CN103866272B - Method for improving P-type stability of zinc oxide film - Google Patents
Method for improving P-type stability of zinc oxide film Download PDFInfo
- Publication number
- CN103866272B CN103866272B CN201210532370.0A CN201210532370A CN103866272B CN 103866272 B CN103866272 B CN 103866272B CN 201210532370 A CN201210532370 A CN 201210532370A CN 103866272 B CN103866272 B CN 103866272B
- Authority
- CN
- China
- Prior art keywords
- source
- zinc
- deposition
- doping
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims abstract description 75
- 239000011787 zinc oxide Substances 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000008021 deposition Effects 0.000 claims abstract description 43
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000011701 zinc Substances 0.000 claims abstract description 30
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 25
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000001301 oxygen Substances 0.000 claims abstract description 14
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 239000002131 composite material Substances 0.000 claims abstract description 9
- 229910007744 Zr—N Inorganic materials 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims abstract description 6
- 238000000151 deposition Methods 0.000 claims description 31
- 239000010409 thin film Substances 0.000 claims description 21
- 238000002360 preparation method Methods 0.000 claims description 14
- 239000010408 film Substances 0.000 claims description 13
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 2
- 239000012498 ultrapure water Substances 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims 7
- -1 alkyl compound Chemical class 0.000 claims 3
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims 3
- 229960001296 zinc oxide Drugs 0.000 claims 3
- 230000001276 controlling effect Effects 0.000 claims 2
- 230000001105 regulatory effect Effects 0.000 claims 2
- 238000009423 ventilation Methods 0.000 claims 2
- 239000011592 zinc chloride Substances 0.000 claims 2
- VOLGAXAGEUPBDM-UHFFFAOYSA-N $l^{1}-oxidanylethane Chemical compound CC[O] VOLGAXAGEUPBDM-UHFFFAOYSA-N 0.000 claims 1
- BGGIUGXMWNKMCP-UHFFFAOYSA-N 2-methylpropan-2-olate;zirconium(4+) Chemical compound CC(C)(C)O[Zr](OC(C)(C)C)(OC(C)(C)C)OC(C)(C)C BGGIUGXMWNKMCP-UHFFFAOYSA-N 0.000 claims 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims 1
- 229910007932 ZrCl4 Inorganic materials 0.000 claims 1
- 229910008047 ZrI4 Inorganic materials 0.000 claims 1
- 125000003739 carbamimidoyl group Chemical group C(N)(=N)* 0.000 claims 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 claims 1
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 claims 1
- 229910001882 dioxygen Inorganic materials 0.000 claims 1
- UARGAUQGVANXCB-UHFFFAOYSA-N ethanol;zirconium Chemical group [Zr].CCO.CCO.CCO.CCO UARGAUQGVANXCB-UHFFFAOYSA-N 0.000 claims 1
- 150000004678 hydrides Chemical class 0.000 claims 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims 1
- LGRLWUINFJPLSH-UHFFFAOYSA-N methanide Chemical compound [CH3-] LGRLWUINFJPLSH-UHFFFAOYSA-N 0.000 claims 1
- 229910052594 sapphire Inorganic materials 0.000 claims 1
- 239000010980 sapphire Substances 0.000 claims 1
- 230000002000 scavenging effect Effects 0.000 claims 1
- 235000011149 sulphuric acid Nutrition 0.000 claims 1
- 239000001117 sulphuric acid Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 235000005074 zinc chloride Nutrition 0.000 claims 1
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical group Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 claims 1
- HONKFXPQYSOIMS-UHFFFAOYSA-J zirconium(4+) tetraiodate Chemical compound [Zr+4].[O-]I(=O)=O.[O-]I(=O)=O.[O-]I(=O)=O.[O-]I(=O)=O HONKFXPQYSOIMS-UHFFFAOYSA-J 0.000 claims 1
- XLMQAUWIRARSJG-UHFFFAOYSA-J zirconium(iv) iodide Chemical compound [Zr+4].[I-].[I-].[I-].[I-] XLMQAUWIRARSJG-UHFFFAOYSA-J 0.000 claims 1
- 238000011065 in-situ storage Methods 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 238000000231 atomic layer deposition Methods 0.000 description 6
- 239000010410 layer Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- XEMZLVDIUVCKGL-UHFFFAOYSA-N hydrogen peroxide;sulfuric acid Chemical compound OO.OS(O)(=O)=O XEMZLVDIUVCKGL-UHFFFAOYSA-N 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
技术领域technical field
本发明涉及氧化锌薄膜的制备技术领域,特别涉及用于提高氧化锌薄膜P型稳定性的方法。The invention relates to the technical field of preparation of zinc oxide thin films, in particular to a method for improving the P-type stability of zinc oxide thin films.
背景技术Background technique
半导体薄膜在微电子、光学、信息学等高新技术产业中发挥出十分重要的作用,发展高晶体质量半导体薄膜的制备与掺杂技术,特别是对于第三代半导体材料ZnO薄膜的制备、表征、掺杂极其特性研究,对于包括紫外波段发光材料、紫外探测器,高集成度光子学与电子学器件、太阳能电池等面向新能源的重要应用领域具有十分重要的意义。氧化锌作为一种新型的II-Ⅵ族直接带隙宽禁带化合物,具有大的室温禁带宽度3.37eV,而且自由激子结合能高达60meV,作为半导体材料越来越受到人们的重视。与其它宽禁带半导体材料相比,ZnO薄膜生长温度低,抗辐射性好,受激辐射有较低的阈值功率和很高的能量转换效率,这些优点使ZnO正成为光电子、微电子、信息等高新技术在十二五之后赖以继续发展的关键基础材料。然而本征ZnO由于存在缺陷,使得ZnO呈n型,p型ZnO薄膜制备是目前ZnO相关研究的热点和难点。氮掺杂虽然在理论上的计算使得p型ZnO的制备成为可能,但是众多实验表明,由于N元素在ZnO中固溶度较低,因此单独的N元素掺杂不能实现高载流子浓度和高迁移率的p型ZnO薄膜。为了解决该问题,受主-施主-受主的共掺被认为是制备出高质量的p-ZnO薄膜最优发展前景的方向之一。Semiconductor thin films play a very important role in high-tech industries such as microelectronics, optics, and informatics. Develop high-quality semiconductor thin film preparation and doping technologies, especially for the preparation, characterization, and The study of doping and its characteristics is of great significance to important application fields for new energy, including ultraviolet-band luminescent materials, ultraviolet detectors, highly integrated photonics and electronic devices, and solar cells. Zinc oxide, as a new type II-VI group direct bandgap wide bandgap compound, has a large room temperature bandgap of 3.37eV, and the binding energy of free excitons is as high as 60meV, and it has attracted more and more attention as a semiconductor material. Compared with other wide-bandgap semiconductor materials, ZnO film has low growth temperature, good radiation resistance, low threshold power of stimulated radiation and high energy conversion efficiency. The key basic materials for high and new technologies to continue to develop after the 12th Five-Year Plan. However, due to the existence of defects in intrinsic ZnO, ZnO is n-type, and the preparation of p-type ZnO thin films is currently a hot and difficult point in ZnO-related research. Although the theoretical calculation of nitrogen doping makes the preparation of p-type ZnO possible, many experiments have shown that due to the low solid solubility of N element in ZnO, N element doping alone cannot achieve high carrier concentration and High mobility p-type ZnO thin film. In order to solve this problem, acceptor-donor-acceptor co-doping is considered to be one of the most promising directions for preparing high-quality p-ZnO thin films.
近年来,制备ZnO薄膜的方法通常包括:如磁控溅射、金属有机化学气相沉积(MOCVD)、分子束外延(MBE)、激光脉冲沉积(PLD)和湿化学沉积等。这些制备工艺各有优缺点,从结晶情况来看以MOCVD和MBE法制备的薄膜质量较好。然而,MOCVD不能在原位进行薄膜的掺杂并且反应中存在的湍流和气流分布会影响膜的厚度和均匀性。MBE技术对于特定原子层位置的精确掺杂也难以实现。In recent years, methods for preparing ZnO thin films generally include: magnetron sputtering, metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), pulsed laser deposition (PLD) and wet chemical deposition. These preparation processes have their own advantages and disadvantages. From the crystallization situation, the film quality prepared by MOCVD and MBE method is better. However, MOCVD cannot perform in situ doping of thin films and the turbulence and gas flow distribution existing in the reaction will affect the thickness and uniformity of the film. Accurate doping of specific atomic layer positions by MBE technology is also difficult to achieve.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种可以对氧化锌薄膜进行原位的共掺,以增加受主元素的掺入量,促进氧化锌薄膜的p型转变的用于提高氧化锌薄膜P型稳定性的方法。The technical problem to be solved by the present invention is to provide a kind of in-situ co-doping of zinc oxide film to increase the dosing amount of acceptor element and promote the p-type transition of zinc oxide film for improving the p-type transformation of zinc oxide film. method of stability.
为解决上述技术问题,本发明提供了一种用于提高氧化锌薄膜P型稳定性的方法,包括将基片放入ALD反应腔室中,对基片及腔室管道进行加热,然后进行多组分的复合沉积;所述复合沉积包括在第一次锌源沉积后,分别引入一次含掺杂元素Zr的掺杂源的掺杂沉积、第二次锌源沉积、两次氮掺杂源沉积及两次氧源沉积,形成N-Zr-N的共掺;所述氮掺杂源沉积和所述氧源的沉积顺序是先氮掺杂源沉积,后氧源沉积;所述含掺杂元素Zr的掺杂源沉积与所述第二次锌源沉积顺序是先第二次锌源沉积,后含掺杂元素Zr的掺杂源沉积。In order to solve the above-mentioned technical problems, the present invention provides a method for improving the P-type stability of zinc oxide thin films, including putting the substrate into the ALD reaction chamber, heating the substrate and the chamber pipeline, and then performing multiple Composite deposition of components; the composite deposition includes, after the first zinc source deposition, respectively introducing a doping deposition of a doping source containing the doping element Zr, the second zinc source deposition, and two nitrogen doping sources deposition and two oxygen source depositions to form N-Zr-N co-doping; the deposition sequence of the nitrogen doping source deposition and the oxygen source deposition is first the nitrogen doping source deposition, and then the oxygen source deposition; The order of the doping source deposition of the heteroelement Zr and the second zinc source deposition is first the second zinc source deposition, and then the doping source containing the doping element Zr.
本发明提供的用于提高氧化锌薄膜P型稳定性的方法,利用原子层沉积层层生长的特点,在氧化锌薄膜生长的过程中,掺入两次受主元素N和一次Zr,形成N-Zr-N共掺的氧化锌薄膜。N-Zr-N复合体的形成,降低了离化能,促进p型电导的形成。本发明制备工艺简单,沉积和掺杂过程易于控制,制备所得共掺氧化锌薄膜有利于提高氧化锌薄膜p型电学性质的稳定性。The method for improving the P-type stability of the zinc oxide thin film provided by the present invention utilizes the characteristics of layer-by-layer growth of atomic layer deposition. During the growth process of the zinc oxide thin film, two acceptor elements N and one Zr are added to form N - Zr-N co-doped zinc oxide thin films. The formation of N-Zr-N complex reduces the ionization energy and promotes the formation of p-type conductance. The preparation process of the invention is simple, the deposition and doping process is easy to control, and the prepared co-doped zinc oxide thin film is beneficial to improving the stability of the p-type electrical properties of the zinc oxide thin film.
附图说明Description of drawings
图1为本发明实施例提供的用于提高氧化锌薄膜P型稳定性的方法的流程图。FIG. 1 is a flowchart of a method for improving P-type stability of a zinc oxide thin film provided by an embodiment of the present invention.
具体实施方式detailed description
参见图1所示,本发明实施例提供的用于提高氧化锌薄膜P型稳定性的方法,包括:将硅衬底或者玻璃衬底用浓硫酸双氧水进行处理,再用超纯水超声波进行清洗,N2吹干,其中浓硫酸:双氧水=4:1。将衬底放入原子层沉积的腔室内,开启原子层沉积设备,调整工作参数,抽真空、加热沉底,达到实验所需各种工作环境;进行N-Zr共掺氧化锌薄膜的多组复合沉积,即Zn(C2H5)2/N2/plasmaN2/N2/H2O/N2/Zn(C2H5)2/N2/(CH3CH2O)4Zr/N2/plasmaN2/N2/H2O/N2=0.15s/50s/10s/50s/0.07s/50s/0.08s/50s/0.08s/50s/10s/50s/0.07s/50s。其中氮气的流量为1sccm-1000sccm,优选地为15sccm,进气时间为0.04s-5s,优选地为0.15s,清洗时间为5s-150s,优选地为50s,衬底温度为100℃-500℃,优选地为300℃;其中等离子放电功率为1W-100W,优选地为50W,放电时间为1s-50s,优选的为10s。在此期间通过N2等离子体来引入N掺杂,通过(CH3CH2O)4Zr来提供Zr原子,两次plasmaN2和一次(CH3CH2O)4Zr的沉积,使得Zr在ZnO中替锌(ZrZn),N替代O的位置,在薄膜中形成N-Zr-N的复合体,该复合体可以降低离化能,促进p型电导的形成。重复该多组分的复合沉积,可以逐层生长N-Zr-N共掺的氧化锌薄膜。Referring to Figure 1, the method for improving the P-type stability of the zinc oxide thin film provided by the embodiment of the present invention includes: treating a silicon substrate or a glass substrate with concentrated sulfuric acid hydrogen peroxide, and then ultrasonically cleaning it with ultrapure water , N 2 blow dry, wherein concentrated sulfuric acid:hydrogen peroxide=4:1. Put the substrate into the atomic layer deposition chamber, turn on the atomic layer deposition equipment, adjust the working parameters, vacuumize and heat the bottom to achieve various working environments required for the experiment; conduct multiple groups of N-Zr co-doped zinc oxide thin films Composite deposition, namely Zn(C 2 H 5 ) 2 /N 2 /plasmaN 2 /N 2 /H 2 O/N 2 /Zn(C 2 H 5 ) 2 /N 2 /(CH 3 CH 2 O) 4 Zr /N 2 /plasmaN 2 /N 2 /H 2 O/N 2 =0.15s/50s/10s/50s/0.07s/50s/0.08s/50s/0.08s/50s/10s/50s/0.07s/50s. Wherein the flow rate of nitrogen is 1sccm-1000sccm, preferably 15sccm, the intake time is 0.04s-5s, preferably 0.15s, the cleaning time is 5s-150s, preferably 50s, and the substrate temperature is 100°C-500°C , preferably 300°C; where the plasma discharge power is 1W-100W, preferably 50W, and the discharge time is 1s-50s, preferably 10s. During this period, N doping was introduced by N 2 plasma, Zr atoms were provided by (CH 3 CH 2 O) 4 Zr, two depositions of plasmaN 2 and one (CH 3 CH 2 O) 4 Zr made Zr in ZnO replaces zinc (Zr Zn ) and N replaces the position of O to form a N-Zr-N complex in the film, which can reduce the ionization energy and promote the formation of p-type conductance. By repeating the composite deposition of multiple components, the N-Zr-N co-doped zinc oxide film can be grown layer by layer.
本发明通过ALD逐层循环的生长方式生长Zr与N共掺的氧化锌薄膜,而且方法简单,利用原子层沉积单层循环生长的特点,在氧化锌薄膜生长的过程中实现均匀的在整个薄膜结构中进行掺杂,共掺后的氧化锌薄膜,有利于促进p型电导的形成。The present invention grows Zr and N co-doped zinc oxide thin film by ALD layer-by-layer cycle growth mode, and the method is simple, utilizes the characteristics of single-layer cycle growth of atomic layer deposition, and realizes uniform growth of zinc oxide film in the whole film during the growth process. Doping in the structure, and the co-doped zinc oxide film is conducive to promoting the formation of p-type conductance.
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above specific embodiments are only used to illustrate the technical solutions of the present invention without limitation, although the present invention has been described in detail with reference to examples, those of ordinary skill in the art should understand that the technical solutions of the present invention can be carried out Modifications or equivalent replacements without departing from the spirit and scope of the technical solution of the present invention shall be covered by the claims of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210532370.0A CN103866272B (en) | 2012-12-11 | 2012-12-11 | Method for improving P-type stability of zinc oxide film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210532370.0A CN103866272B (en) | 2012-12-11 | 2012-12-11 | Method for improving P-type stability of zinc oxide film |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103866272A CN103866272A (en) | 2014-06-18 |
CN103866272B true CN103866272B (en) | 2016-06-08 |
Family
ID=50905267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210532370.0A Active CN103866272B (en) | 2012-12-11 | 2012-12-11 | Method for improving P-type stability of zinc oxide film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103866272B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102304700A (en) * | 2011-09-23 | 2012-01-04 | 中国科学院微电子研究所 | Preparation method of nitrogen-doped zinc oxide film |
CN102534501A (en) * | 2012-03-29 | 2012-07-04 | 山东理工大学 | Preparation method for co-doped zinc oxide transparent conductive thin film for solar cell |
CN102694066A (en) * | 2012-04-01 | 2012-09-26 | 东旭集团有限公司 | Method for improving photoelectric conversion efficiency of solar cell panel |
CN102781838A (en) * | 2010-02-25 | 2012-11-14 | 康宁股份有限公司 | A process for manufacturing a doped or non-doped ZnO material and said material |
-
2012
- 2012-12-11 CN CN201210532370.0A patent/CN103866272B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102781838A (en) * | 2010-02-25 | 2012-11-14 | 康宁股份有限公司 | A process for manufacturing a doped or non-doped ZnO material and said material |
CN102304700A (en) * | 2011-09-23 | 2012-01-04 | 中国科学院微电子研究所 | Preparation method of nitrogen-doped zinc oxide film |
CN102534501A (en) * | 2012-03-29 | 2012-07-04 | 山东理工大学 | Preparation method for co-doped zinc oxide transparent conductive thin film for solar cell |
CN102694066A (en) * | 2012-04-01 | 2012-09-26 | 东旭集团有限公司 | Method for improving photoelectric conversion efficiency of solar cell panel |
Also Published As
Publication number | Publication date |
---|---|
CN103866272A (en) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100424233C (en) | A kind of preparation method of polycrystalline zinc oxide film material | |
CN103866277B (en) | Method for preparing double-acceptor co-doped zinc oxide film by atomic layer deposition | |
CN103866268B (en) | Preparation method of nitrogen-based donor-acceptor co-doped zinc oxide film | |
CN103866275B (en) | Preparation method of co-doped zinc oxide film by atomic layer deposition | |
CN103866276B (en) | Method for preparing co-doped zinc oxide film by atomic layer deposition | |
CN103866272B (en) | Method for improving P-type stability of zinc oxide film | |
CN103866280B (en) | Method for preparing donor-acceptor co-doped zinc oxide film by atomic layer deposition | |
CN103866269A (en) | Method for preparing Te-N codoped zinc oxide film by atomic layer deposition | |
CN103866267B (en) | Preparation method for N-Zr codoped zinc oxide film | |
CN103866273B (en) | Method for preparing N-Zr co-doped zinc oxide film by atomic layer deposition | |
CN108831939B (en) | Quaternary co-evaporation AIGS film and preparation method and application thereof | |
CN116555734A (en) | Gallium oxide film heteroepitaxial on diamond surface and preparation method thereof | |
CN101760726B (en) | Preparation method of B and N codope ZnO film | |
CN103866271B (en) | Preparation method for donor-acceptor co-doped zinc oxide film | |
CN103205729B (en) | Method for growing gallium nitride film by using ALD (atomic layer deposition) equipment | |
CN103866270B (en) | Preparation method for Te-N co-doped zinc oxide film | |
CN103866265B (en) | Preparation method of double-acceptor co-doped zinc oxide film based on nitrogen | |
CN103866289B (en) | Preparation method of P-N co-doped zinc oxide film | |
CN103866279B (en) | Method for preparing N-As co-doped zinc oxide film by atomic layer deposition | |
CN101404313B (en) | A silicon-based zinc oxide bidirectional direct current ultraviolet electroluminescence device and its preparation method | |
WO2022041601A1 (en) | Functional module, and manufacturing method therefor and application thereof | |
CN105118875B (en) | A kind of atomic layer deposition preparation method of cadmium-free buffer layer of copper indium gallium selenide thin film solar cell | |
CN104513970B (en) | Method for preparing magnesium borate super-conducting film | |
CN103180491B (en) | A kind of preparation method of p-type zno-based material | |
CN107400920B (en) | A pretreatment method for growing single crystal orientation zinc oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |