CN103871048A - 一种基于直线基元的几何哈希法实时定位与匹配方法 - Google Patents

一种基于直线基元的几何哈希法实时定位与匹配方法 Download PDF

Info

Publication number
CN103871048A
CN103871048A CN201310754571.XA CN201310754571A CN103871048A CN 103871048 A CN103871048 A CN 103871048A CN 201310754571 A CN201310754571 A CN 201310754571A CN 103871048 A CN103871048 A CN 103871048A
Authority
CN
China
Prior art keywords
primitive
straight line
coordinate
substrate
geometric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310754571.XA
Other languages
English (en)
Other versions
CN103871048B (zh
Inventor
白瑞林
周晴
李新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XINJE ELECTRONIC CO Ltd
Jiangnan University
Original Assignee
XINJE ELECTRONIC CO Ltd
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XINJE ELECTRONIC CO Ltd, Jiangnan University filed Critical XINJE ELECTRONIC CO Ltd
Priority to CN201310754571.XA priority Critical patent/CN103871048B/zh
Publication of CN103871048A publication Critical patent/CN103871048A/zh
Application granted granted Critical
Publication of CN103871048B publication Critical patent/CN103871048B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

本发明是一种基于直线基元的几何哈希法实时定位与匹配方法,通过几何基元之间的相对关系来实现匹配定位。离线模板制作过程中,采用迭代多边形逼近的方法将边缘轮廓图像快速分割成直线段的形式,通过拟合算法得到基元的几何参数,并合并过度分割的基元。坐标表示几何基元向量,通过构建基元基底,量化表示剩余基元向量,建立几何哈希表。在线模板匹配过程中,在实测图像中任意构建一组基底,量化剩余基元的坐标,然后通过坐标在几何哈希表中查询对应的基底,来实现匹配定位。本发明对于具有简单几何形状的工件,在部分遮挡情况下,能快速、准确的完成实时匹配定位。

Description

一种基于直线基元的几何哈希法实时定位与匹配方法
技术领域
本发明涉及机器视觉检测中的识别定位领域,具体是指基于边缘轮廓的多边形近似,提取明显的直线基元,并坐标化直线基元,通过几何哈希法实现对现场工件的一种快速识别定位方法。 
背景技术
近些年,机器视觉技术发展迅速,逐渐成为在线产品检测与监控的重要手段。机器视觉定位技术具有非接触,稳定性好,精度高,抗干扰能力强等突出优点,广泛应用在工业缺陷检测、产品分拣、机器人视觉引导技术等领域中。 
在机器视觉基元定位技术中,HAIMJ.W.OLSFSON提出了一种图像匹配算法,该算法将坐标的几何特征与哈希表结合使用,基于结构信息进行模板匹配。Albert T提出了一种将图像角点作为图像的稳定特征,将特征点用两个基点来坐标表示,然后采用几何哈希法来实现匹配定位。本发明在这些研究基础上,根据工业现场实时、准确的要求,提出了一种基于直线基元的几何哈希法实时定位与匹配方法。 
发明内容
本发明的目的在于基于模板匹配技术,设计一种直接针对图像中直线基元之间相互关系的准确、实时的识别定位方法。 
在工业上,很多工件具有规则的几何形状,本发明能够快速、准确的定位与识别工业流水线上的工件。 
本发明基于边缘轮廓的多边形描述得到几何基元,并将其向量表示,采用几何哈希法实时匹配定位的技术步骤如下: 
离线过程: 
(1)采用背光照射,使用相机采集图像,选择完整的工件作为模板图像并手动选取工件的区域,即ROI区域。 
(2)对获取的模板图像的ROI区域预处理,使用Otsu法阈值分割得到目标和背景。通过sobel算子提取目标的边缘轮廓,并以8邻域逐像素跟踪轮廓。 
(3)使用迭代算法对轮廓迭进行递归细分,以多边形直线表示,并去除可能构成圆弧的部分(直线长度小于一定的阈值,一股设为10个像素)。 
(4)最小二乘法拟合直线基元,得到几何参数,通过斜率判断相邻的直线基元是否可以合并。 
(5)将直线基元坐标表示,任取两个不共线的基元作为基底,并将剩余的基元用此基底坐标表示。 
(6)建立哈希表,并选择其余的基底组合重复第(5)步,直到所有的直线基元都做过基底为止。 
在线过程: 
(1)获取流水线上工件的图像,按离线过程的方法,预处理图像,提取边缘轮廓,并跟踪轮廓,若轮廓的长度小于一定的阈值(20个像素),则认为是噪声引起的细小轮廓,去除掉。 
(2)对满足条件的轮廓,同离线过程第(3)(4)步,得到直线基元。 
(3)坐标表示基元,任取两个不共线的直线基元作为基底,将剩余基元用此基底坐标表示,在几何哈希表中查询对应的基底,并对该基底投票。 
(4)得票最多的一组基底作为匹配点,计算模板与实测图中的工件之间的相对关系。 
本发明的有益效果:本发明通过离线训练学习模板,将模板中的直线基元用坐标表示,选择直线基元构建基底,量化剩余基元并建立几何哈希表;在线实测图像中,选择一组主直线基元构成基底,量化剩余基元,通过坐标在几何哈希表中查询对应的基底并投票,来实现实时定位与匹配。本发明通过几何基元之间的关系匹配定位模板实例,避免了以全部边缘轮廓特征点作为特征匹配的计算复杂性。 
附图说明
图1本发明整体示意图。 
图2本发明具体匹配过程示意图。 
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合具体实施例,并参照附图,对本发明作进一步详细说明。 
如图1所示,为本发明的算法整体流程图。 
算法分为离线模板制作过程和在线实测过程,具体步骤如下: 
离线模板制作过程 
第一步: 
(1.1)使用背光照射,采集完整工件图像作为模板图像,并选取工件所在的区域为ROI区域。 
第二步: 
(2.1)对ROI区域进行高斯滤波去噪,其模板如下: 
A = 1 16 1 2 1 2 4 2 1 2 1
(2.2)对高斯滤波去噪后的图像采用Otsu阈值分割,分割出目标与背景。 
(2.3)通过sobel边缘检测算子计算得到轮廓区域,将轮廓边界逐像素依次检测记录下来,存入边界像素序列数组P(p0p1,...pn)。 
第三步: 
将轮廓的所有边缘点表示为:pi=(ri,ci),i=1,2,...,n。算法将轮廓用一个多边形近似等价,在边缘轮廓上的所有点,定位一个相应的控制点集 
Figure BSA0000099825560000035
j=1,2...,m,m≤n。此子集可以非常好的描述该轮廓。一旦找到了这个合适的近似多边形,则该多边形的每条线段
Figure BSA0000099825560000036
就是轮廓中可以用直线很好地近似的一部分。 
(3.1)开始时,本发明在轮廓的起点和终点(P1(x1,y1),P2(x2,y2))建立一条直线,如果轮廓是闭合的,则加入轮廓索引的中点,分别建立两条线段。 
(3.2)计算所有轮廓点P3(x3,y3)到线段(y1-y2)x-(x1-x2)y+x1y2-x2y1=0的距离,计算公式为:
Figure BSA0000099825560000031
其中A=(y1-y2),B=(x2-x1),C=x1y2-x2y1。找到与线段距离最大的轮廓点,并且这个距离大于阈值T(手动设置为2个像素,),则它作为轮廓控制点。 
(3.3)在最大距离位置的轮廓点处,将当前线段分为两条线段。重复(3.2),直到所有线段满足最大距离约束条件。 
(3.4)在轮廓的多边形描述中,去除可能构成圆弧的部分,减少算法的复杂性和计算量,去除规则为,若该多边形的一条边长小于一个阈值(人工设定,一般为10个像素)则去除该边,不进行下一步的处理。 
第四步: 
对轮廓多变形描述中,剩余的主直线基元进行第四步合并过度分割的直线基元的处理。 
(4.1)采用最小二乘法拟合直线基元,设直线函数y=kx+b,其中k,b是直线参数。设
Figure BSA0000099825560000032
反应计算值与实际值的误差,计算误差最小时的参数k,b。 
k = n Σ i = 1 n x i y i - Σ i = 1 n x i Σ i = 1 n y i n Σ i = 1 n x i - ( Σ i = 1 n x i ) 2
b = 1 n Σ i = 1 n y i - a n Σ i = 1 n x i
(4.2)通过直线基元的几何参数(k,b),若相邻的两个直线基元,它们的斜率在一定的阈值(人工设置,斜率之差小于0.3)范围内,则认为它们属于同一条直线基元,将它们合并,并采用最小二乘直线拟合法计算它的几何参数。 
第五步: 
坐标化基元向量,选择基底,量化剩余基元。 
(5.1)将几何基元用坐标表示,根据拟合得到的斜率信息k,在直角坐标 系中,基元的起点p1(x1,y1)、终点p2(x2,y2),则基元向量的坐标为λ(1,k),其中λ=|x1-x2|。 
(5.2)取两个不共线的基元primitive1、primitive2作为基底,对于剩余基元primitive3,根据基底表示为坐标(α,β)。 
αx a + βx b = x c αy a + βy b = y c - - - ( 1 )
解得: α = x c y b - x b y c x a y b - x b y a β = x a y c - x c y b x a y b - x b y a
其中,(xa,ya)为primitive1的坐标表示,(xb,yb)为primitive2的坐标表示,(xc·yc)为primitive3的坐标表示。 
则基底primitive1、primitive2的组合表示为(basic_x,basic_y)。 
第六步: 
将基底组合(basic_x,basic_y),量化剩余基元。根据坐标与基底信息构建哈希表。 
(6.1)对剩余基元的向量坐标(α,β),即关键码,建立一个映射地址index,并在地址index中存入相应坐标的基底信息,计算方法映射地址,即将坐标(α,β)的第一坐标α作为映射地址的整数部分,第二坐标β作为映射地址的小数部分,即index=α.β。 
(6.2)在构建哈希表时,将哈希表内容(即坐标,映射地址,基底)按index的大小顺序排列。 
(6.3)选择另外的基底组合,重复上述步骤,建立哈希表,直到所有组合都计算完毕。 
在线模板匹配过程 
第一步: 
(1.1)使用背光照射,通过相机在线采集实测图像。 
(1.2)对在线实测图像进行数字滤波处理,采用高斯滤波器,滤波器模板如下: 
A = 1 16 1 2 1 2 4 2 1 2 1
(1.3)对处理后的图像进行阈值分割,分割出目标与背景。 
(1.4)通过边缘检测得到的轮廓区域,将轮廓边界逐像素依次检测记录下来,存入边界像素序列数组P(p0,p1,...pn)。并通过轮廓的长度(一般轮廓长度小于20个像素),去除噪声引起的细小轮廓。 
第二步: 
(2.1)对边缘轮廓进行多边形描述并去除可能构成圆弧的直线基元,如离线过程第三步,并合并过度分割的直线基元,如离线过程第四步。 
第三步: 
将基元坐标表示,任取两个不共线的基元作为基底,将剩余基元用此基底坐标表示,在儿何哈希表中查询对应的基底,并对该基底投票。 
(3.1)将几何基元用坐标表示,根据拟合得到的斜率信息k,在直角坐标系中,基元的起点p1(x1,y1)、终点p2(x2,y2),则基元向量的坐标为λ(1,k),其中λ=|x1-x2|。 
(3.2)任取两个不共线的基元作为基底,将剩余基元中的第一个基元在当前基底下,坐标表示为(μ,σ);方法如离线过程(5.2)。 
(3.3)搜索哈希表(α,β),考虑坐标的计算误差,计算|α-μ|<Δ1且|β-σ|<Δ2其中Δ1,Δ2为人工设定阈值。 
在实测图中,计算主直线基元下(即直线基元长大于一定的阈值,一般取20个像素)的各基元坐标(μ,σ),计算映射地址index=μ.σ,本发明在搜索哈希表(α,β)时,考虑坐标的计算误差,满足|α-μ|<Δ1且|β-σ|<Δ2(其中Δ1,Δ2为人工设定阈值)的映射地址即为搜到地址。 
(3.4)若不存在对应映射地址,则取下一个基元。 
(3.5)若存在对应的映射地址,查询到对应基底信息(basic_x,basic_y),本发明的投票方法为:对存储空间vote(basic_x,basic_y)中的数据累加1。 
第四步: 
得票最多的一组基底作为匹配点,在实则图像中标出其位置。 
(4.1)找出得票(vote)最多的一组基底,这组模板基底,即为实测图像中选择的基底。通过对应关系标出模板在实测图像中的位置。 

Claims (5)

1.本发明是一种基于直线基元的几何哈希法实时定位与匹配方法,实现对具有特定简单的几何形状的工件快速、准确的识别定位;并且对于工件部分被遮挡具有鲁棒性,本发明包含离线模板计算过程和在线实时检测过程,具体步骤如下: 
离线过程: 
(1)采用背光照射,使用相机采集图像,选择完整的工件作为模板图像并手动选取工件的区域,即ROI区域。 
(2)对获取的模板图像的ROI区域预处理,使用Otsu法阈值分割得到目标和背景。通过sobel算子提取目标的边缘轮廓,并以8邻域逐像素跟踪轮廓。 
(3)使用迭代算法对轮廓迭进行递归细分,以多边形直线表示,并去除可能构成圆弧的部分(直线长度小于一定的阈值,一般设为10个像素)。 
(4)最小二乘法拟合直线基元,得到几何参数,通过斜率判断相邻的直线基元是否可以合并。 
(5)将直线基元坐标表示,任取两个不共线的基元作为基底,并将剩余的基元用此基底坐标表示。 
(6)建立哈希表,并选择其余的基底组合重复第(5)步,直到所有的直线基元都做过基底为止。 
在线过程: 
(1)获取流水线上工件的图像,按离线过程的方法,预处理图像,提取边缘轮廓,并跟踪轮廓,若轮廓的长度小于一定的阈值(20个像素),则认为是噪声引起的细小轮廓,去除掉。 
(2)对满足条件的轮廓,同离线过程第(3)(4)步,得到直线基元。 
(3)坐标表示基元,任取两个不共线的直线基元作为基底,将剩余基元用此基底坐标表示,在几何哈希表中查询对应的基底,并对该基底投票。 
(4)得票最多的一组基底作为匹配点,计算模板与实测图中的工件之间的相对关系。 
2.根据权利要求1所述一种基于直线基元的几何哈希法实时定位与匹配方法,其特征是:所述离线过程第(5)步,包括: 
几何基元的向量表示: 
由轮廓的多边形近似表达可以得到各个直线基元的几何参数。对于直线基元的几何参数为斜率k,它在图像坐标系下的起点p1(x1,y1)和终点p2(x2,y2); 
则该直线基元的坐标表示为λ(1,k),其中λ=|x1-x2|。 
3.根据权利要求1所述一种基于直线基元的几何哈希法实时定位与匹配方法,其特征是:所述离线过程第(5)步,包括: 
构建基底,坐标表示其余基元: 
本发明使用不共线的两个基元primitive1(xa,ya)、primitive2(xb,yb)作为坐标基底,坐标化其余基元(xcyc),(α,β)为其基底下的坐标,计算公式如下: 
Figure FSA0000099825550000021
解得:
Figure FSA0000099825550000022
4.根据权利要求1所述一种基于直线基元的儿何哈希法实时定位与匹配方法,其特征是:所述离线过程第(6)步,包括: 
哈希表中映射地址的计算: 
对所有的向量坐标(α,β),即关键码,建立一个映射地址index,并在地址index中存入相应坐标的基底信息,本发明提出了一种映射地址的计算方法,即将坐标(α,β)的第一坐标α作为映射地址的整数部分,第二坐标β作为映射地址的小数部分,即index=α.β; 
为查询地址方便,本发明在构建哈希表时,将哈希表内容(即坐标,映射地址,基底)按index的大小顺序排列。 
5.根据权利要求1所述一种基于直线基元的几何哈希法实时定位与匹配方法,其特征是:所述在线过程第(3)步,包括: 
(1)哈希表中坐标的查询 
在实测图中,计算主直线基元下(即直线基元长大于一定的阈值,一般取20个像素)的各基元坐标(μ,σ),计算映射地址index=μ.σ,本发明在搜索哈希表(α,β)时,考虑坐标的计算误差,满足|α-μ|<Δ1且|β-σ|<Δ2(其中Δ1,Δ2为人工发定阈值)的映射地址即为搜到地址。 
(2)基底投票 
得到映射地址,对查询到对应基底信息(basic_x,basic_y),本发明的投票方法为:对存储空间vote(basic_x,basic_y)中的数据累加1。 
CN201310754571.XA 2013-12-31 2013-12-31 一种基于直线基元的几何哈希法实时定位与匹配方法 Active CN103871048B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310754571.XA CN103871048B (zh) 2013-12-31 2013-12-31 一种基于直线基元的几何哈希法实时定位与匹配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310754571.XA CN103871048B (zh) 2013-12-31 2013-12-31 一种基于直线基元的几何哈希法实时定位与匹配方法

Publications (2)

Publication Number Publication Date
CN103871048A true CN103871048A (zh) 2014-06-18
CN103871048B CN103871048B (zh) 2017-01-11

