钟,H3PO4溶液的温度是200℃。2) Put the sapphire wafer into the acidic solution, then take it out and wash it with ionized water and dry it; the time for the sapphire wafer to be placed in the acidic solution is 10-60 minutes, and the temperature of the acidic solution is 100-300°C. The acidic solution is H 3 PO 4 . The time for the sapphire wafer to be put into the H 3 PO 4 solution is 15 minutes, and the temperature of the H 3 PO 4 solution is 200° C.
3)将步骤2)清洗甩干后的蓝宝石晶片再进行生长;具体步骤是:将蓝宝石晶片重新放入MOCVD腔室中生长,依次生长非掺杂氮化镓、掺硅氮化镓、多量子阱和掺镁氮化镓;所述依次生长非掺杂氮化镓、掺硅氮化镓、多量子阱和掺镁氮化镓的具体参数是:气压400乇、温度1050℃、通入气体为三甲基镓和氨气,生成1.5-2.5um非掺杂氮化镓;气压300乇、温度1050℃、通入气体三甲基镓、氨气和N型掺杂源硅烷,生成2-3um掺硅氮化镓;气压200乇、温度950℃、通入气体为三甲基镓、氨气和P型掺杂源二茂镁,生成0.3um掺镁氮化镓;多量子阱的参数:10对铟镓氮(InGaN3nm)/氮化镓(GaN12nm),每对的厚度为15nm;铟镓氮的生长条件为:气压300乇、温度760℃、通入气体三甲基铟、三乙基镓、氨气,生成3nm铟镓氮;氮化镓的生长条件为:气压300乇、温度865℃、通入气体三乙基镓、氨气,生成12nm氮化镓。3) The sapphire wafer after step 2) is cleaned and dried before growing; the specific steps are: put the sapphire wafer back into the MOCVD chamber for growth, and grow non-doped GaN, silicon-doped GaN, multi-quantum well and magnesium-doped gallium nitride; the specific parameters for the sequential growth of non-doped gallium nitride, silicon-doped gallium nitride, multiple quantum wells and magnesium-doped gallium nitride are: pressure 400 torr, temperature 1050 ℃, gas flow For trimethylgallium and ammonia gas, 1.5-2.5um non-doped gallium nitride is generated; the pressure is 300 Torr, the temperature is 1050 ℃, and the gas trimethylgallium, ammonia gas and N-type dopant source silane are introduced to generate 2- 3um silicon-doped gallium nitride; gas pressure 200 torr, temperature 950 ℃, the gas is trimethylgallium, ammonia gas and P-type doping source dimagnesocene, to generate 0.3um magnesium-doped gallium nitride; parameters of multiple quantum wells : 10 pairs of indium gallium nitride (InGaN3nm)/gallium nitride (GaN12nm), the thickness of each pair is 15nm; the growth conditions of indium gallium nitrogen are: pressure 300 Torr, temperature 760 ℃, gas trimethyl indium, triethyl indium Based on gallium and ammonia gas, 3nm indium gallium nitride is produced; the growth conditions of gallium nitride are: pressure 300 Torr, temperature 865 ° C, gas triethylgallium, ammonia gas, to produce 12nm gallium nitride.
4)将GaN基键合在硅基板上,利用高温晶格失配应力剥离蓝宝石基片。4) Bond the GaN base on the silicon substrate, and use high temperature lattice mismatch stress to peel off the sapphire substrate.
步骤2)之前还包括将步骤1)生长了非掺杂氮化镓的蓝宝石晶片放入熔融的碱性溶液,之后取出用离子水清洗甩干。该步骤也可以放在步骤2)之后进行;Step 2) also includes putting the sapphire wafer on which non-doped gallium nitride has been grown in step 1) into a molten alkaline solution, and then taking it out, washing it with ionized water, and drying it. This step can also be performed after step 2);
蓝宝石晶片放入熔融的碱性溶液的时间是5-15分钟,碱性溶液的温度是300-400℃,碱性溶液是KOH或NaOH;最好是蓝宝石晶片放入熔融的KOH溶液的时间是10分钟,KOH溶液的温度是350℃。The time to put the sapphire wafer into the molten alkaline solution is 5-15 minutes, the temperature of the alkaline solution is 300-400°C, and the alkaline solution is KOH or NaOH; the best time to put the sapphire wafer into the molten KOH solution is For 10 minutes, the temperature of the KOH solution was 350°C.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410123683.XA CN103887379B (en) | 2014-03-28 | 2014-03-28 | Method for reducing GaN epitaxial defects through wet etching |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410123683.XA CN103887379B (en) | 2014-03-28 | 2014-03-28 | Method for reducing GaN epitaxial defects through wet etching |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103887379A true CN103887379A (en) | 2014-06-25 |
CN103887379B CN103887379B (en) | 2017-04-19 |
Family
ID=50956194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410123683.XA Expired - Fee Related CN103887379B (en) | 2014-03-28 | 2014-03-28 | Method for reducing GaN epitaxial defects through wet etching |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103887379B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104060323A (en) * | 2014-07-14 | 2014-09-24 | 山东大学 | Method for obtaining self-supported GaN monocrystal by preparing substrate with N-sided conical structure |
CN104465899A (en) * | 2014-11-28 | 2015-03-25 | 西安神光皓瑞光电科技有限公司 | Preparation method for LED perpendicular structure |
CN104701427A (en) * | 2015-02-13 | 2015-06-10 | 西安神光皓瑞光电科技有限公司 | Vertical LED chip preparation method |
CN104851945A (en) * | 2015-04-17 | 2015-08-19 | 西安神光皓瑞光电科技有限公司 | Vertical-structure LED chip manufacturing method |
CN111073649A (en) * | 2019-12-30 | 2020-04-28 | 中国科学院半导体研究所 | Etching solution for secondary epitaxy pretreatment, its preparation method and pretreatment method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102222738A (en) * | 2011-06-23 | 2011-10-19 | 西安神光安瑞光电科技有限公司 | Method for manufacturing GaN (gallium nitride) substrate material |
US20130320404A1 (en) * | 2012-05-31 | 2013-12-05 | Alexander Usenko | Gallium nitride to silicon direct wafer bonding |
-
2014
- 2014-03-28 CN CN201410123683.XA patent/CN103887379B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102222738A (en) * | 2011-06-23 | 2011-10-19 | 西安神光安瑞光电科技有限公司 | Method for manufacturing GaN (gallium nitride) substrate material |
US20130320404A1 (en) * | 2012-05-31 | 2013-12-05 | Alexander Usenko | Gallium nitride to silicon direct wafer bonding |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104060323A (en) * | 2014-07-14 | 2014-09-24 | 山东大学 | Method for obtaining self-supported GaN monocrystal by preparing substrate with N-sided conical structure |
CN104465899A (en) * | 2014-11-28 | 2015-03-25 | 西安神光皓瑞光电科技有限公司 | Preparation method for LED perpendicular structure |
CN104701427A (en) * | 2015-02-13 | 2015-06-10 | 西安神光皓瑞光电科技有限公司 | Vertical LED chip preparation method |
CN104851945A (en) * | 2015-04-17 | 2015-08-19 | 西安神光皓瑞光电科技有限公司 | Vertical-structure LED chip manufacturing method |
CN104851945B (en) * | 2015-04-17 | 2017-06-09 | 西安神光皓瑞光电科技有限公司 | A kind of light emitting diode (LED) chip with vertical structure preparation method |
CN111073649A (en) * | 2019-12-30 | 2020-04-28 | 中国科学院半导体研究所 | Etching solution for secondary epitaxy pretreatment, its preparation method and pretreatment method |
Also Published As
Publication number | Publication date |
---|---|
CN103887379B (en) | 2017-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sun et al. | GaN-on-Si blue/white LEDs: epitaxy, chip, and package | |
CN104993023B (en) | A kind of method that method using chemical attack removes growth substrates | |
CN103531685B (en) | Based on the processing method of PSS substrate epitaxial sheet | |
CN103887379B (en) | Method for reducing GaN epitaxial defects through wet etching | |
KR100890079B1 (en) | Structure and manufacturing method of epitaxial layers of gallium nitride-based compound semiconductor | |
CN102157632B (en) | Method for improving luminous efficiency of LED (light-emitting diode) by utilizing ZnO nano-cone array | |
JP2017504221A (en) | III-V nitride semiconductor epitaxial wafer, device including the epitaxial wafer, and method for manufacturing the same | |
CN106299041A (en) | The preparation method and application of the nonpolar LED being grown in r surface sapphire substrate | |
CN104409577A (en) | Epitaxial growth method for GaN-based LED epitaxial active area basic structure | |
Chang et al. | Spatial correlation between efficiency and crystal structure in GaN-based light-emitting diodes prepared on high-aspect ratio patterned sapphire substrate with sputtered AlN nucleation layer | |
Huang et al. | Improving InGaN-LED performance by optimizing the patterned sapphire substrate shape | |
CN103560079A (en) | Method for reducing GaN epitaxial defect through defect passivation | |
CN103872190B (en) | Method for reducing epitaxy defect of GaN (gallium nitride) through wet etching | |
CN104538509B (en) | A kind of growing method of light emitting diode three-dimensional structure layer | |
CN105070793B (en) | A kind of production method of LED epitaxial structure | |
CN103872200B (en) | Form the method for semiconductor layer, light emitting semiconductor device and manufacture method thereof | |
CN110491973A (en) | C surface GaN film and preparation method thereof based on SiC graph substrate | |
CN106887487B (en) | A kind of semiconductor light-emitting device and preparation method thereof | |
CN105762064B (en) | Method for real-time patterning of nitride-grown silicon substrates | |
CN115411161A (en) | LED epitaxial film for visible light communication and preparation method thereof | |
CN107731977A (en) | Epitaxial wafer of light emitting diode and preparation method thereof | |
CN108258094A (en) | Light emitting semiconductor device and preparation method thereof | |
JP2013254876A (en) | Group iii nitride semiconductor device and manufacturing method therefor | |
CN102394262B (en) | Graphical substrate preparation method for improving luminous efficiency of GaN-based LED | |
CN107910411B (en) | Light-emitting diode and method of making the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170419 Termination date: 20200328 |
|
CF01 | Termination of patent right due to non-payment of annual fee |