CN103884626A - 一种对絮凝体进行定性分类与定量分析的方法 - Google Patents
一种对絮凝体进行定性分类与定量分析的方法 Download PDFInfo
- Publication number
- CN103884626A CN103884626A CN201410060097.5A CN201410060097A CN103884626A CN 103884626 A CN103884626 A CN 103884626A CN 201410060097 A CN201410060097 A CN 201410060097A CN 103884626 A CN103884626 A CN 103884626A
- Authority
- CN
- China
- Prior art keywords
- floc sedimentation
- floc
- floccules
- sedimentation
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
本发明公开了一种对絮凝体进行定性分类与定量分析的方法,将絮凝后絮团的类型按空间形态分为四种:单体颗粒;线状絮团;平面状絮团;体状絮团。这四种类型将絮团所有可能的空间形态囊括在内。本发明提出了絮凝后固液体系的表观粘度为不同形态絮团对粘度贡献的叠加, 其数学模型为:η=η0+η1(x)+η2(x,DL)+η3(x,DA)+η4(x,DV)。本发明解决了一直未能解决的不同类型絮团的定量分析问题,为评价及控制絮凝效果提供了新的路径。
Description
技术领域
本发明属于胶体化学及化学工程领域,具体涉及一种对絮凝体类别进行定性分析与定量测量的方法。
技术背景
在化工、矿业、污水处理等许多工业领域中,经常需要加速微细颗粒在固液体系中的沉降过程,为此可通过向固液体系中添加电解质或高分子物质而实现细小颗粒的聚集。添加电解质可降低颗粒表面电位,使颗粒间的电斥力减小而引力占优势,这种方法也称凝聚(cogulation);添加高分子物质,可在颗粒之间形成“架桥”作用而使之聚集,这种方法谓之絮凝(flocculation)。在实际操作中,上述两种方法可单独使用,也可联合使用,因此广义上,两种方法可统称为絮凝。这里采用絮凝的广义定义。
絮凝后聚集在一起的颗粒聚集体叫做絮团(flocs)。为对絮凝效果进行评价,必须分析絮团的性质。例如,絮团的粒度分析、沉降速度分析等。这些分析表征的是絮团的尺寸或密实程度,而不能有效反映絮团的空间形态。事实上,微细颗粒聚集后形成数目众多的絮团,每个絮团具有各自的形态特征,这些不同形态的絮团对沉降的影响从而对固液分离效果的影响是不一样的。因此有必要对絮凝产品(絮团)按空间形态进行分类并分析不同形态絮团的,本发明的目的即在于此。
发明内容
1、将微细颗粒絮凝后形成的絮团按空间形态分成四种类型:
(1)单个颗粒(primary particles):指絮凝后仍然以原始单体形态存在的颗粒;
(2)线状絮团(linear flocs):形成絮团的单元颗粒其质心处于一维空间(同一直线);
(3)平面状絮团(planar flocs):形成絮团的单元颗粒其质心处于二维空间(同一平面);
(4)体状絮团(volumetric flocs):形成絮团的单元颗粒其质心处于三维空间(立体)。
该四种类型囊括了絮团所有可能的空间形态。
2、建立固液体系的表观粘度与不同类型絮团的关系模型。
通过对颗粒聚集机制与碎裂机制的理论分析,建立了单体颗粒及各类絮团(包括线状絮团、平面状絮团、体状絮团)对固液悬浮体系表观粘度的贡献。
该模型形式为:
η=η0+η1(x)+η2(x,DL)+η3(x,DA)+η4(x,DV) (1)
其中,η为可直接测量的固液体系表观粘度;η0为液体介质的粘度,在一定温度下为常数;η1(x)为体系中单个颗粒对体系粘度的贡献,其为固体体积分数x的函数;η2(x,DL)为体系中线状絮团对体系粘度的贡献,其为固体体积分数x及线状絮团分维数DL的函数;η3(x,DA)为体系中平面状絮团对体系粘度的贡献,其为固体体积分数x及平面状絮团分维数DA的函数;η4(x,DV)为体系中体状絮团对体系粘度的贡献,其与固体体积分数x及体状絮团分维数DV有关。
3、不同形态絮团相对组成的定量分析
通过直接测量不同固体浓度下的表观粘度,以数学回归的方法可得到模型(1)中各类絮团的分维数及模型中等式右侧各项的具体数值,亦即获得不同形态絮团对体系粘度的贡献。考虑到某种形态的絮团越多,其对体系粘度的贡献则越大,因此可以某种絮团对体系粘度的相对贡献而表示该类型絮团在所有形态絮团(包括絮凝后体系中剩余的单体颗粒)中的相对含量。分析模型为:
单体颗粒含量: f1=η1(x,DL)/(η-η0) (2)
线状絮团含量: f2=η2(x,DL)/(η-η0) (3)
平面状絮团含量: f3=η3(x,DL)/(η-η0) (4)
体状絮团所占含量: f4=η4(x,DL)/(η-η0) (5)
并且 f1+f2+f3+f4=1 (6)
该发明的技术方案是:
一种对絮凝体进行定性分类与定量分析的方法,该方法通过对絮凝后形成的絮凝体(即絮团)按空间形态进行分类,进而建立固液体系表观粘度与不同形态絮团之间的定量模型,最终实现对不同形态絮团相对含量的定量分析。
絮团按空间形态分为单体颗粒、线状絮团、平面状絮团及体状絮团。这四种类型将絮凝处理后固液体系中固体物料所有可能的存在形态全部包括在内,这四种类型的絮团(可将单体颗粒看成只含有一个原始颗粒的特殊絮团)由于空间形态及所含原始颗粒数量的不同,对体系的宏观性质有不同的影响。
表观粘度是易于测量的固液体系宏观性质之一。本发明通过建立体系表观粘度与不同形态絮团之间的定量关系,为间接测量不同形态絮团的相对含量提供了一种全新的方法。其基本思想是:体系的表观粘度除液体介质的贡献外,分别由单体颗粒、线状絮团、平面状絮团及体状絮团所决定,各种形态絮团对体系粘度的贡献代表了这种形态絮团的相对含量。
本发明的有益效果是:解决了一直未能解决的不同类型絮团的定量分析问题,为评价及控制絮凝效果提供了新的路径。
具体实施方式
用转筒式流变仪测量了氧化钙粉末与水形成的固液悬浮体系经絮凝处理后的表观粘度,按本发明提出的模型对测量结果进行数据处理,得到絮凝后固液体系中不同类型絮团的相对含量如表1(测定条件:转筒流变仪型号:DV-III型;流变仪转筒转速:100rpm;氧化钙粉末平均粒度:4.5μm;氧化钙浓度V/V:<0.08;体系温度:20℃;絮凝剂:分子量800万聚丙烯酰胺)。
表1:测定结果
f1 | f2 | f3 | f4 |
0.35 | 0.31 | 0.22 | 0.12 |
Claims (3)
1.一种对絮凝体进行定性分类与定量分析的方法,其特征在于,该发明将絮凝后絮团的类型按空间形态分为四种:单体颗粒;线状絮团;平面状絮团;体状絮团。这四种类型将絮团所有可能的空间形态囊括在内。
2.权利要求1所述的对絮凝体进行定性分类与定量分析的方法,其特征在于,该发明提出了絮凝后固液体系的表观粘度为不同形态絮团对粘度贡献的叠加,其数学模型为:
η=η0+η1(x)+η2(x,DL)+η3(x,DA)+η4(x,DV)。
3.根据权利要求1或2所述的对絮凝体进行定性分类与定量分析的方法,其特征在于,该方法可按下列公式计算不同类型絮团的相对含量:
单体颗粒含量: f1=η1(x,DL)/(η-η0) (2)
线状絮团含量: f2=η2(x,DL)/(η-η0) (3)
平面状絮团含量: f3=η3(x,DL)/(η-η0) (4)
体状絮团所占含量: f4=η4(x,DL)/(η-η0) (5)
并且 f1+f2+f3+f4=1 (6) 。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410060097.5A CN103884626A (zh) | 2014-02-21 | 2014-02-21 | 一种对絮凝体进行定性分类与定量分析的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410060097.5A CN103884626A (zh) | 2014-02-21 | 2014-02-21 | 一种对絮凝体进行定性分类与定量分析的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103884626A true CN103884626A (zh) | 2014-06-25 |
Family
ID=50953645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410060097.5A Pending CN103884626A (zh) | 2014-02-21 | 2014-02-21 | 一种对絮凝体进行定性分类与定量分析的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103884626A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108319903A (zh) * | 2018-01-20 | 2018-07-24 | 北京新艺环保科技有限公司 | 一种絮凝效果评估的方法 |
CN111157403A (zh) * | 2019-12-23 | 2020-05-15 | 成都宏基建材股份有限公司 | 一种砂中絮凝剂的检测方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060273040A1 (en) * | 2001-01-29 | 2006-12-07 | Murat Quadir | High molecular weight polymers containing pendant salicylic acid groups for clarifying Bayer process liquors |
CN102494968A (zh) * | 2011-11-23 | 2012-06-13 | 广东生益科技股份有限公司 | 自动化测试凝胶化状态的测试方法 |
-
2014
- 2014-02-21 CN CN201410060097.5A patent/CN103884626A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060273040A1 (en) * | 2001-01-29 | 2006-12-07 | Murat Quadir | High molecular weight polymers containing pendant salicylic acid groups for clarifying Bayer process liquors |
CN102494968A (zh) * | 2011-11-23 | 2012-06-13 | 广东生益科技股份有限公司 | 自动化测试凝胶化状态的测试方法 |
Non-Patent Citations (5)
Title |
---|
JOHN GREGORY: "Optical monitoring of particle aggregates", 《JOURNAL OF ENVIRONMENTAL SCIENCES》, vol. 21, 31 December 2009 (2009-12-31), pages 2 - 7, XP 025875465, DOI: doi:10.1016/S1001-0742(09)60002-4 * |
WENDY AM MCMINN 等: "Effect of floc concentration on the rheology of a ferric floc", 《JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY》, vol. 79, no. 2, 31 December 2004 (2004-12-31), pages 126 - 131, XP 001210706 * |
于富玲 等: "聚合氯化铁一腐殖酸絮体的空间异质性研究", 《环境化学》, vol. 30, no. 12, 31 December 2011 (2011-12-31), pages 2060 - 2068 * |
邢军 等: "一个新的悬浮液粘度-浓度模型", 《第十届全国非均相分离技术学术交流会论文集》, 12 April 2011 (2011-04-12) * |
邢军 等: "絮凝处理后固相浓度对悬浮液粘度的影响研究", 《过滤与分离》, vol. 20, no. 4, 31 December 2010 (2010-12-31), pages 1 - 3 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108319903A (zh) * | 2018-01-20 | 2018-07-24 | 北京新艺环保科技有限公司 | 一种絮凝效果评估的方法 |
CN111157403A (zh) * | 2019-12-23 | 2020-05-15 | 成都宏基建材股份有限公司 | 一种砂中絮凝剂的检测方法 |
CN111157403B (zh) * | 2019-12-23 | 2022-05-13 | 成都宏基建材股份有限公司 | 一种砂中絮凝剂的检测方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
He et al. | Characteristic analysis on temporal evolution of floc size and structure in low-shear flow | |
Oncsik et al. | Aggregation of negatively charged colloidal particles in the presence of multivalent cations | |
Du et al. | Effect of surface structure of kaolinite on aggregation, settling rate, and bed density | |
Cruz et al. | Slurry rheology in mineral processing unit operations: A critical review | |
Cruz et al. | Interactions of clay minerals in copper–gold flotation: Part 1–Rheological properties of clay mineral suspensions in the presence of flotation reagents | |
Dash et al. | Studies on the effect of flocculant adsorption on the dewatering of iron ore tailings | |
Dwari et al. | Evaluation of flocculation characteristics of kaolinite dispersion system using guar gum: a green flocculant | |
Liu et al. | Silica nanoparticle separation from water by aggregation with AlCl3 | |
Chong | Direct flocculation process for wastewater treatment | |
Martínez-Quiroz et al. | Innovative uses of carbamoyl benzoic acids in coagulation-flocculation’s processes of wastewater | |
Jeldres et al. | Impact of seawater salts on the viscoelastic behavior of flocculated mineral suspensions | |
Mukherjee et al. | Clarification of rubber mill wastewater by a plant based biopolymer–Comparison with common inorganic coagulants | |
Ma | Effect of a low-molecular-weight polyacrylic acid on the coagulation of kaolinite particles | |
Melorie et al. | Experimental investigations of the effect of chemical additives on the rheological properties of highly concentrated iron ore slurries | |
Jeldres et al. | Improved dispersion of clay-rich tailings in seawater using sodium polyacrylate | |
Wickramasinghe et al. | Influence of cationic flocculant properties on the flocculation of yeast suspensions | |
CN103884626A (zh) | 一种对絮凝体进行定性分类与定量分析的方法 | |
Kumar et al. | Flocculation studies of coal tailings and the development of a settling index | |
Leiva et al. | Impact of hydrodynamic conditions on the structure of clay-based tailings aggregates flocculated in freshwater and seawater | |
Kim et al. | Factors affecting flocculation performance of synthetic polymer for turbidity control | |
Wiśniewska et al. | Impact of anionic and cationic polyacrylamide on the stability of aqueous alumina suspension—comparison of adsorption mechanism | |
AU2017297452A1 (en) | Method for improving overflow clarity in production of coal | |
Zhang et al. | The influence of polyethyleneimine dosages and molecular weight on sedimentation and rheology behavior of copper tailings | |
Zhou et al. | Influence of polymer charge on the shear yield stress of silica aggregated with adsorbed cationic polymers | |
O’Shea et al. | The effect of salt concentration and pH on the solid–liquid separation of silica suspensions with a temperature-responsive flocculant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140625 |