Family

ID=50909553

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310754571.XA Active CN103871048B (zh) 2013-12-31 2013-12-31 一种基于直线基元的几何哈希法实时定位与匹配方法

Country Status (1)

Country Link
CN (1) CN103871048B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107895166A (zh) * 2017-04-24 2018-04-10 长春工业大学 基于特征描述子的几何哈希法实现目标鲁棒识别的方法
CN110472651A (zh) * 2019-06-17 2019-11-19 青岛星科瑞升信息科技有限公司 一种基于边缘点局部特征值的目标匹配与定位方法
CN112950627A (zh) * 2021-04-01 2021-06-11 上海柏楚电子科技股份有限公司 用于激光切割的检测及控制方法和系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084438A1 (en) * 2000-05-01 2001-11-08 Digimarc Corporation Digital watermarking systems
CN103425988A (zh) * 2013-07-03 2013-12-04 江南大学 一种具有圆弧几何基元的实时定位与匹配方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084438A1 (en) * 2000-05-01 2001-11-08 Digimarc Corporation Digital watermarking systems
CN103425988A (zh) * 2013-07-03 2013-12-04 江南大学 一种具有圆弧几何基元的实时定位与匹配方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵庆军,胡青泥: "基于改进几何哈希法的矢量图形检索", 《工程图学学报》, 28 February 2006 (2006-02-28), pages 40 - 44 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107895166A (zh) * 2017-04-24 2018-04-10 长春工业大学 基于特征描述子的几何哈希法实现目标鲁棒识别的方法
CN107895166B (zh) * 2017-04-24 2021-05-25 长春工业大学 基于特征描述子的几何哈希法实现目标鲁棒识别的方法
CN110472651A (zh) * 2019-06-17 2019-11-19 青岛星科瑞升信息科技有限公司 一种基于边缘点局部特征值的目标匹配与定位方法
CN110472651B (zh) * 2019-06-17 2022-11-29 青岛星科瑞升信息科技有限公司 一种基于边缘点局部特征值的目标匹配与定位方法
CN112950627A (zh) * 2021-04-01 2021-06-11 上海柏楚电子科技股份有限公司 用于激光切割的检测及控制方法和系统

Also Published As

Publication number Publication date
CN103871048B (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
CN103425988B (zh) 一种具有圆弧几何基元的实时定位与匹配方法
CN107798326B (zh) 一种轮廓视觉检测方法
CN104574421B (zh) 一种大幅面小重合区域高精度多光谱图像配准方法及装置
CN107341802B (zh) 一种基于曲率与灰度复合的角点亚像素定位方法
CN103292701A (zh) 基于机器视觉的精密器件在线尺寸测量方法
CN103793712A (zh) 一种基于边缘几何特征的图像识别方法及系统
CN108830888B (zh) 基于改进的多尺度协方差矩阵特征描述子的粗匹配方法
CN108550166B (zh) 一种空间目标图像匹配方法
CN103727930A (zh) 一种基于边缘匹配的激光测距仪与相机相对位姿标定方法
CN104121902A (zh) 基于Xtion摄像机的室内机器人视觉里程计实现方法
CN107742289A (zh) 一种基于机器视觉回转体工件检测方法
CN107862319B (zh) 一种基于邻域投票的异源高分光学影像匹配误差剔除方法
CN109508709B (zh) 一种基于机器视觉的单指针仪表读数方法
CN112132886A (zh) 一种航空零件圆孔圆心快速定位及圆度检测方法
CN107895166B (zh) 基于特征描述子的几何哈希法实现目标鲁棒识别的方法
CN113728360A (zh) 用于3d场景中对象的姿态、尺寸和形状测量的方法和装置
CN104077769A (zh) 一种图像配准中的误匹配点对剔除算法
CN102289810A (zh) 高分辨率大数量级图像的快速矩形检测方法
Yu et al. An automatic form error evaluation method for characterizing micro-structured surfaces
CN103871048B (zh) 一种基于直线基元的几何哈希法实时定位与匹配方法
CN116740060B (zh) 基于点云几何特征提取的装配式预制构件尺寸检测方法
CN103679713A (zh) 一种针对部分匹配图像的二维图像配准方法
CN117474929A (zh) 基于机器视觉的托盘外形尺寸检测方法及系统
CN111539951A (zh) 一种陶瓷砂轮头轮廓尺寸视觉检测方法
TW200949472A (en) On-board two-dimension contour detection method and system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant