CN103868518A - Navigation path planning computer program product for electric vehicles - Google Patents
Navigation path planning computer program product for electric vehicles Download PDFInfo
- Publication number
- CN103868518A CN103868518A CN201210539972.9A CN201210539972A CN103868518A CN 103868518 A CN103868518 A CN 103868518A CN 201210539972 A CN201210539972 A CN 201210539972A CN 103868518 A CN103868518 A CN 103868518A
- Authority
- CN
- China
- Prior art keywords
- weight
- path
- navigation
- planning
- charging station
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004590 computer program Methods 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 claims description 16
- 239000000654 additive Substances 0.000 claims 2
- 230000000996 additive effect Effects 0.000 claims 2
- 238000004364 calculation method Methods 0.000 description 19
- 238000010586 diagram Methods 0.000 description 12
- 238000004422 calculation algorithm Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/3453—Special cost functions, i.e. other than distance or default speed limit of road segments
- G01C21/3469—Fuel consumption; Energy use; Emission aspects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/3446—Details of route searching algorithms, e.g. Dijkstra, A*, arc-flags or using precalculated routes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/3453—Special cost functions, i.e. other than distance or default speed limit of road segments
- G01C21/3461—Preferred or disfavoured areas, e.g. dangerous zones, toll or emission zones, intersections, manoeuvre types or segments such as motorways, toll roads or ferries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/12—Remote or cooperative charging
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Navigation (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种电动交通载具的导航路径规划计算机程序产品,尤指一种通过执行包括有充电站特性相关与道路特性相关的整体耗电权重的路径目标函数,而规划出电动交通载具的优化路径的计算机程序产品。The invention relates to a computer program product for planning a navigation route of an electric transportation vehicle, in particular to a computer program product for planning an electric transportation vehicle by executing a path objective function including an overall power consumption weight related to charging station characteristics and road characteristics A computer program product for an optimized path.
背景技术Background technique
随着科技的进步与时代的发展,人们的生活观念已渐渐地改变,因而逐渐地重视生活质量,进而带动了开车旅行风气的盛行,为方便人们能更迅速准确的前往目的地,因此卫星导航路径规划计算机程序产品已成为人们开车旅行的必备工具,其利用电子地图以及全球定位系统(Global Positioning System;GPS)来进行规划路径以及导航,也就是说,使用者只需要输入欲前往的目的地后,卫星导航路径规划计算机程序产品即会依据使用者的所在位置,协助使用者找出到达目的地的优化路径。With the advancement of science and technology and the development of the times, people's concept of life has gradually changed, so they gradually pay attention to the quality of life, which in turn led to the prevalence of car travel. In order to facilitate people to go to their destinations more quickly and accurately, so satellite navigation Route planning computer program products have become an essential tool for people to travel by car. It uses electronic maps and Global Positioning System (Global Positioning System; GPS) to plan routes and navigate, that is to say, users only need to input the destination they want to go to After landing, the satellite navigation route planning computer program product will assist the user to find the optimal route to the destination according to the user's location.
然而,近年来随着环保意识的抬头,电动车的发展因而受到重视,现有技术的卫星导航路径规划计算机程序产品中,虽然能够规划优化路径,但一般未将充电站位置纳入优化路径规划,而由于电动车具有电量续航力的限制,因此,虽然卫星导航路径规划计算机程序产品可规划出优化路径,但现有的电动车所具有的电量续航力有限,使得电动车到某个地点仍需要找寻充电站而偏离优化路径,而无法依据所规划的优化路径到达目的地,进而使得导航效果不佳。However, with the rising awareness of environmental protection in recent years, the development of electric vehicles has been paid attention to. In the existing satellite navigation route planning computer program products, although the optimized route can be planned, the location of the charging station is generally not included in the optimized route plan. And because electric vehicles have the limitation of battery life, therefore, although the satellite navigation route planning computer program product can plan the optimized route, the battery life of existing electric vehicles is limited, so that electric vehicles still need to find a place to charge The station deviates from the optimal path, and cannot reach the destination according to the planned optimal path, which makes the navigation effect poor.
在现有上,各种导航路径规划方法如蚁群算法(Ant Colony Optimization,ACO)、狄克斯特拉(Dijkstra)算法、A*算法或穆尔(Moore/Pape)算法;蚁群算法通常用于随机路径的规划,Dijkstra算法为从起点的周边开始,一个一个的确定到各节点的最短路径;Moore/Pape算法则为最短路径的计算方法,在对多对多的计算时最为快速,但比较不适合一对多的计算;而计算量较少且适合一对多的计算为A*算法,其主要是定义一个目标函数,再对此目标函数进行微分以求得目标值的最大值(最小值),目标函数通常以F=G+H计算成本后,找出最少成本作为结果来规划路径;其中F是从初始点到目标点的估计成本、G是从初始点到某一节点的实际成本、H是从某一节点到目标点最佳路径的估计成本;且此算法通常取用电子地图数据的道路属性、长度以及所需时间作为计算依据。At present, various navigation path planning methods such as Ant Colony Optimization (ACO), Dijkstra (Dijkstra) algorithm, A* algorithm or Moore (Moore/Pape) algorithm; ant colony algorithm usually For the planning of random paths, the Dijkstra algorithm starts from the periphery of the starting point and determines the shortest path to each node one by one; the Moore/Pape algorithm is the calculation method of the shortest path, which is the fastest in many-to-many calculations. But it is not suitable for one-to-many calculation; and the calculation with less calculation amount and suitable for one-to-many calculation is A* algorithm, which mainly defines an objective function, and then differentiates this objective function to obtain the maximum value of the objective value (Minimum value), the objective function usually uses F=G+H to calculate the cost, and find the minimum cost as the result to plan the path; where F is the estimated cost from the initial point to the target point, G is from the initial point to a certain node The actual cost, H is the estimated cost of the best path from a node to the target point; and this algorithm usually uses the road attributes, length and required time of the electronic map data as the calculation basis.
在各种导航路径规划方法的先前技术,如台湾专利TW201122433号公开的导航提示方法,利用计算不同路径的成本,在偏离路线与优化路线之间产生成本差量,而以差量最小的路径为导航提示的路径;又如台湾专利TW201211508号公开利用地图数据及识别最小成本路径,以确定自出发点至目的地的路线;这些公开的技术,在目标函数上仅考虑里程相关的成本,而对于电动车最悠关的耗电特性则尚无法直接使用,电动车除要考虑里程外,整体的耗电特性系与道路种类、是否有充电站或那一种类的充电站为直接相关。美国专利公开号US20120010767公开了混合动力车辆(Hybrid electric vehicle,HEV)使用电池电量状态(Battery State-of-charge,SoC)为优化的目标函数,如图1,行驶路径9中自起点Ps至终点Pt间经过数个节点(Pr1、Pr2、Pr3及Pr4),计算每一节点的电池电量状态并列出可能的电池电量状态(SoC1、SoC2、...、SoCn),经由优化的运算,运算出各节点的最佳SoC的组合,另在后续的导航上则再加入道路等级为路径选择的考虑,但公开的技术中未将道路特性纳入目标函数的计算;再者,美国专利US8204638则将行车速度纳入混合动力车辆的目标函数中进行最佳动力路径的计算;美国专利US5913917则以巷道的数量特性以分率(fraction)为权值。In the prior art of various navigation path planning methods, such as the navigation prompt method disclosed in Taiwan Patent No. TW201122433, the cost difference between the deviated route and the optimized route is generated by calculating the cost of different paths, and the path with the smallest difference is The path of navigation prompts; another example is Taiwan Patent No. TW201211508, which discloses the use of map data and the identification of the minimum cost path to determine the route from the starting point to the destination; these disclosed technologies only consider the mileage-related costs in the objective function, The most relevant power consumption characteristics of a car cannot be used directly. In addition to the mileage of an electric vehicle, the overall power consumption characteristics are directly related to the type of road, whether there is a charging station or what type of charging station it is. U.S. Patent Publication No. US20120010767 discloses that a hybrid electric vehicle (HEV) uses the Battery State-of-charge (SoC) as an optimized objective function, as shown in Figure 1, in the
但由于电动交通载具电量有限,现有的导航路径规划计算机程序产品或演算方法应用于电动车时,其所规划优化路径的考虑因素中,仅以里程成本为计算或加入巷道的数量分率为权值,并不包括整体耗电的状况;但实际上道路里程的成本不只是与距离长短有关,而应考虑整体耗电的状况、不同道路属性的耗电(例如高速公路、快速道路、省道、县道、乡道、一般道路以及其他道路等的耗电特性不相同)及是否有充电站等等,仅以里程成本、时间成本或者加上巷道的数量特性为权值等计算方法,与实际电动交通载具行驶耗电状况不同,尚无法具体应用于电动交通载具的导航系统中。However, due to the limited power of electric transportation vehicles, when the existing navigation route planning computer program products or calculation methods are applied to electric vehicles, the consideration factors for the optimized route planning are only calculated based on the mileage cost or the fraction of the number of roadways added. is the weight, and does not include the overall power consumption; but in fact, the cost of road mileage is not only related to the distance, but should consider the overall power consumption and the power consumption of different road attributes (such as expressways, expressways, Provincial roads, county roads, township roads, general roads, and other roads have different power consumption characteristics) and whether there are charging stations, etc., only use the mileage cost, time cost, or the quantity characteristics of the roadway as the weight and other calculation methods , which is different from the power consumption of the actual electric vehicle, it cannot be specifically applied to the navigation system of the electric vehicle.
发明内容Contents of the invention
本发明主要目的在于提供一种电动交通载具的导航路径规划计算机程序产品,以里程成本与整体耗电权重定义出路径目标函数,在运算各路径的总里程成本后,而规划出优化路径,藉此提供更为符合电动交通载具的导航计算机程序产品。The main purpose of the present invention is to provide a computer program product for navigation route planning of electric transportation vehicles. The route objective function is defined by the mileage cost and the overall power consumption weight. After calculating the total mileage cost of each route, an optimized route is planned. In this way, a navigation computer program product more suitable for the electric vehicle is provided.
为达到上述目的,本发明采用以下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种导航路径规划计算机程序产品,其主要在规划优化路径的考虑因素中,进一步考虑整体耗电因素;导航路径规划计算机程序产品适用于导航系统,所述导航系统配置在车载计算机、笔记本计算机、地图导航计算机、手持计算机、智能手机等,不为所限;导航系统包括地图数据库(map database)、输入界面、处理模块(processing unit)及输出界面;导航系统(navigation system)加载有导航路径规划程序,执行下列步骤:A navigation path planning computer program product, which mainly considers the overall power consumption factor in the consideration factors of planning an optimized path; the navigation path planning computer program product is suitable for a navigation system, and the navigation system is configured in a vehicle-mounted computer, a notebook computer, Map navigation computer, handheld computer, smart phone, etc. are not limited; the navigation system includes a map database, an input interface, a processing unit and an output interface; the navigation system (navigation system) is loaded with navigation path planning program, perform the following steps:
S1:由使用者利用输入界面及地图数据库定义起始点(starting point)为当前规划点(current point),导航路径规划程序规划出由当前规划点至终点的至少两个路径n;S1: The user uses the input interface and the map database to define the starting point (starting point) as the current planning point (current point), and the navigation path planning program plans at least two paths n from the current planning point to the end point;
S2:处理模块利用地图数据库与当前规划点,加载包括至少两个中继节点的地图信息及加载充电站位置的地图信息;找出邻近于当前规划点的每一中继节点为各路径i(i=1,2,...,i,...N个路径),各路径i包括一个中继节点,若路径i上有充电站,则路径i也包括充电站位置;S2: The processing module uses the map database and the current planning point to load the map information including at least two relay nodes and the map information of the charging station location; find out each relay node adjacent to the current planning point for each path i( i=1, 2,..., i,...N paths), each path i includes a relay node, if there is a charging station on the path i, then the path i also includes the location of the charging station;
S3:处理模块通过导航路径规划程序的路径目标函数(route objectivefunction)F(n),演算出当前规划点经中继节点的各路径i的总里程成本Fi;其中路径目标函数F(n)如式(1)所定义:S3: The processing module calculates the total mileage cost Fi of each route i of the current planning point through the relay node through the route objective function (route objective function) F(n) of the navigation route planning program; wherein the route objective function F(n) is as follows Formula (1) defined:
F(n)=G(n)+H(n) ......(1)F(n)=G(n)+H(n) ...(1)
其中,F(n)为路径n的总里程成本函数,G(n)为耗费里程成本函数、H(n)为残余里程成本函数;其中,H(n)残余里程成本函数如式(2)所展开:Among them, F(n) is the total mileage cost function of path n, G(n) is the cost function of the consumed mileage, and H(n) is the residual mileage cost function; among them, the cost function of H(n) residual mileage is shown in formula (2) Expanded:
F(n)=G(n)+H(n)F(n)=G(n)+H(n)
=G(n)+h(n)·W(n) ......(2)=G(n)+h(n)·W(n) …(2)
其中,h(n)为当前规划点至终点的直线距离成本函数,W(n)为整体耗电权重函数;式(2)代表残余里程成本函数H(n)为残余里程的直线距离成本函数h(n)与整体耗电权重函数W(n)的乘积,意即,残余里程成本不仅为距离的成本,仍应乘上整体耗电的权值;Among them, h(n) is the straight-line distance cost function from the current planning point to the end point, W(n) is the overall power consumption weight function; formula (2) represents the residual mileage cost function H(n) is the straight-line distance cost function of the residual mileage The product of h(n) and the overall power consumption weight function W(n), which means that the residual mileage cost is not only the cost of the distance, but should still be multiplied by the weight of the overall power consumption;
S4:导航路径规划程序将路径目标函数F(n)最小化,即找出路径的最小的总里程成本F*,演算出最小总里程成本所对应的中继节点,定义为接续行进节点(approaching node);其中,优化路径为自起始点沿至少一个上述接续行进节点而行进至终点的路径集合;其中,各路径i的总里程成本Fi及路径目标函数优化如式(3)及式(4):S4: The navigation path planning program minimizes the path objective function F(n), that is, finds the minimum total mileage cost F* of the path, and calculates the relay node corresponding to the minimum total mileage cost, which is defined as the continuing node (approaching node); wherein, the optimized path is a set of paths from the starting point to the end point along at least one of the above-mentioned continuous travel nodes; wherein, the total mileage cost F i and the path objective function optimization of each path i are as formula (3) and formula ( 4):
Fi=G+(hi·W) ......(3)F i =G+(h i ·W) ......(3)
S5:在电动交通载具行进至接续行进节点时,导航路径规划程序判断接续行进节点是否为终点;以及S5: when the electric vehicle travels to the next traveling node, the navigation route planning program judges whether the following traveling node is an end point; and
S6:在步骤S5的判断结果为否时,导航路径规划程序将接续行进节点重新定义为上述的起始点,并重复执行上述步骤S1至S5;输出界面输出导航路径规划程序执行过程或执行结果。S6: When the judgment result of step S5 is negative, the navigation route planning program redefines the continuation travel node as the above starting point, and repeats the above steps S1 to S5; the output interface outputs the execution process or execution result of the navigation route planning program.
其中,在步骤S3中,耗费里程成本函数G(n)为自起始点已实际行经的每一中继节点的实际已耗费里程成本函数G1(n)与即将再耗费里程成本函数G2(n)的和、整体耗电权重W为由充电站位置所定义的充电站权重Ws与道路权重Wr的积,如式(5)及式(6);Wherein, in step S3, the mileage cost function G(n) is the actual mileage cost function G 1 (n) of each relay node that has actually traveled from the starting point and the mileage cost function G 2 ( The sum of n), the overall power consumption weight W is the product of the charging station weight Ws defined by the charging station location and the road weight Wr, such as formula (5) and formula (6);
F(n)=G(n)+H(n)F(n)=G(n)+H(n)
=G1(n)+G2(n)+h(n)·W ......(5)=G 1 (n)+G 2 (n)+h(n)·W ...... (5)
使用式(5)以路径目标函数F(n)、耗费里程成本函数G(n)、实际已耗费里程成本函数G1(n)与即将再耗费里程成本函数G2(n)计算第i路径的总里程成本Fi时,于开启列表内找出上述邻近于当前规划点的每一中继节点的各路径i的耗费里程成本Gi以及各路径i所对应的残余里程成本Hi;其中,耗费里程成本Gi为自起始点已实际行经的每一中继节点的实际已耗费里程成本G1i与即将再耗费里程成本G2i的和;残余里程成本Hi由中继节点至终点的直线距离成本hi与各路径i的整体耗电权重W所计算。Use formula (5) to calculate the i-th path with the path objective function F(n), the mileage cost function G(n), the actual mileage cost function G 1 (n) and the mileage cost function G 2 (n) to be consumed When the total mileage cost F i of , find out the consumed mileage cost G i of each route i of each relay node adjacent to the current planning point and the residual mileage cost H i corresponding to each route i in the open list; , the consumed mileage cost G i is the sum of the actual consumed mileage cost G 1i and the upcoming mileage cost G 2i of each relay node that has actually traveled from the starting point; the remaining mileage cost Hi is the straight line from the relay node to the end point The distance cost h i and the overall power consumption weight W of each path i are calculated.
较佳地,本发明一种导航系统,导航系统的导航路径规划程序,于步骤S1进一步执行下列步骤:Preferably, in a navigation system of the present invention, the navigation route planning program of the navigation system further performs the following steps in step S1:
S11:导航路径规划程序将每一个邻近于当前规划点的中继节点列入开启列表(open list)。S11: The navigation path planning program puts each relay node adjacent to the current planning point into an open list (open list).
于步骤S5进一步执行下列步骤:In step S5, the following steps are further performed:
S51:导航路径规划程序将接续行进节点列入关闭列表(close list)。S51: The navigation path planning program puts the next traveling node into a close list (close list).
较佳地,本发明一种导航路径规划计算机程序产品,处理模块通过导航路径规划程序的路径目标函数F(n)演算出各路径i的总里程成本Fi时,整体耗电权重W为由充电站位置所定义的充电站权重与道路权重的积如式(6);Preferably, the present invention is a navigation route planning computer program product. When the processing module calculates the total mileage cost Fi of each route i through the route objective function F(n ) of the navigation route planning program, the overall power consumption weight W is given by Charging station weight defined by charging station location with road weight The product is as formula (6);
其中,充电站权重可分解为因充电站位置所产生的里程成本贡献(充电站现役权重Ws)与因充电站种类所产生的里程成本贡献(充电站种类权重Wst),如式(7);Among them, the charging station weight It can be decomposed into the mileage cost contribution due to the location of the charging station (the active weight Ws of the charging station) and the mileage cost contribution due to the type of charging station (the weight Wst of the charging station type), as shown in formula (7);
道路权重可分解为因道路等级所产生的里程成本贡献(道路优先权重Wr)、因不同道路等级所产生的耗电贡献(耗电速率权重Wc)及因不同的道路连接等级所产生的耗电贡献(连结道路种类权重Wct),如式(8):road weight It can be decomposed into mileage cost contribution due to road grades (road priority weight Wr), power consumption contribution due to different road grades (power consumption rate weight Wc), and power consumption contribution due to different road connection grades ( Link road type weight Wct), such as formula (8):
较佳地,本发明一种导航路径规划计算机程序产品,进一步包括权重数据库,权重数据库储存各种的权重的数据,包括充电站现役权重Ws、充电站种类权重Wst、道路优先权重Wr、耗电速率权重Wc与连接道路种类权重Wct的数据;可由使用者利用输入界面预先输入与更新、或经由导航系统预先下载与更新或内建于权重数据库内,权重数据库亦可与地图数据库相结合,不为所限。Preferably, a computer program product for navigation route planning in the present invention further includes a weight database, which stores various weight data, including charging station active weight Ws, charging station type weight Wst, road priority weight Wr, power consumption The data of the speed weight Wc and the weight Wct of the connected road type; can be pre-input and updated by the user through the input interface, or downloaded and updated in advance through the navigation system, or built into the weight database. The weight database can also be combined with the map database. limited.
在后续的实施方式中,提出的实施例对于充电站权重道路权重可自行定义其态样:In the subsequent implementation, the proposed example weights the charging station road weight You can define its appearance yourself:
充电站现役权重Ws的数值,如:充电站服役中权重数值、充电站无服役权重数值,不为所限;The value of the active weight Ws of the charging station, such as: the weight value of the charging station in service, the weight value of the charging station without service, is not limited;
充电站种类权重Wst的数值,如:快速充电站种类权重数值、充电电池更换站种类权重数值以及行动式充电站种类权重数值,不为所限;The value of the weight Wst of the type of charging station, such as: the weight value of the type of fast charging station, the weight value of the type of rechargeable battery replacement station, and the weight value of the type of mobile charging station are not limited;
道路优先权重Wr的数值,如:高速公路优先权重数值、快速道路优先权重数值、省道优先权重数值、县道优先权重数值、乡道优先权重数值、市区主要道路优先权重数值、市区次要道路优先权重数值以及巷弄优先权重数值,不为所限;The value of road priority weight Wr, such as: expressway priority weight value, express road priority weight value, provincial road priority weight value, county road priority weight value, township road priority weight value, urban main road priority weight value, urban secondary road priority weight value, There is no limit to the priority weight values of roads and alleys;
耗电速率权重Wc的数值,如:高速公路耗电权重数值、快速道路耗电权重数值、省道耗电权重数值、县道耗电权重数值、乡道耗电权重数值、市区主要道路耗电权重数值、市区次要道路耗电权重数值以及巷弄耗电权重数值,不为所限;The value of power consumption rate weight Wc, such as: power consumption weight value of expressways, power consumption weight value of express roads, power consumption weight value of provincial roads, power consumption weight value of county roads, power consumption weight value of township roads, power consumption weight value of main roads in urban areas The power weight value, the power consumption weight value of the secondary roads in the urban area, and the power consumption weight value of the alleys are not limited;
连结道路种类权重Wct的数值,如:圆环种类权重数值、一般道路种类权重数值、主要道路种类权重数值、系统交流道种类权重数值、统合路口种类权重数值、交流道种类权重数值、侧道种类权重数值以及休息站种类权重数值,不为所限。The value of the weight Wct of the link road type, such as: the weight value of the ring type, the general road type weight value, the main road type weight value, the system interchange type weight value, the integrated intersection type weight value, the interchange type weight value, the side road type The weight value and the weight value of the rest stop type are not limited.
通过本发明的电动交通载具的导航路径规划计算机程序产品,可具有下列一个或多个优点:The computer program product for navigation route planning of an electric vehicle of the present invention may have one or more of the following advantages:
本发明交通载具的导航路径规划计算机程序产品通过地图数据库的地图信息,经由处理模块可对电动交通载具的导航路径进行规划,运算出电动交通载具自起始点经由中继节点而抵达终点的优化路径;可使电动交通载具采用最小的总里程成本由起始点抵达终点。The navigation route planning computer program product of the transportation vehicle of the present invention can plan the navigation route of the electric transportation vehicle through the map information of the map database through the processing module, and calculate that the electric transportation vehicle arrives at the end point from the starting point via the relay node The optimal path; it can make the electric vehicle use the minimum total mileage cost to reach the destination from the starting point.
本发明交通载具的导航路径规划计算机程序产品在优化的路径规划上,采用里程成本与耗电权重为路径目标函数,藉此可将电动交通载具最重要的耗电因素对里程成本进行加权,使路径目标函数与电动交通载具最基本的需求一致外,运算获得的最佳路径不但考虑了里程成本,更加权了耗电因素;相较于现有技术,由于现有的卫星导航路径规划计算机程序产品应用于电动交通载具时,其所规划优化路径的考虑因素中,并不包括耗电因素,使电动车的行驶因不同道路状况或因充电而造成总里程成本的增加,即行驶路径并非电动交通载具的真正优化路径的缺点;进一步说明,由于电动交通载具电量有限,常在中途因电量不足而需要充电,现有技术中电动交通载具导航路径规划,未考虑因充电所造成的里程成本,使得电动交通载具到某个地点仍需要找寻充电站而偏离优化路径,进而使得导航效果不佳。The navigation route planning computer program product of the transportation vehicle of the present invention adopts the mileage cost and power consumption weight as the path objective function in the optimized route planning, so that the most important power consumption factor of the electric transportation vehicle can be weighted to the mileage cost , so that the path objective function is consistent with the most basic requirements of electric transportation vehicles, the optimal path obtained by calculation not only considers the mileage cost, but also weighs the power consumption factor; compared with the existing technology, due to the existing satellite navigation path When planning computer program products to be applied to electric transportation vehicles, the factors considered in the optimized route planning do not include power consumption factors, so that the total mileage cost of electric vehicles will increase due to different road conditions or charging, that is, The driving path is not the shortcoming of the real optimized path of the electric transportation vehicle; further explanation, due to the limited power of the electric transportation vehicle, it often needs to be charged due to insufficient power in the middle, and the navigation path planning of the electric transportation vehicle in the prior art does not consider the The mileage cost caused by charging makes the electric vehicle still need to find a charging station and deviate from the optimal route to a certain location, which makes the navigation effect poor.
本发明交通载具的导航路径规划计算机程序产品在优化的路径规划上,为能与电动交通载具实务上更接近,所加权的耗电因素,更可综合加入各种不同的耗电因素,如充电站现役权重、充电站种类权重、道路优先权重、耗电速率权重、连接道路种类权重等,提高了电动交通载具导航的精确性与实用性。The computer program product for navigation route planning of transportation vehicles of the present invention can be closer to electric transportation vehicles in terms of optimized route planning, and the weighted power consumption factors can be comprehensively added with various power consumption factors, Such as the active weight of charging stations, the weight of charging station types, the weight of road priority, the weight of power consumption rate, the weight of connecting road types, etc., which improve the accuracy and practicality of electric vehicle navigation.
本发明提出一种电动交通载具的导航计算机程序产品,可利用导航系统加载导航路径规划程序,由使用者使用输入界面及地图数据库定义起始点及终点,导航路径规划程序由地图数据库的地图信息及数据数据,可运算出已考虑了耗电因素的最小里程成本最佳的路径,在显示界面上显示出来,提供给电动交通载具驾驶人参考使用。The present invention proposes a navigation computer program product for electric transportation vehicles. The navigation system can be used to load the navigation path planning program, and the user uses the input interface and the map database to define the starting point and the end point. The navigation path planning program is based on the map information of the map database. And data data, can calculate the route with the minimum mileage and cost that has considered the factor of power consumption, and display it on the display interface, and provide it to the driver of the electric vehicle for reference.
附图说明Description of drawings
图1现有技术路径规划方法示意图;FIG. 1 is a schematic diagram of a prior art path planning method;
图2本发明导航路径规划计算机程序产品架构图;Fig. 2 structure diagram of computer program product of navigation route planning of the present invention;
图3本发明导航路径规划计算机程序产品应用示意图;Fig. 3 is a schematic diagram of the application of the navigation path planning computer program product of the present invention;
图4显示本发明较佳实施例的导航路径规划计算机程序产品的导航路径规划程序执行步骤示意图;Fig. 4 shows a schematic diagram of the execution steps of the navigation route planning program of the navigation route planning computer program product in a preferred embodiment of the present invention;
图5显示本发明较佳实施例的导航路径规划计算机程序产品的路径规划示意图;以及FIG. 5 shows a schematic diagram of route planning of a navigation route planning computer program product according to a preferred embodiment of the present invention; and
图6A至图6D显示本发明较佳实施例应用于导航路径规划计算机程序产品之路径规划示意图。6A to 6D are schematic diagrams showing a preferred embodiment of the present invention applied to route planning of a navigation route planning computer program product.
【主要组件符号说明】[Description of main component symbols]
10:导航路径规划计算机程序产品 11:导航系统10: Navigation route planning computer program product 11: Navigation system
111:地图数据库 112:输入界面111: Map database 112: Input interface
113:处理模块 114:输出界面113: Processing module 114: Output interface
12:导航路径规划程序 13:权重数据库12: Navigation path planning program 13: Weight database
A:出发点B1、B2、B3:中继节点A: starting point B1, B2, B3: relay nodes
C1、C2、C3:中继节点Cs、Cs1、Cs2、Cs3、Cs4、Cs5、Cs6:充电站C1, C2, C3: relay nodes Cs, Cs1, Cs2, Cs3, Cs4, Cs5, Cs6: charging stations
D1、D2、D3:中继节点 E、Pt:终点D1, D2, D3: Relay nodes E, Pt: Terminal
Pa:接续行进节点 Pc:当前规划点Pa: Continuing travel node Pc: Current planning point
Pr、Pr1、Pr2、Pr3:中继节点 Ps:起始点Pr, Pr1, Pr2, Pr3: relay nodes Ps: starting point
R*:优化路径 S1~S6:执行步骤R*: Optimization path S1~S6: Execution steps
具体实施方式Detailed ways
为使本发明更加明确详实,兹列举较佳实施例并配合下列图示,将本发明的结构及其技术特征详述如后。In order to make the present invention clearer and more specific, preferred embodiments are listed hereby together with the following diagrams, and the structure and technical features of the present invention are described in detail below.
请参阅图2,其为本发明导航路径规划计算机程序产品架构图,在图中,导航路径规划计算机程序产品10包含导航系统11及导航路径规划程序12,由导航系统11将导航路径规划程序12加载以执行导航路径规划,导航系统11由地图数据库111、输入界面112、处理模块113及输出界面114所构成;地图数据库111内储存有行车范围内的地点位置、道路种类、连接道路种类、距离(或各地点的坐标),甚至地图数据库111内存有充电站的位置、充电站是否服务可进行充电、充电站的种类等数据;处理模块113通常为由硬件、软件及韧体所构成,可接受输入界面112进入的数据、自地图数据库111或其他数据库(如权重数据库13)获取数据、执行软件程序、进行数学或逻辑运算等、及将运算后的信息在输出界面114上显示。请参阅图3,其为本发明的导航路径规划计算机程序产品应用的示意图,导航系统11以地图导航计算机为绘示、权重数据库13则可为储存卡(如SD卡)的方式读取,但不以此为限;运算后的最佳路径则可显示在地图导航计算机的屏幕(输出界面114)上。Please refer to FIG. 2 , which is a structure diagram of a navigation route planning computer program product of the present invention. In the figure, a navigation route planning
请参阅图5,显示本发明实施例的导航路径规划方法的规划示意图,在图中,导航路径规划方法规划运算出电动交通载具自起始点Ps经由中继节点Pr1与中继节点Pr2(路径1:Pr1→Pr2)或经由中继节点Pr1经由充电站Cs及中继节点Pr3(路径2:Pr1→Cs→Pr3)而抵达终点Pt的优化路径(optimal route)。请参阅图4,显示本发明实施例的导航路径规划方法的方法流程示意图,在图中,导航路径规划方法包括以下步骤:Please refer to FIG. 5 , which shows a schematic diagram of the planning method of the navigation route planning method according to the embodiment of the present invention. In the figure, the navigation route planning method plans and calculates the electric vehicle from the starting point Ps via the relay node Pr1 and the relay node Pr2 (path 1: Pr1→Pr2) or the optimal route (optimal route) to reach the destination Pt via the relay node Pr1 via the charging station Cs and the relay node Pr3 (path 2: Pr1→Cs→Pr3). Please refer to FIG. 4 , which shows a schematic flow chart of a method for planning a navigation path according to an embodiment of the present invention. In the figure, the method for planning a navigation path includes the following steps:
S1:利用地图数据库111,定义一个当前规划点Pc,规划出由当前规划点Pc至终点Pt的至少两个路径n;将每一个邻近于当前规划点Pc的中继节点(Pr)列入开启列表;其中,若电动交通载具由起始点Ps开始,则首次规划路径时,起始点Ps即定义一个当前规划点Pc;若电动交通载具行至中继节点Pr1于规划下一个路径时,中继节点Pr1即为定义的当前规划点Pc;S1: Utilize the
S2:利用地图数据库111,加载相邻当前规划点Pc的每一个中继节点(Pr)的地图信息及加载相邻当前规划点Pc的每一个充电站位置(Cs)的地图信息;找出邻近于当前规划点Pc的每一中继节点为各路径i(i=1,2,...,i,...N个路径),各路径i至少包括一个中继节点,若路径i上有充电站,则路径i也包括充电站位置;S2: Using the
在步骤S1及S2,以较佳实施例应用于本发明交通载具的导航路径规划计算机程序产品10为例,由导航系统11或由使用者利用输入界面112将起始点Ps定义为当前规划点Pc,导航系统11利用地图数据库111的地图信息,将每一个邻近于当前规划点Pc的中继节点列入开启列表。更进一步来说,使用者在电动交通载具内,通过导航路径规划计算机程序产品10设定完起始点Ps以及终点Pt,并确定开始规划路径后,导航系统11会启动导航路径规划程序12自地图数据库111中(地图数据库111位于导航路径规划计算机程序产品10的数据库中或云端系统数据库中),加载包括至少两个充电站位置Cs与至少两个中继节点Pr的地图信息,并且列出由起始点Ps至终点Pt的优化路径中所需经过的至少两个中继节点,接着将起始点Ps定义为一当前规划点Pc,然后将每一个邻近于起始点Ps的中继节点Pr列入开启列表。举例来说,假若使用者以台中为起始点Ps,而台北为终点Pt,那么邻近于台中的中继节点(Pr)包括了大甲、后里以及丰原,因此系统会将大甲、后里以及丰原的三个中继节点列入开启列表;对于不同的显示画面设计,导航系统11可将开启列表或其他信息在输出界面114上显示出来。In steps S1 and S2, taking the preferred embodiment of the navigation route planning
S3:通过路径目标函数F(n),演算出各路径i的总里程成本Fi;其中总里程成本Fi依路径目标函数F(n)所定义,如式(9):S3: Through the path objective function F(n), calculate the total mileage cost F i of each path i; where the total mileage cost F i is defined according to the path objective function F(n), as shown in formula (9):
Fi=Gi+Hi ......(9)F i =G i +H i ... (9)
其中,Fi为路径i的总里程成本,Gi为耗费里程成本、Hi为残余里程成本;其中,路径i的Hi残余里程成本可如式(2)所定义计算,总里程成本Fi计算如式(10):Among them, F i is the total mileage cost of route i, G i is the consumed mileage cost, and H i is the residual mileage cost; among them, the H i residual mileage cost of route i can be calculated as defined in formula (2), and the total mileage cost F i is calculated as formula (10):
Fi=Gi+Hi F i =G i +H i
=Gi+hi·Wi ......(10)=G i +h i ·W i ......(10)
其中,hi为路径i当前规划点Pc至终点Pt的直线距离成本,Wi为路径i整体耗电权重数值;式(10)代表残余里程成本函数Hi等于残余里程的直线距离成本hi与整体耗电权重数值Wi的乘积;其中,路径i的耗费里程成本Gi为自起始点Ps已实际行经的每一个中继节点的实际已耗费里程成本G1i与即将再耗费里程成本函数G2i的和、整体耗电权重Wi为由充电站位置所定义的充电站权重与道路权重的乘积。Among them, h i is the straight-line distance cost from the current planning point Pc to the end point Pt of path i, W i is the weight value of the overall power consumption of path i; formula (10) represents that the residual mileage cost function H i is equal to the straight-line distance cost h i of the residual mileage and the overall power consumption weight value W i ; where, the mileage cost G i of path i is the actual mileage cost G 1i of each relay node that has actually traveled from the starting point Ps and the cost function of the mileage to be consumed The sum of G 2i and the overall power consumption weight W i is the weight of the charging station defined by the location of the charging station with road weight product of .
又充电站权重可为充电站现役权重Ws与充电站种类权重Wst的乘积;道路权重可为道路优先权重Wr、耗电速率权重Wc及连接道路种类权重Wct的乘积;因此,总里程成本Fi计算如式(11);And charging station weight It can be the product of the active weight Ws of the charging station and the weight Wst of the charging station type; the road weight It can be the product of road priority weight Wr, power consumption rate weight Wc and connection road type weight Wct; therefore, the total mileage cost F i is calculated as formula (11);
Fi=G1i+G2i+hi·Wi F i =G 1i +G 2i +h i ·W i
=G1i+G2i+hi·(Ws·Wst·Wr·Wc·Wct) ......(11)=G 1i +G 2i +h i ·(Ws·Wst·Wr·Wc·Wct) ...(11)
在步骤S3,以较佳实施例应用于本发明交通载具的导航系统10为例,处理模块113与导航路径规划程序12依路径目标函数F(n)对各路径i演算总里程成本Fi,如上述大甲、后里以及丰原三个中继节点为例,处理模块113与导航路径规划程序12演算出经由大甲的总里程成本F1、经由后里的总里程成本F2以及经由丰原的总里程成本F3;对于不同的显示画面设计,导航系统11可将各路径的总里程成本及其大小次序或其他信息在输出界面114上显示出来。In step S3, taking the preferred embodiment of the
S4:将路径目标函数F(n)最小化,即在各路径中找出路径的最小的总里程成本(Fi,i=1,n)为F*,演算出最小总里程成本所对应的中继节点,定义为接续行进节点Pa(approaching node);其中,优化路径为自起始点Ps沿至少一个上述接续行进节点Pa而行进至终点Pt的路径集合。S4: Minimize the path objective function F(n), that is, find the minimum total mileage cost (F i , i=1, n) of the path in each path as F*, and calculate the minimum total mileage cost corresponding to A relay node is defined as an approaching node Pa (approaching node); wherein, the optimized path is a set of paths traveling from the starting point Ps along at least one of the aforementioned approaching nodes Pa to the end point Pt.
在步骤S4,以较佳实施例应用于本发明的导航路径规划计算机程序产品10为例,处理模块113与导航路径规划程序12在总里程成本Fi中寻找出最小总里程成本F*,并将所对应的中继节点定义为接续行进节点Pa。更进一步来说,继续以上述大甲、后里以及丰原三个节点为例,假设往大甲的路径中具有充电站而使总里程成本F最低,那么导航路径规划计算机程序产品10立即选择大甲的中继节点Pr作为接续行进节点Pa,表示大甲是下一个行车的中继节点;对于不同的显示画面设计,导航系统11可将各路径及优选的接续行进节点Pa或其他信息以图标或文字在输出界面114上显示出来。In step S4, taking the preferred embodiment applied to the navigation route planning
S5:在电动交通载具行进至接续行进节点Pa时,判断接续行进节点Pa是否为终点Pt;若接续行进节点Pa为终点Pt时,将接续行进节点Pa列入关闭列表。S5: When the electric vehicle travels to the next node Pa, determine whether the next node Pa is the end point Pt; if the next node Pa is the end point Pt, enter the next node Pa into the closed list.
在步骤S5,以较佳实施例应用于本发明之导航路径规划计算机程序产品10为例,步骤S5在电动交通载具行进至接续行进节点Pa时,将接续行进节点Pa列入关闭列表。继续以上述大甲、后里以及丰原三个节点为例,由于在步骤S4时,已选择大甲作为接续行进节点Pa,因此使用者即驾驶电动交通载具到了大甲,而此时导航路径规划计算机程序产品10会将大甲这个接续行进节点Pa列入关闭列表,藉以表示大甲已走过而在下次计算时,不列入计算范畴。另外,值得一提的是,在步骤S5中,其余上述每一个邻近于当前规划点Pc的中继节点Pr,列入开启列表,也就是说,后里以及丰原二个中继节点会列入开启列表,以供下次演算用。对于不同的显示画面设计,导航系统11可将关闭列表、开启列表或其他信息以图标或文字在输出界面114上显示出来。In step S5, taking the preferred embodiment applied to the navigation route planning
S6:在步骤S5的判断结果为否时,将接续行进节点Pa重新定义为上述的起始点Ps,并重复执行上述步骤S1至S5。S6: When the judgment result of step S5 is negative, redefine the next traveling node Pa as the above-mentioned starting point Ps, and repeatedly execute the above-mentioned steps S1 to S5.
在步骤S6,以较佳实施例应用于本发明之导航路径规划计算机程序产品10为例,导航路径规划计算机程序产品10判断大甲是否为终点Pt,而假若大甲不是使用者所设定的终点Pt的话,随即将接续行进节点Pa重新定义为起始点Ps,并重复进行步骤S1至S5,亦即再将大甲视为起始点Ps,进而继续规划路径直至接续行进节点Pa为终点Ps为止,藉以规划优化路径;而假若大甲是使用者所设定的终点Ps的话,随即进行步骤结束。对于不同的显示画面设计,导航系统11可将导航路径规划的实时状况或其他信息以图标或文字在输出界面114上显示出来。In step S6, taking the preferred embodiment applied to the navigation route planning
为了使本发明较佳实施例更为清楚,请参阅图5,图5显示本发明较佳实施例的导航路径规划计算机程序产品10的导航路径规划方法的规划示意图。如图5所示,Ps为起始点,Pr1、Pr2以及Pr3为中继节点,Pt为终点,其中当电动交通载具自起始点Ps行驶至中继节点Pr1(此时中继节点Pr1为开始进行下个路径规划的起始点,即为当前规划点Pc)时,会有二中继节点Pr2以及Pr3(路径1及路径2)需计算总里程成本Fi(i=1,2之二个路径)。又G1为起始点Ps至中继节点Pr1的实际已耗费里程成本,G2i(i=1,2)为中继节点Pr1至中继节点Pr2(路径1)或中继节点Pr1至中继节点Pr3(路径2)的即将再耗费里程成本;进一步来说,G2i为第i路径中继节点Pr1至中继节点(Pr2或Pr3)的距离与道路优先权重Wri的乘积,而hi(i=1,2)中,h1为中继节点Pr1至终点Pt(路径1)或中继节点Pr2至终点Pt(路径1)的直线距离成本、h2为中继节点Pr3至终点Pt(路径2)的直线距离成本。In order to make the preferred embodiment of the present invention more clear, please refer to FIG. 5 , which shows a schematic diagram of the navigation route planning method of the navigation route planning
其中,以中继节点Pr2(路径1)的总里程成本F1来说,其G1为起始点Ps至中继节点Pr1的实际已耗费里程成本,其G21为中继节点Pr1至中继节点Pr2(路径1)的即将再耗费里程成本,进一步来说,G21为中继节点Pr1至中继节点Pr2的距离与道路优先权重Wr1的乘积,而h1为中继节点Pr2至终点Pt(路径1)的直线距离成本、h2为中继节点Pr3至终点Pt(路径2)的直线距离成本。Among them, taking the total mileage cost F1 of the relay node Pr2 (path 1) as an example, its G1 is the actual mileage cost from the starting point Ps to the relay node Pr1, and its G21 is the distance from the relay node Pr1 to the relay node Pr2 (Path 1) is about to consume mileage cost. Further speaking, G 21 is the product of the distance from relay node Pr1 to relay node Pr2 and the road priority weight Wr1, and h 1 is the product of the distance from relay node Pr2 to terminal Pt (path 1) the straight-line distance cost, h 2 is the straight-line distance cost from the relay node Pr3 to the end point Pt (path 2).
对于另一具体实施例,如图3,导航路径规划计算机程序产品10包含括导航系统11、导航路径规划程序12、权重数据库13,其中权重数据库13包括有充电站权重与道路权重的数据,对于不限定实施例,可由使用者输入、内建于导航路径规划计算机程序产品10中,或可自云端下载资料,如下例的态样:For another specific embodiment, as shown in FIG. 3 , the navigation route planning
充电站现役权重Ws的数值,如:The value of the active weight Ws of the charging station, such as:
对路径上的充电站是否有服役(营业中)或没有服役(歇业中),给予不同的权重。Different weights are given to whether the charging stations on the route are in service (in business) or not in service (out of business).
充电站种类权重Wst的数值,如:The value of the weight Wst of the charging station type, such as:
对路径上的充电站不同的种类给予不同的权重,如快速充电站需要花费里程成本较高,而可更换电池的充电电池更换站(将整组电池拆下换装上另一组电池)与行动式充电站(如在车后拖着一个电池的拖式电池进行快速更换)则花费里程成本接近,在本实施例给予相同的权重。Different weights are given to different types of charging stations on the route. For example, fast charging stations require a higher mileage cost, while rechargeable battery replacement stations with replaceable batteries (remove the entire set of batteries and replace them with another set of batteries) and Mobile charging stations (such as dragging a battery behind the car for quick replacement) cost close to the mileage cost, and are given the same weight in this embodiment.
道路优先权重Wr的数值,如:The value of road priority weight Wr, such as:
对路径上的各种道路的选择,依其不同的里程成本给予不同的权重。For the selection of various roads on the route, different weights are given according to their different mileage costs.
耗电速率权重Wc的数值,且其主要依据道路型态的参考速率而设定,如:The value of the power consumption rate weight Wc, and it is mainly set according to the reference rate of the road type, such as:
对路径上的各种道路有不同的耗电基准,依其不同的里程成本给予不同的权重;通常耗电基准可由各种道路的行驶的速率为参考。There are different power consumption benchmarks for various roads on the route, and different weights are given according to their different mileage costs; usually the power consumption benchmarks can be referenced by the driving speed of various roads.
连结道路种类权重Wct的数值,如:Link the value of road type weight Wct, such as:
对路径上因道路连接的各种连结道路有不同的里程成本,依其不同的里程成本给予不同的权重。There are different mileage costs for various connecting roads connected by roads on the route, and different weights are given according to their different mileage costs.
整体耗电权重Wi为路径i中的充电站现役权重Ws、充电站种类权重Wst、道路优先权重Wr、耗电速率权重Wc以及连接道路种类权重Wct的乘积;因此对于路径1(中继节点Pr2至终点Pt),整体耗电权重W1=Ws1*Wst1*Wr1*Wc1*Wct1。假若中继节点Pr1至中继节点Pr2的路径不具有充电站,而其行走路径的道路型态为高速公路,连接道路型态为系统交流道,因此充电站现役权重Ws1为1;道路优先权重Wr1为0.8;耗电速率权重Wc1为0.033;连结道路种类权重Wct1为1;而充电站种类权重Wst1则可为1,据此,整体耗电权重W1的乘积结果为1*0.8*0.033*1*1。The overall power consumption weight Wi is the product of the charging station active weight Ws, the charging station type weight Wst, the road priority weight Wr, the power consumption rate weight Wc, and the product of the connected road type weight Wct in path i; therefore, for path 1 (relay node Pr2 To the end point Pt), the overall power consumption weight W 1 =Ws 1 *Wst 1 *Wr 1 *Wc 1 *Wct 1 . If the route from relay node Pr1 to relay node Pr2 does not have a charging station, but the road type of the traveling path is a highway, and the connecting road type is a system interchange, so the active weight Ws 1 of the charging station is 1; road priority The weight Wr 1 is 0.8; the power consumption rate weight Wc 1 is 0.033; the link road type weight Wct 1 is 1; and the charging station type weight Wst 1 can be 1. Accordingly, the product of the overall power consumption weight W 1 is 1 *0.8*0.033*1*1.
同理,以中继节点Pr3(路径2)的总里程成本F2来说,其G1为起始点Ps至中继节点Pr1的实际已耗费里程成本,其G22为中继节点Pr1至中继节点Pr3的即将再耗费里程成本,进一步来说,G22为中继节点Pr1至中继节点Pr3的距离与道路优先权重Wr的乘积,而h2为中继节点Pr3至终点Pt的直线距离成本。Similarly, taking the total mileage cost F2 of the relay node Pr3 (path 2), its G1 is the actual mileage cost from the starting point Ps to the relay node Pr1, and its G22 is the relay node Pr1 to the relay node Pr3 Further, G22 is the product of the distance from the relay node Pr1 to the relay node Pr3 and the road priority weight Wr, and h2 is the straight-line distance cost from the relay node Pr3 to the terminal Pt.
另外,假若中继节点Pr1至中继节点Pr3的路径具有充电站Cs,且充电站Cs的种类为充电电池更换站,而其行走路径的道路型态为高速公路,连接道路型态为系统交流道,因此充电站现役权重Ws为0.5;道路优先权重Wr为0.8;耗电速率权重Wc为0.033;连结道路种类权重Wct为1而充电站种类权重Wst则可为0.4,据此,整体耗电权重W的乘积结果为0.5*0.8*0.033*1*0.4。因此,在比较中继节点Pr2以及Pr3的总里程成本F后可发现中继节点Pr3的总里程成本F2较小,使得规划路径会以中继节点Pr3为最佳路径。In addition, if the route from relay node Pr1 to relay node Pr3 has charging station Cs, and the type of charging station Cs is a rechargeable battery replacement station, and the road type of its travel path is expressway, and the connecting road type is system AC Therefore, the active weight Ws of the charging station is 0.5; the road priority weight Wr is 0.8; the power consumption rate weight Wc is 0.033; the link road type weight Wct is 1 and the charging station type weight Wst can be 0.4. According to this, the overall power consumption The product result of weight W is 0.5*0.8*0.033*1*0.4. Therefore, after comparing the total mileage cost F of the relay nodes Pr2 and Pr3, it can be found that the total mileage cost F2 of the relay node Pr3 is smaller, so that the planned route takes the relay node Pr3 as the optimal route.
为了使本发明较佳实施例更为清楚,请一并参阅图2以及图6A至图6D,图6A至图6D显示本发明较佳实施例应用于导航系统的规划路径示意图。如图所示,上述步骤开始后,进行步骤S1利用地图信息,将起始点定义为一当前规划点Pc,并将每一邻近于当前规划点Pc的中继节点Pr列入开启列表。更进一步来说,使用者设定A为起始点,E为终点,而在开始规划路径时,系统会将起始点A定义为当前规划点Ps,并将三个中继节点B1、B2以及B3列入开启列表。In order to make the preferred embodiment of the present invention more clear, please refer to FIG. 2 and FIGS. 6A to 6D together. FIGS. 6A to 6D show schematic diagrams of the planned route applied to the navigation system according to the preferred embodiment of the present invention. As shown in the figure, after the above steps are started, proceed to step S1 using map information to define the starting point as a current planning point Pc, and list each relay node Pr adjacent to the current planning point Pc into the open list. Furthermore, the user sets A as the starting point and E as the end point, and when starting to plan the route, the system will define the starting point A as the current planning point Ps, and assign three relay nodes B1, B2 and B3 Included on the open list.
于步骤S2中,导航系统11使处理模块113开始依据前述的路径目标函数F(n)演算经由B1、B2以及B3各路径i的总里程成本Fi。更具体来说,由于残余里程成本H的整体耗电权重W中包括充电站现役权重Ws,而仅只有出发点A出发至中继节点B1的路径中具有充电站Cs1,因此中继节点B1的总里程成本F较小,而出发点A出发至中继节点B2以及B3的路径都不会行经充电站,因此相较于中继节点B1的总里程成本F会较大。In step S2 , the
于步骤S3中,处理模块113及导航路径规划程序12运算出开启列表内的邻近于当前规划点Pc的每一个分别对应于上述每一个中继节点(各路径i)的总里程成本Fi。更进一步来说,经由上述演算后,处理模块113及导航路径规划程序12会在步骤S3中依据式(11)运算出各中继节点B1、B2以及B3的总里程成本Fi,假设中继节点B1的F1系30、中继节点B2的F2系60,而中继节点B3的F3系70。In step S3, the
在步骤S4中,处理模块113及导航路径规划程序12在总里程成本Fi中寻找出最小总里程成本F*,并将所对应的中继节点定义为接续行进节点Pa。更进一步来说,由于在步骤S3中,找出中继节点B1的F1系30、中继节点B2的F2系60,而中继节点B3的F3系70,因此,处理模块113及导航路径规划程序12在步骤S4中进一步找出中继节点B1,因为其F1为最小,进而将中继节点B1定义为接续行进节点Pa,此时导航路径规划计算机程序产品100的输出界面114显示如图6A的画面。In step S4, the
在步骤S5中判断接续行进节点Pa是否为终点Pt。更进一步来说,使用者驾驶电动车至中继节点B1时,导航路径规划计算机程序产品10会将中继节点B1列入关闭列表,藉以表示中继节点B1已走过而在下次计算时,不列入计算范畴,此外,导航路径规划计算机程序产品10会将中继节点B2以及B3列入开启列表。另外,由于接续行进节点Pa是中继节点B1,而终点是E,因此判断结果为否,因此会直接进行步骤S6将接续行进节点Pa重新定义为起始点Ps,也就是说,中继节点B1重新定义为起始点Ps,接着重复执行步骤S1至S5。值得一提的是,在重复执行的过程中,以中继节点B1为起始点Ps的开启列表内,导航路径规划计算机程序产品10会将中继节点B2、B3、C1、C2以及C3列入开启列表,而在较佳实施例中,由于中继节点B2以及B3经由一验证机制而认为走回头路,因此中继节点B2以及B3会随即被排除在开启列表外。In step S5, it is judged whether the next traveling node Pa is the end point Pt. Furthermore, when the user drives the electric vehicle to the relay node B1, the navigation route planning
而在下一次重复执行的过程中,中继节点B1为起始点Ps,路径上有中继节点C1、C2以及C3,及充电站Cs2,经由导航10依据式(11)从中选出较佳的路径,例如,往中继节点C2的路径上有充电站Cs2,其经运算后其总里程成本F较小而使得接续行进节点为C2,此时导航路径规划计算机程序产品10的输出界面114显示如图6B的画面,而由于中继节点C2并不是终点E,因此会再重复执行步骤S1至S5。In the next repeated execution process, the relay node B1 is the starting point Ps, there are relay nodes C1, C2 and C3 on the path, and the charging station Cs2, and a better path is selected according to formula (11) through the
在第二次重复执行的过程中,导航路径规划计算机程序产品10会从中继节点D1、D2以及D3中选出较佳的路径,例如,虽往中继节点D1的路径上有充电站Cs4,但其路径经由巷弄,道路优先权重Wr及耗电速率权重Wc均较高,因此其总里程成本F较大,而以中继节点D2的总里程成本F较小,而使得接续行进节点Pa为D2,此时导航路径规划计算机程序产品10的输出界面114显示如图6C的画面,而由于中继节点D2并不是终点E,因此会再重复执行步骤S1至S5。During the second repeated execution, the navigation route planning
后续在第三次重复执行的过程中,规划出往终点E的路径,进而规划出如图6D所示的优化路径P*。Subsequently, in the process of repeated execution for the third time, a path to the end point E is planned, and then an optimized path P* as shown in FIG. 6D is planned.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. Should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210539972.9A CN103868518B (en) | 2012-12-13 | 2012-12-13 | Navigation path planning method for electric vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210539972.9A CN103868518B (en) | 2012-12-13 | 2012-12-13 | Navigation path planning method for electric vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103868518A true CN103868518A (en) | 2014-06-18 |
CN103868518B CN103868518B (en) | 2017-04-12 |
Family
ID=50907302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210539972.9A Active CN103868518B (en) | 2012-12-13 | 2012-12-13 | Navigation path planning method for electric vehicles |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103868518B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105628038A (en) * | 2014-11-05 | 2016-06-01 | 华创车电技术中心股份有限公司 | Vehicle machine of electric vehicle with connection running function, travel planning system and method |
CN109767613A (en) * | 2019-01-23 | 2019-05-17 | 浙江数链科技有限公司 | Method for early warning, device, equipment and the storage medium of vehicle deviation scheduled circuit |
CN110610333A (en) * | 2019-08-21 | 2019-12-24 | 深圳易马达科技有限公司 | Method and terminal for planning path |
CN114869464A (en) * | 2022-04-20 | 2022-08-09 | 中国科学院自动化研究所 | Three-dimensional navigation method, device, equipment and medium for vascular intervention surgical robot |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09266602A (en) * | 1996-03-26 | 1997-10-07 | Honda Motor Co Ltd | Control device for electric vehicle charging device |
CN101881624A (en) * | 2009-05-05 | 2010-11-10 | 通用汽车环球科技运作公司 | Be used for route planning system for vehicles |
CN102192755A (en) * | 2010-03-09 | 2011-09-21 | 日立汽车系统株式会社 | Route planning device and route planning system |
CN102235878A (en) * | 2010-03-31 | 2011-11-09 | 爱信艾达株式会社 | Route display device, route display method, route display program, and route display system |
JP2012080726A (en) * | 2010-10-05 | 2012-04-19 | Autonetworks Technologies Ltd | Device for informing power information |
-
2012
- 2012-12-13 CN CN201210539972.9A patent/CN103868518B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09266602A (en) * | 1996-03-26 | 1997-10-07 | Honda Motor Co Ltd | Control device for electric vehicle charging device |
CN101881624A (en) * | 2009-05-05 | 2010-11-10 | 通用汽车环球科技运作公司 | Be used for route planning system for vehicles |
CN102192755A (en) * | 2010-03-09 | 2011-09-21 | 日立汽车系统株式会社 | Route planning device and route planning system |
CN102235878A (en) * | 2010-03-31 | 2011-11-09 | 爱信艾达株式会社 | Route display device, route display method, route display program, and route display system |
JP2012080726A (en) * | 2010-10-05 | 2012-04-19 | Autonetworks Technologies Ltd | Device for informing power information |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105628038A (en) * | 2014-11-05 | 2016-06-01 | 华创车电技术中心股份有限公司 | Vehicle machine of electric vehicle with connection running function, travel planning system and method |
CN105628038B (en) * | 2014-11-05 | 2019-05-14 | 华创车电技术中心股份有限公司 | Vehicle machine, trip planning system and method of electric vehicle with connecting driving function |
CN109767613A (en) * | 2019-01-23 | 2019-05-17 | 浙江数链科技有限公司 | Method for early warning, device, equipment and the storage medium of vehicle deviation scheduled circuit |
CN109767613B (en) * | 2019-01-23 | 2021-03-23 | 浙江数链科技有限公司 | Method, device and equipment for early warning of vehicle deviation from preset route and storage medium |
CN110610333A (en) * | 2019-08-21 | 2019-12-24 | 深圳易马达科技有限公司 | Method and terminal for planning path |
CN110610333B (en) * | 2019-08-21 | 2022-01-04 | 深圳易马达科技有限公司 | Method and terminal for planning path |
CN114869464A (en) * | 2022-04-20 | 2022-08-09 | 中国科学院自动化研究所 | Three-dimensional navigation method, device, equipment and medium for vascular intervention surgical robot |
CN114869464B (en) * | 2022-04-20 | 2025-05-13 | 中国科学院自动化研究所 | Three-dimensional navigation method, device, equipment and medium for vascular interventional surgery robot |
Also Published As
Publication number | Publication date |
---|---|
CN103868518B (en) | 2017-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7493000B2 (en) | Vehicle Charging Lanes | |
CN102622907B (en) | Driving assistance method and driving assistance system for electric vehicle | |
US20100138093A1 (en) | Energy replenishment quantity control system | |
Alsalman et al. | Users, planners, and governments perspectives: A public survey on autonomous vehicles future advancements | |
US20160167642A1 (en) | Method for optimising the energy consumption of a hybrid vehicle | |
JP5920309B2 (en) | Movement support device, movement support method, and driving support system | |
CN103575285A (en) | Route planning device | |
JP2012080748A (en) | In-vehicle navigation device and charging/discharging control method of in-vehicle battery | |
JP5609604B2 (en) | Navigation device | |
CN103868518B (en) | Navigation path planning method for electric vehicles | |
JP2013242198A (en) | Route search device and computer program | |
US9671242B2 (en) | Multiple energy routing system | |
CN102945261B (en) | The one-touch target search optimization method of intelligent vehicle-carried information service terminal | |
JP2011247816A (en) | Information service system | |
JP5646877B2 (en) | Traffic simulation program, traffic simulation apparatus, and traffic simulation method | |
Qiao et al. | Vehicle powertrain connected route optimization for conventional, hybrid and plug-in electric vehicles | |
TW201420994A (en) | Computer navigation route planning program product for electric vehicle | |
US20240393121A1 (en) | Method for recommending energy efficient route for v2v energy exchange and system thereof | |
Moon et al. | Energy-Efficient Routing of a Heterogeneous Vehicle Fleet with Optimized Speed Profiling | |
JP5230785B2 (en) | Vehicle control apparatus and hybrid vehicle | |
Boyack et al. | LogPath: Log data based energy consumption analysis enabling electric vehicle path optimization | |
CN115451984A (en) | A travel navigation method and device | |
Lin et al. | Development of commercial vehicle emission inventory and analysis | |
Norton | Autonomous Shuttles in Santa Fe Springs | |
CN111380551A (en) | Electric vehicle running management method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |