CN103870710B - Tensor grouping method for multi-subject fMRI data analysis - Google Patents
Tensor grouping method for multi-subject fMRI data analysis Download PDFInfo
- Publication number
- CN103870710B CN103870710B CN201410126455.8A CN201410126455A CN103870710B CN 103870710 B CN103870710 B CN 103870710B CN 201410126455 A CN201410126455 A CN 201410126455A CN 103870710 B CN103870710 B CN 103870710B
- Authority
- CN
- China
- Prior art keywords
- subgroup
- tested
- tensor
- fmri data
- subjects
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000007405 data analysis Methods 0.000 title claims abstract description 8
- 238000002599 functional magnetic resonance imaging Methods 0.000 title abstract description 39
- 230000004913 activation Effects 0.000 claims abstract description 33
- 210000004556 brain Anatomy 0.000 claims abstract description 27
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 11
- 239000011159 matrix material Substances 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 2
- 239000004615 ingredient Substances 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 5
- 239000013256 coordination polymer Substances 0.000 abstract 2
- 238000001994 activation Methods 0.000 description 28
- 238000004458 analytical method Methods 0.000 description 6
- 238000010276 construction Methods 0.000 description 6
- 238000012880 independent component analysis Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000003925 brain function Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000556 factor analysis Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
本发明公开了一种用于多被试fMRI数据分析的分组张量方法,属于fMRI数据分析领域。其特征在于,以最小化被试间差异性为原则,将原来构建一个大张量的所有被试fMRI数据以被试为单位分成多个子组,使得每个子组中各被试的时间过程成分间及脑空间激活区成分间具有最大的互相关。较之原始的大张量,由子组fMRI数据构建的子组张量与张量分解的CP模型更为匹配,故能分解得到性能提升的多被试共有的时间过程成分和脑空间激活区成分,如任务相关时间过程成分与先验任务刺激过程的相关系数可提高约0.1,任务相关脑空间激活区成分的噪声体素数可下降约23%,期望激活体素数则基本不变。本发明对解决其他类型高维数据与CP模型的失配问题具有参考作用。
The invention discloses a grouping tensor method for multi-subject fMRI data analysis, which belongs to the field of fMRI data analysis. It is characterized in that, based on the principle of minimizing the difference between subjects, all the fMRI data of all subjects originally constructed as a large tensor are divided into multiple subgroups in units of subjects, so that the time course components of each subject in each subgroup There was the greatest cross-correlation between the spatial and brain-spatial activation regions. Compared with the original large tensor, the subgroup tensor constructed from the subgroup fMRI data is more compatible with the CP model of tensor decomposition, so it can decompose the time course components and brain space activation area components shared by multiple subjects with improved performance , if the correlation coefficient between the task-related time course component and the prior task stimulus process can be increased by about 0.1, the number of noise voxels in the task-related brain space activation area component can be reduced by about 23%, while the number of expected activation voxels remains basically unchanged. The invention has a reference function for solving the mismatch problem between other types of high-dimensional data and CP models.
Description
技术领域technical field
本发明涉及一种多被试fMRI数据的分析方法,特别是涉及一种多被试fMRI数据分析的张量分解方法。The invention relates to an analysis method for multi-subject fMRI data, in particular to a tensor decomposition method for multi-subject fMRI data analysis.
背景技术Background technique
功能磁共振成像(functional magnetic resonance imaging,fMRI)被称为观察大脑的有效窗口,因为fMRI技术能够采集到被试在完成某种特定任务(task,如视觉、听觉、运动等)时的脑功能数据,且具有无损伤和高空间分辨率优势。通过采用盲源分离(blindsource separation,BSS)、独立成分分析(independent component analysis,ICA)等数据驱动的分析方法,无需任何先验信息,就能从fMRI数据中估计出特定任务下的多个(通常几十个)脑空间激活区(spatial activations)成分及其时间过程(time courses)成分,为脑功能分析和临床诊断提供详实依据。Functional magnetic resonance imaging (fMRI) is known as an effective window to observe the brain, because fMRI technology can capture the brain function of the subject when completing a specific task (task, such as vision, hearing, movement, etc.) data, and has the advantages of no damage and high spatial resolution. By using data-driven analysis methods such as blind source separation (BSS) and independent component analysis (ICA), it is possible to estimate multiple ( Usually dozens of) brain spatial activations (spatial activations) components and their time course (time courses) components provide detailed evidence for brain function analysis and clinical diagnosis.
fMRI数据是高维数据。其中,单被试fMRI数据为4维,如165×53×63×46,包括3维全脑数据(53×63×46)和1维扫描次数(165);多被试fMRI数据为5维,如165×53×63×46×16,即在4维单被试fMRI数据基础上又增加了1维被试个数(16)。一般而言,人们会将3维全脑数据展开成一维体素(voxels)数据(53×63×46=153594),这时的多被试fMRI数据也有3维之多(16×153594×165)。因此,适于处理高维(≥3维)数据的张量分解方法在多被试fMRI数据分析方面具有很大潜力。fMRI data are high-dimensional data. Among them, single-subject fMRI data is 4-dimensional, such as 165×53×63×46, including 3-dimensional whole-brain data (53×63×46) and 1-dimensional scan times (165); multi-subject fMRI data is 5-dimensional , such as 165×53×63×46×16, that is, the number of 1-dimensional subjects (16) is added to the 4-dimensional single-subject fMRI data. Generally speaking, people will expand the 3D whole-brain data into one-dimensional voxels (voxels) data (53×63×46=153594), and the multi-subject fMRI data at this time also have as many as 3 dimensions (16×153594×165 ). Therefore, tensor decomposition methods suitable for processing high-dimensional (≥3-dimensional) data have great potential in the analysis of multi-subject fMRI data.
目前,张量分解的CP(canonical polyadic)模型已被用于fMRI数据分析。CP模型假设了张量数据具有平行因子结构,对于展开成3维的多被试fMRI数据而言,也就是假设了多被试间以不同的强度共享相同的脑空间激活区成分及其时间过程成分,具体如下:Currently, tensor-decomposed CP (canonical polyadic) models have been used for fMRI data analysis. The CP model assumes that the tensor data has a parallel factor structure. For multi-subject fMRI data expanded into 3 dimensions, it is assumed that multiple subjects share the same brain spatial activation area components and their time processes at different intensities. ingredients, as follows:
式中,表示由全部的多被试fMRI数据构成的张量,aj和sj表示被试间共享的时间过程成分和脑空间激活区成分,J为成分的个数,cj表示强度差异,ε表示残差。在J个时间过程成分a1,a2,…,aJ和J个脑空间激活区成分s1,s2,…,sJ中,存在一个信噪比较高的任务相关(task-related)成分,我们记为a*和s*。下面以a*和s*为例说明多被试fMRI数据与CP模型的失配问题。假设共有M个被试,CP模型假设了
发明内容Contents of the invention
本发明的目的在于,提供一种解决多被试fMRI数据与CP模型失配的方案,最小化被试间的差异性,提升张量分解方法在多被试fMRI数据分析中的性能。The purpose of the present invention is to provide a solution to solve the mismatch between multi-subject fMRI data and CP model, minimize the difference between subjects, and improve the performance of tensor decomposition method in multi-subject fMRI data analysis.
本发明的技术方案是,将M个被试fMRI数据构建的一个大张量x,以被试为单位分成K个子组 每个子组包含Nk个被试,2≤Nk<M;K个子组的被试间互相关系数平均值之和在M种分组方案中为最大值,为子组k内各被试的任务相关时间过程成分及脑空间激活区成分之间的互相关系数平均值,k=1,…,K;对各子组张量分别进行CP分解:The technical solution of the present invention is to divide a large tensor x constructed by M subjects' fMRI data into K subgroups in units of subjects Each subgroup contains N k subjects, 2≤N k <M; the sum of the mean values of cross-correlation coefficients between subjects of K subgroups It is the maximum value among the M grouping schemes, is the average value of the cross-correlation coefficients between the task-related time-course components and brain space activation area components of each subject in subgroup k, k=1,...,K; CP decomposition is performed on the tensors of each subgroup respectively:
得到各子组被试间共享的时间过程成分aj(k)和脑空间激活区成分sj(k)、被试间的强度差异cj(k)及残差(k)。基本框图如图1所示。仍以任务相关的时间过程成分和脑空间激活区成分为例,由于子组k中各被试的时间过程成分间以及脑空间激活区成分间具有最大的相关性,则
在分组时需要用到各被试fMRI数据的时间过程成分及脑空间激活区成分,本发明采用ICA方法分离得到。如上所述,ICA无需任何先验信息,就能从fMRI数据中估计出特定任务下的脑空间激活区成分及其时间过程成分。具体而言,互相关系数计算的对象是M个被试fMRI数据的任务相关时间过程成分及)脑空间激活区成分求取和)的协方差阵Ra和Rs:The time course components and brain space activation area components of each subject's fMRI data need to be used when grouping, and the present invention uses the ICA method to separate and obtain them. As mentioned above, ICA can estimate task-specific brain spatial activation area components and their time-course components from fMRI data without any prior information. Specifically, the object of the cross-correlation coefficient calculation is the task-related time-course component of the fMRI data of M subjects and) Brain Spatial Activation Area Components ask for and) The covariance matrix R a and R s :
得到不同被试p、q,p,q∈{1,2,…M}时间过程成分和脑空间激活区成分之间的互相关系数为同时减小子组内被试间时间过程成分及脑空间激活区成分的差异性,由协方差阵Ra和Rs构建综合矩阵R=0.5|Ra|+0.5|Rs|,R中的元素等于间和间正相关系数的平均值。Obtain the cross-correlation coefficient between different subjects p, q, p, q∈{1,2,...M} time course components and brain space activation area components In order to reduce the differences of time course components and brain space activation area components among subjects in the subgroup at the same time, a comprehensive matrix R=0.5|R a |+0.5|R s | was constructed from the covariance matrix R a and R s |, R The elements in are equal to Between and The mean value of the positive correlation coefficient between them.
分组的基本操作是寻找在时间过程成分及脑空间激活区成分上最为相关的两个被试,称之为两相关被试{p,q}寻找:以初始被试p开始,将R中第p行元素置零(即寻找除p之外的其他被试),在第p列元素中寻找最大值所对应的行数,记为q,则找到与被试p最为相关的新被试q;重复{p,q}寻找(Nk-1)次,第一次寻找令初始被试p=未分组被试中编号最小的,之后寻找令p=q,则构建完成含有Nk个被试的一个子组。例如Nk=4,第一次寻找的初始被试为p,则通过3次{p,q}寻找:{p,q}→{q,u}→{u,v},可构建含有{p,q,u,v}四个被试的子组。设w为未分组被试中编号最小的,则下一子组的初始被试p=w,重复子组构建操作,即可构建新的子组,如{w,x,y,z}。重复子组构建K次,构建完成K个子组,则一种分组方案构建完成。The basic operation of grouping is to find the two most related subjects in terms of time course components and brain space activation area components, which are called two related subjects {p,q}. Set the elements of row p to zero (that is, find other subjects except p), find the number of rows corresponding to the maximum value in the elements of column p, record it as q, and then find the new subject q most related to subject p ;Repeat {p,q} to find (N k -1) times, the first search makes the initial subject p=the smallest number among the ungrouped subjects, and then searches for p=q, then the construction is completed and contains Nk subjects a subgroup of . For example, N k = 4, the initial subject of the first search is p, then through three {p,q} search: {p,q}→{q,u}→{u,v}, can construct { p, q, u, v} four subgroups of subjects. Let w be the smallest number among ungrouped subjects, then the initial subject of the next subgroup is p=w, and repeat the subgroup construction operation to construct a new subgroup, such as {w, x, y, z}. Repeat the construction of subgroups K times, and when K subgroups are constructed, a grouping scheme is constructed.
对于一种分组方案的K个子组,尚不能保证分组的最优性。为此,对于M个被试的情况,本发明构建M种分组方案。具体做法是改变第一子组内第一次{p,q}寻找的初始被试分别为1,2,…,M,然后计算每种分组方案的K个子组被试间互相关系数平均值之和 为子组k内各被试的任务相关时间过程成分及脑空间激活区成分之间的互相关系数平均值,k=1,…,K,也就是计算每种分组方案K个子组协方差矩阵R1,R2,…,RK上三角元素的平均值之和α1,α2,…,αm,和值最大的分组方案为最终分组结果。For K subgroups of a grouping scheme, the optimality of grouping cannot be guaranteed yet. Therefore, for the case of M subjects, the present invention constructs M kinds of grouping schemes. The specific method is to change the initial subjects for the first {p, q} search in the first subgroup to 1, 2, ..., M, and then calculate the average cross-correlation coefficient among K subgroups of each grouping scheme Sum is the average value of the cross-correlation coefficient between the task-related time course components and brain space activation area components of each subject in subgroup k, k=1,...,K, that is, to calculate the covariance matrix of K subgroups for each grouping scheme The sum of the average values of the triangular elements on R 1 , R 2 ,…,R K α 1 ,α 2 ,…,α m , and the grouping scheme with the largest sum value is the final grouping result.
本发明所达到的效果和益处是,与现有将所有多被试fMRI数据用于构建一个张量的方法相比,本发明能够提高各子组fMRI数据与CP模型的匹配度,进而显著提升张量分解方法的性能。以提取多被试fMRI数据的共有(common)任务相关成分为例,较之原始的大张量方法,本发明获取的任务相关时间过程成分与先验任务刺激过程的相关系数提高约0.1左右,而获取的任务相关脑空间激活区成分的噪声体素数下降了约23%,期望激活体素数则基本不变。此外,本方法对解决其他类型高维数据(如传感器阵列数据、生物医学数据等)与CP张量模型的失配问题具有参考作用。The effect and benefits achieved by the present invention are that, compared with the existing method of using all multi-subject fMRI data to construct a tensor, the present invention can improve the matching degree of each subgroup fMRI data and the CP model, thereby significantly improving Performance of tensor decomposition methods. Taking the extraction of common task-related components of multi-subject fMRI data as an example, compared with the original large tensor method, the correlation coefficient between the task-related time process components obtained by the present invention and the prior task stimulus process is increased by about 0.1, However, the noise voxel number of the acquired task-related brain spatial activation area components decreased by about 23%, while the expected activation voxel number remained basically unchanged. In addition, this method has a reference role in solving the mismatch between other types of high-dimensional data (such as sensor array data, biomedical data, etc.) and the CP tensor model.
附图说明Description of drawings
图1是本发明的基本框图。Figure 1 is a basic block diagram of the present invention.
图2是本发明分析多被试fMRI数据工作流程图。Fig. 2 is a flow chart of the present invention for analyzing multi-subject fMRI data.
图3是任务相关成分互相关计算的流程图。Fig. 3 is a flowchart of task-related component cross-correlation calculation.
具体实施方式detailed description
下面结合技术方案和附图,详细叙述本发明的一个具体实施例。A specific embodiment of the present invention will be described in detail below in conjunction with the technical scheme and accompanying drawings.
假设现有运动刺激下采集的16被试fMRI数据,每个被试的扫描次数为165。本发明将其分成4个子组,每个子组包含4个被试,进而构成4个子组张量经张量分解后分别获取各子组共享的任务相关成分,包括时间过程成分a*(1),a*(2),a*(3),a*(4)和脑空间激活区成分s*(1),s*(2),s*(3),s*(4)。具体步骤如图2所示。Assuming that the fMRI data of 16 subjects collected under the existing motion stimulation, the number of scans for each subject is 165. The present invention divides it into 4 subgroups, each subgroup contains 4 subjects, and then constitutes 4 subgroup tensors After tensor decomposition, the task-related components shared by each subgroup are respectively obtained, including time course components a *(1) , a *(2) , a *(3) , a *(4) and brain space activation area components s *(1) ,s *(2) ,s *(3) ,s *(4) . The specific steps are shown in Figure 2.
第一步,将被试1-被试16的fMRI数据分别进行PCA(principle componentanalysis)降维。根据现有文献对该运动刺激fMRI数据集的成分数估计结果,采用PCA将各被试的fMRI数据从165维降至20维,即假设了fMRI数据含有20个独立成分。In the first step, the fMRI data of subject 1-subject 16 were subjected to PCA (principle component analysis) dimensionality reduction. According to the estimation results of the number of components of the motion stimulation fMRI data set in the existing literature, PCA was used to reduce the fMRI data of each subject from 165 dimensions to 20 dimensions, that is, it was assumed that the fMRI data contained 20 independent components.
第二步,对PCA降维后的各被试fMRI数据进行ICA。可采用性能较优的信息最大化算法,然后从ICA分离的20个成分中选择任务相关成分,包括时间过程成分和脑空间激活区成分 In the second step, ICA is performed on the fMRI data of each subject after PCA dimensionality reduction. An information maximization algorithm with better performance can be used, and then the task-related components, including the time course component, can be selected from the 20 components separated by ICA and brain spatial activation area components
第三步,对任务相关的时间过程成分和脑空间激活区成分6分)别进行互相关计算,流程图如图3所示:In the third step, the task-related time-course components and brain spatial activation area components 6 points) to perform cross-correlation calculations, the flow chart is shown in Figure 3:
(1)求取的协方差阵Ra和Rs,计算综合矩阵R=0.5|Ra|+0.5|Rs|。(1) Obtain covariance matrix R a and R s , calculate the comprehensive matrix R=0.5|R a |+0.5|R s |.
(2)令分组方案指针m=1。(2) Let the grouping scheme pointer m=1.
(3)令子组指针k=1,初始被试p=m,重复两相关被试{p,q}寻找3次,得到{1,15}→{15,9}→{9,7},子组1:{1,15,9,7}构建完毕。(3) Let the subgroup pointer k=1, the initial subject p=m, repeat the search for two related subjects {p,q} for 3 times, and get {1,15}→{15,9}→{9,7}, Subgroup 1: {1,15,9,7} constructed.
(4)若子组未构建完毕,即k<4,令k=k+1,进入下一子组构建:令初始被试p=未分组被试编号的最小值,即令p=2,重复两相关被试{p,q}寻找3次的子组构建操作,获得子组2:{2,11,10,12}。同理构建子组3:{3,16,6,8}和子组4:{4,5,13,14}。至此,k=4,不满足k<4,第m种分组方案构建完毕,包含4个子组:{1,15,9,7},{2,11,10,12},{3,16,6,8},{4,5,13,14}。令m=m+1,进入下一分组方案构建。(4) If the subgroup has not been constructed, that is, k<4, set k=k+1, and enter the next subgroup construction: let the initial subject p=the minimum number of ungrouped subjects, that is, set p=2, repeat two times Relevant subjects {p,q} searched for 3 subgroup construction operations to obtain subgroup 2: {2,11,10,12}. Similarly, construct subgroup 3: {3, 16, 6, 8} and subgroup 4: {4, 5, 13, 14}. So far, k=4, if k<4 is not satisfied, the mth grouping scheme has been constructed, including 4 subgroups: {1,15,9,7}, {2,11,10,12}, {3,16, 6,8}, {4,5,13,14}. Let m=m+1, enter the next grouping scheme construction.
(5)判断m<16是否成立,若成立,重复(3)、(4),可构建完成下一分组方案。例如,设定第二种分组方案第一子组(k=1)的初始被试为p=2,可得4个新的子组:{2,15,9,7},{1,4,11,10},{3,16,6,8},{5,12,13,14}。以此类推,直至获得16种分组方案。(5) Determine whether m<16 is true. If so, repeat (3) and (4) to complete the next grouping scheme. For example, if the initial subject of the first subgroup (k=1) of the second grouping scheme is set as p=2, 4 new subgroups can be obtained: {2,15,9,7}, {1,4 ,11,10}, {3,16,6,8}, {5,12,13,14}. By analogy, until 16 grouping schemes are obtained.
(6)计算16种分组方案下,4个子组被试间互相关系数平均值之和为子组k内各被试的任务相关时间过程成分及脑空间激活区成分之间的互相关系数平均值,k=1,…,4 ,也就是计算每种分组方案4个子组协方差矩阵R1,R2,…,RK上三角元素的平均值之和α1,α2,…,αm,和值最大的分组方案为最终分组结果。这里,和值最大的是分组方案7:{7,10,12,9},{1,15,4,11},{2,3,16,6},{5,8,13,14},作为本发明的最终分组结果。(6) Calculate the sum of the average values of the cross-correlation coefficients among the 4 subgroups under the 16 grouping schemes is the average value of the cross-correlation coefficient between the task-related time course components and brain space activation area components of each subject in subgroup k, k=1,...,4, that is, to calculate the covariance matrix of 4 subgroups for each grouping scheme The sum of the average values of the triangular elements on R 1 , R 2 ,…,R K α 1 ,α 2 ,…,α m , and the grouping scheme with the largest sum value is the final grouping result. Here, the grouping scheme 7 with the largest sum value: {7,10,12,9}, {1,15,4,11}, {2,3,16,6}, {5,8,13,14} , as the final grouping result of the present invention.
第四步,根据上述分组结果,将PCA降维后的16被试fMRI数据分成四个子组{7,10,12,9},{1,15,4,11},{2,3,16,6},{5,8,13,14},进而构建4个子组张量 The fourth step, according to the above grouping results, divide the fMRI data of 16 subjects after PCA dimensionality reduction into four subgroups {7, 10, 12, 9}, {1, 15, 4, 11}, {2, 3, 16 ,6}, {5,8,13,14}, and then construct 4 subgroup tensors
第五步,利用张量分解算法,如COMFAC(COMplex parallel FACtor analysis)算法,对4个子组张量进行分解,分别得到20个共享的时间过程成分和脑空间激活区成分,从中选择任务相关成分,包括时间过程成分a*(1),a*(2),a*(3),a*(4)和脑空间激活区成分s*(1),s*(2),s*(3),s*(4)。若对其分别进行平均,可获取16被试所共有的任务相关时间过程成分和脑空间激活区成分。The fifth step is to use the tensor decomposition algorithm, such as the COMFAC (COMplex parallel FACtor analysis) algorithm, to decompose the 4 subgroup tensors to obtain 20 shared time process components and brain space activation area components, and select task-related components from them , including time course components a *(1) ,a *(2) ,a *(3) ,a *(4) and brain space activation area components s *(1) ,s *(2) ,s *(3 ) ,s *(4) . If they are averaged separately, the task-related time-course components and brain-spatial activation area components common to all 16 subjects can be obtained.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410126455.8A CN103870710B (en) | 2014-03-30 | 2014-03-30 | Tensor grouping method for multi-subject fMRI data analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410126455.8A CN103870710B (en) | 2014-03-30 | 2014-03-30 | Tensor grouping method for multi-subject fMRI data analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103870710A CN103870710A (en) | 2014-06-18 |
CN103870710B true CN103870710B (en) | 2017-01-18 |
Family
ID=50909235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410126455.8A Expired - Fee Related CN103870710B (en) | 2014-03-30 | 2014-03-30 | Tensor grouping method for multi-subject fMRI data analysis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103870710B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104318064B (en) * | 2014-09-26 | 2018-01-30 | 大连理工大学 | Head coherent pulse response three-dimensional data compression method based on model's Multidimensional decomposition technique |
CN105760700B (en) * | 2016-03-18 | 2018-06-08 | 大连理工大学 | A kind of adaptive fixed point IVA algorithms for being suitable for more subject plural number fMRI data analyses |
EP3682349A4 (en) * | 2017-09-13 | 2021-06-16 | HRL Laboratories, LLC | Independent component analysis of tensors for sensor data fusion and reconstruction |
CN112881450B (en) * | 2020-05-09 | 2022-11-18 | 上海纽迈电子科技有限公司 | Quantitative analysis model construction and quantitative analysis method and system for tissue components |
CN113792254B (en) * | 2021-08-17 | 2024-05-28 | 大连理工大学 | Multi-test fMRI data Tucker decomposition method introducing space sparse constraint |
CN113796874B (en) * | 2021-11-19 | 2022-01-28 | 北京大学 | Multi-element electroencephalogram data identification and analysis method based on tensor decomposition model |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103440512A (en) * | 2013-09-17 | 2013-12-11 | 西安电子科技大学 | Identifying method of brain cognitive states based on tensor locality preserving projection |
-
2014
- 2014-03-30 CN CN201410126455.8A patent/CN103870710B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103440512A (en) * | 2013-09-17 | 2013-12-11 | 西安电子科技大学 | Identifying method of brain cognitive states based on tensor locality preserving projection |
Non-Patent Citations (2)
Title |
---|
功能磁共振数据处理方法研究;周卉芬;《中国优秀硕士论文全文数据库》;20080115;全文 * |
基于Matlab GUI的脑部核磁共振数据统计分析系统;龚津南;《中国优秀硕士学位论文全文数据库》;20140115;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN103870710A (en) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103870710B (en) | Tensor grouping method for multi-subject fMRI data analysis | |
JP6993371B2 (en) | Computed tomography lung nodule detection method based on deep learning | |
Correa et al. | Performance of blind source separation algorithms for fMRI analysis using a group ICA method | |
Albera et al. | ICA-based EEG denoising: a comparative analysis of fifteen methods | |
Katuwal et al. | The predictive power of structural MRI in Autism diagnosis | |
McIntosh et al. | Spatiotemporal analysis of event-related fMRI data using partial least squares | |
Eavani et al. | Identifying sparse connectivity patterns in the brain using resting-state fMRI | |
McIntosh et al. | Partial least squares analysis of neuroimaging data: applications and advances | |
CN112002428B (en) | Whole brain individualized brain function map construction method taking independent component network as reference | |
CN110110776B (en) | A method for constructing an ICA-CNN classification framework for resting-state complex fMRI data of patients and healthy individuals | |
Acar et al. | ACMTF for fusion of multi-modal neuroimaging data and identification of biomarkers | |
Hyun et al. | STGP: Spatio-temporal Gaussian process models for longitudinal neuroimaging data | |
Wang et al. | SACICA: a sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis | |
Aggarwal et al. | Multivariate brain network graph identification in functional MRI | |
CN105069307B (en) | A kind of combination independent component analysis and the more subject functional magnetic resonance imaging data analysis methods for moving constant specification Multidimensional decomposition technique | |
Dodero et al. | Group-wise functional community detection through joint Laplacian diagonalization | |
Mørup et al. | Modeling latency and shape changes in trial based neuroimaging data | |
Salman et al. | Group information guided ICA shows more sensitivity to group differences than dual-regression | |
Bostami et al. | Harmonization of multi-site dynamic functional connectivity network data | |
CN113963349B (en) | Method for extracting individual space-time feature vector and tested fine classification | |
Chen et al. | Local region sparse learning for image-on-scalar regression | |
Jia et al. | C-ICT for discovery of multiple associations in multimodal imaging data: Application to fusion of fMRI and DTI data | |
CN110916661B (en) | ICA-CNN classified fMRI intracerebral data time pre-filtering and amplifying method | |
CN109498017B (en) | Fast shift invariant CPD method suitable for multi-test fMRI data analysis | |
Fei et al. | Discriminative subnetwork mining for multiple thresholded connectivity-networks-based classification of mild cognitive impairment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170118 Termination date: 20200330 |