CN103859721B - 远程跌倒监护智能拐杖 - Google Patents

远程跌倒监护智能拐杖 Download PDF

Info

Publication number
CN103859721B
CN103859721B CN201410141280.8A CN201410141280A CN103859721B CN 103859721 B CN103859721 B CN 103859721B CN 201410141280 A CN201410141280 A CN 201410141280A CN 103859721 B CN103859721 B CN 103859721B
Authority
CN
China
Prior art keywords
crutch
acceleration
microprocessor
falling
formula
Prior art date
Application number
CN201410141280.8A
Other languages
English (en)
Other versions
CN103859721A (zh
Inventor
吴定会
李意扬
翟艳杰
史文婕
李家珊
钱芸
马洪良
沈飞凤
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to CN201410141280.8A priority Critical patent/CN103859721B/zh
Publication of CN103859721A publication Critical patent/CN103859721A/zh
Application granted granted Critical
Publication of CN103859721B publication Critical patent/CN103859721B/zh

Links

Abstract

本发明提供了一种远程跌倒监护智能拐杖,在拐杖手柄上设置电源总开关、功能按键、显示屏和指示灯,在拐杖支撑体上部内置无线通信模块和蜂鸣器,无线通信模块所连接的天线位于拐杖支撑体表面,在拐杖支撑体下部内置加速度传感器、GPS模块、微处理器和电池;加速度传感器负责采集拐杖运动加速度,再由微处理器进行处理判断跌倒信息,GPS模块用于实时跟踪拐杖的位置信息,当检测到跌倒或者通过功能按键主动报警时,微处理器发送拐杖的位置信息和报警信号。本发明采用多新息卡尔曼滤波方法,对加速度传感器返回的信息进行处理,去除噪声信号,从而准确判断出老人是否跌倒,准确报警;GPS定位以及蜂鸣器报警功能便于及时救治携带者。

Description

远程跌倒监护智能拐杖

技术领域

[0001] 本发明设及一种智能拐杖,具体是一种供老年人使用的远程跌倒监护智能拐杖。 技术背景

[0002] 随着社会老龄化程度的加深,空巢老人越来越多,已经成为一个不容忽视的社会 问题,他们没有子女在身边照顾,自己生活的安全保障要求越来越多。不断增多的"空巢老 人"使现有的养老体系面临=大挑战:生活保障、日常照料服务、精神慰藉。

[0003] 近年来,可穿戴设备逐渐进入大众视野,并成为新的发展趋势。可穿戴技术主要 探索和创造一种设备,该设备能直接穿在身上、或是整合进用户衣服或配件。例如Google Project Glass,具有和智能手机一样的功能,可W通过声音控制拍照,视频通话W及上网 冲浪、处理文字信息等,功能强大且方便携带。对于老年人而言,拐杖是他们随身携带的一 种设备,因此可W利用拐杖的便携优势,开发具有多种功能的智能拐杖来实现对老人的安 全监护。

[0004] 随着技术的发展,对于拐杖的改进研究已经不局限于结构上的优化,多功能智能 拐杖的发明也越来越多。多功能拐杖(CN203058593U),将拐杖和微型收音机、定位仪和手 电筒相结合,实现的一种多功能拐杖,可W使老人随时听广播,满足其娱乐需求,而且能够 根据定位仪定位,实现智能化,使家人能随时了解老人所处位置,手电筒的结合也保证了老 人在光线较暗时行动的安全。一种智能拐杖(CN103462315A),其特征是在拐杖本体上设有 电源装置,水平传感器模块,警报器,RFID标签,中央处理器。通过水平传感器采集拐杖信 息,判断老人是否跌倒;老人跌倒后,报警器发出警报;通过设置RFID标签,配合分布式阅 读器,可W实现对老人的定位。 阳〇化]然而,对于拐杖的改进多数是为了老年人使用更加便捷加入夜光或者手电筒功 能,或者为了老年人的娱乐加入MP3、收音机等等。也有拐杖是通过加速度或者角度传感 器来判断拐杖的状态,进而判断出使用者是否跌倒。但是运些具有跌倒检测功能的拐杖缺 乏对传感器原始信号的处理,特别是加速度传感器返回的信息经常带有强烈的噪声干扰信 号,很容易发生误报警。

发明内容

[0006] 本发明的主要目的是针对空巢老人的生活保障问题,提供一种集跌倒检测,位置 跟踪和娱乐为一体的远程跌倒监护智能拐杖,该智能拐杖对社区老年人的跌倒监护具有重 大意义。

[0007] 按照本发明提供的技术方案,所述远程跌倒监护智能拐杖包括拐杖的支撑体和顶 部的手柄,在拐杖手柄上设置电源总开关、功能按键、显示屏和指示灯,在拐杖支撑体上部 内置无线通信模块和蜂鸣器,无线通信模块所连接的天线位于拐杖支撑体表面,在容纳无 线通信模块的位置设有通风口,在拐杖支撑体下部内置加速度传感器、Gl^s模块、微处理器 和电池;所述电源总开关、功能按键、显示屏、指示灯、无线通信模块、蜂鸣器、加速度传感 器、GI^S模块均通过信号线与微处理器相连;加速度传感器负责采集拐杖运动加速度,再由 微处理器进行处理判断跌倒信息,GI^S模块用于实时跟踪拐杖的位置信息,当检测到跌倒或 者通过功能按键主动报警时,微处理器发送拐杖的位置信息和报警信号。

[0008] 具体的,当所述微处理器分析出加速度超过5m/s2时,发出跌倒报警信号。

[0009] 所述微处理器采用多新息卡尔曼滤波算法得出进行跌倒检测的加速度数据信息, 多新息方法是将标量单新息加W推广,变为新息向量,建立多新息算法;对于多新息卡尔曼 滤波算法,考虑W下随机系统状态空间模型,即为方程(1),(2):

[0010] X(t+1)=Ax(t)+Bu(t)+w(t) (1)

[0011] z(t)=Cx(t)+v(t) (2)

[0012] x(t)是t时刻的系统状态,u(t)是t时刻系统的控制量,A和B是系统参数,z(t) 是t时刻的测量值,C是测量系统参数。w(t)和v(t)分别表示过程和测量的高斯白噪声, 其均值为零,协方差为Q,R。

[0013] 针对该系统,多新息卡尔曼滤波器是最优的信息处理器。W下五个公式为原始卡 尔曼滤波算法原理描述基本公式,式(3) (4)完成卡尔曼滤波器实现对系统的预测,其中式 (3)利用系统的上一次状态预测现在的状态,得到系统更新后的预测结果,式(4)完成对应 于x(t|t-l)的协方差的更新。然后,结合已经得到的预测值和收集到的测量值,由式巧) 得到现在t状态的最优化估计值x(t|t)。K(t)是卡尔曼增益,其计算公式如化)。最后, 根据式(7)更新t状态下x(t It)的协方差,得到P(t It)。当系统进入t+1状态时,P(t It) 就等同于式(4)中的P(t-l|t-l),W此卡尔曼滤波算法自回归运算,直到系统过程结束。

[0014] X(t11-1)=Ax(t-111-1)+Bu(t) (3) 阳01 引 P(t|t-l)=AP(t-l|t-l)A'+Q (4)

[0016] X(t11)=x(t11-1)+K(t)(z(t)-Cx(t11-1)) (5)

[0017] K(t)=P(t|t-l)C'/(CP(t|t-l)C'+R) 巧)

[0018] P(t|t) = (I-K(t)C)P(t|t-l) (7)

[0019] 妨式中z(t)-Cx(t|t-l)为单新息量,将其表示为e(t)=z(t)-Cx(t|t-l),将e(t) 扩展为新息矩阵为:

[0020]

Figure CN103859721BD00051

(8)

[0021] 其中,正整数P为新息长度。

[0022] 于是得到多新息卡尔曼滤波算法,其最优状态估计方程转变为:

[0023] X(t11)=x(t11-1) +[Ki(t)K2(t). . .Kp(t) ]E(p,t) (9)

[0024] 转换即得到如下方程: 阳0巧]

Figure CN103859721BD00061

(10) 阳0%] 其中,增益矩阵取Ki(t)=K(t-i+l);

[0027]利用多新息卡尔曼滤波算法得到拐杖倒下时最优的加速度信号值x(t),根据此加 速度信号值判断拐杖是正常放倒还是跌倒。新息长度P的大小决定加速度信息的估计误 差。

[0028] 具体的,所述无线通信模块为WiFi模块;所述微处理器选用飞思卡尔公司的K60 单片机。

[0029] 进一步的,可在所述拐杖底部设减震垫,W及在所述减震垫下设防滑垫。

[0030] 本发明具有如下优点:

[0031] 1)采用多新息卡尔曼滤波方法,对加速度传感器返回的信息进行处理,去除噪声 信号。从而准确判断出老人是跌倒导致的拐杖跌落还是主动放下拐杖两种情况,准确报警。

[0032] 2)GI^S定位W及蜂鸣器报警功能便于及时救治携带者,当发生紧急状况时,使病患 能得到及时救助。

[003引扣针对空巢老人设计,功能齐全,可塑性高。

附图说明

[0034] 图1为智能拐杖的外形和结构设计图。

[0035] 图2为K60最小系统电路图。

[0036] 图3为WiFi通信电路图。

[0037] 图4为GI^S模块与K60通讯接口电路图。

[0038] 图5系统工作流程图。

具体实施方式

[0039] 下面结合附图和实施例对本发明作进一步说明。

[0040] 所述远程跌倒监护智能拐杖主要包括跌倒检测、WiFi通信、GI^S定位等功能模块。 所有器件均工作在单电源模式,由两节AAA电池供电。跌倒检测由加速度传感器负责采集 拐杖运动加速度,再由内置多新息卡尔曼滤波算法的微处理器判断出准确的跌倒信息,实 现跌倒报警。所述WiFi模块采用WM-G-MR-09忍片,可实现无加密,WEP加密,WPA2-PSK加 密等多种加密的无线网络连接,满足不同社区的需要。所述GI^S模块用于实时跟踪老年人 的位置信息,当老年人发生跌倒或者主动报警时,反馈其位置信息。还可W通过WiFi传输 广播戏曲节目来增加娱乐功能。

[0041] 如图1所示的实施例,在拐杖的最上端手柄1处设置总开关,负责整个拐杖内工作 电路电源的开通与关断。在手柄上还设有功能按键2、显示屏3和指示灯4,共同构成系统 的人机界面,用户用功能按键2设置所需功能巧日"报警"按键),并由显示屏3和指示灯4反 映出当前功能和反馈信息。拐杖顶部的手柄1上设计了贴合手型的纹路5,增加用户握住 拐杖的舒适程度。在拐杖支撑体上部内置无线通信模块和蜂鸣器,无线通信模块所连接的 天线7位于拐杖支撑体表面,外置的天线7能够保证无线通信杨通无阻。在容纳无线通信 模块的位置设有通风口 6,通风口 6用来及时降低WiFi传输过程中产生的大量热量,保证 系统的正常运作。在拐杖支撑体上部有钥匙挂钩10和充电插口 11。在拐杖支撑体下部内 置:加速度传感器13、GPS模块、微处理器14和电池16 ;所述电源总开关、功能按键2、显示 屏3、指示灯4、无线通信模块、蜂鸣器、加速度传感器13、GI^S模块均通过信号线与微处理器 14相连。整个系统由内置可充电电池16供电。拐杖底部具有防滑垫15和减震垫17。在 拐杖的支撑体上增加了多条线槽12,用来增加拐杖的美感和减少重量。

[0042] 实施例所采用的微处理器为飞思卡尔公司的K60单片机。K60单片机最小系统如 图2所示。图3为WiFi模块的电路,图4为GI^S模块与K60通讯接口电路。WiFi模块负责 将跌倒信息和位置信息返回;GI^S模块用于获知老人在小区的实时位置,便于监控老人是 否走失,并在其跌倒之后方便工作人员快速定位和施救。

[0043] 跌倒检测:为了准确得到拐杖跌倒信号,利用加速度传感器采集拐杖倒下时的加 速度,由于所采集信息具有较多干扰信号,因此采用多新息卡尔曼滤波算法得出可用加速 度数据信息。当加速度超过一定的阔值,经过分析可判定拐杖是跌落倒下,此时出现报警。

[0044] 多新息方法是将标量单新息加W推广,变为新息向量,建立多新息算法,基于多新 息技术的算法,能够进一步改善估计值的精度。对于多新息卡尔曼滤波算法,考虑W下随机 系统状态空间模型,即为方程(1),(2):

[0045] X(t+1) =Ax (t)+Bu(t) +w (t) (1)

[0046] z (t) =Cx (t) +v (t) (2)

[0047] x(t)是t时刻的系统状态,u(t)是t时刻系统的控制量,A和B是系统参数,z(t) 是t时刻的测量值,C是测量系统参数。w(t)和v(t)分别表示过程和测量的高斯白噪声, 其均值为零,协方差为Q,R。

[0048] 针对该系统,多新息卡尔曼滤波器是最优的信息处理器。W下五个公式为原始卡 尔曼滤波算法原理描述基本公式,式(3) (4)完成卡尔曼滤波器实现对系统的预测,其中式 (3)利用系统的上一次状态预测现在的状态,得到系统更新后的预测结果,式(4)完成对应 于x(t|t-l)的协方差的更新。然后,结合已经得到的预测值和收集到的测量值,由式巧) 得到现在t状态的最优化估计值x(t|t)。K(t)是卡尔曼增益,其计算公式如化)。最后, 根据式(7)更新t状态下x(t It)的协方差,得到P(t It)。当系统进入t+1状态时,P(t It) 就等同于式(4)中的P(t-l|t-l),W此卡尔曼滤波算法自回归运算,直到系统过程结束。

[0049] X(t11-1) =Ax (t-111-1)+Bu(t) (3) 阳0加]P(t|t-l)=AP(t-l |t-l)A'+Q (4)

[0051] X (t 11) =x (t 11-1) +K (t) (z (t) -Cx (t 11-1)) (5)

[0052] K(t)=P(t|t-l)C'/(CP(t|t-l)C'+R)巧) 阳05引 P(t|t) = (I-K(t)C)P(t|t-l) (7)

[0054] 新息是能够改善参数估计精度或者状态估计精度的有用信息,将单新息加W 推广便可得到多新息算法。W上(5)式中z(t)-Cx(t|t-l)即为单新息量,将其表示为 e (t) =z (t) -Cx (t 11-1)。将e (t)扩展为新息矩阵为: 阳化引

Figure CN103859721BD00081

(M

[0056] 其中,正整数p为新息长度。

[0057] 于是得到多新息卡尔曼滤波算法,其最优状态估计方程转变为:

[0058] X(t11)=x(t11-1) +[Ki(t)K2(t). . .Kp(t) ]E(p,t) 巧)

[0059] 转换即得到如下方程:

[0060]

Figure CN103859721BD00082

(峭 阳OW] 其中,增益矩阵取Ki(t)=K(t-i+l)。 阳06引将单新息扩展为多新息能够提高估计的收敛速度,并且,引入新息长度P能够改 善估计量的精度。但是,新息长度取值增大会导致算法的计算量增加,所W要根据当前处理 器的负荷选取合适的新息长度P,W保证计算机能够完全胜任其增加的计算量。

[0063]利用多新息卡尔曼滤波算法得到拐杖倒下时最优的加速度信号值X(t),此为可用 的加速度信号值,根据该值可W判断拐杖是正常放倒还是跌倒。经多次实验测定,正常人为 放下拐杖时,其加速度一般为3~4m/s2,不超过5m/s2。而跌倒时的加速度一般超过5m/s2, 所W,将5m/s2设定为警报阔值,即当加速度超过5m/s 2,发出跌倒报警信号。

[0064] 本远程跌倒监护智能拐杖的主要功能可W分为两部分实现,分别为:拐杖直立和 状态位置判断、是否跌倒判断。当用户开启远程跌倒监护系统时,根据所设计系统检测到危 险信号的等级不同,逐次发出:指示灯报警、指示灯蜂鸣器报警和蜂鸣器报警并通过WiFi 发送救助信息=个等级的报警信息,确保对使用者跌倒状态的准确及时的监护。

[0065] 若拐杖处于平放或倾向度较大的状态,不利于所设计系统在后期的正确诊断信 号,所W发出指示灯的报警提示,提示用户修正拐杖直立状态之后正确使用。

[0066] 如图5所示,首先读取加速度传感器的信息,读取GI^S返回的信号获取位置信息。 然后根据当前处理器的负荷选取合适的新息长度,之后利用多新息卡尔曼滤波算法得出可 用加速度实时值,判断出老人是否跌倒。由于加入了滤波算法,使得可W避免误触发。一旦 检测到老人跌倒,便蜂鸣器报警并通过WiFi发送求助信息。

[0067] 综上可见,此款智能拐杖,可W随时监测老人是否跌倒,通过小区WiFi返回老人 的位置信息。一旦老人发生跌倒,可W蜂鸣器报警,并将位置信息返回。为了进一步满足老 人娱乐需求,还可W通过WiFi接收曲艺节目,供老人收听戏曲等。

Claims (6)

1.远程跌倒监护智能拐杖,包括拐杖的支撑体和顶部的手柄(I),其特征是:在拐杖手 柄⑴上设置电源总开关、功能按键⑵、显示屏(3)和指示灯(4),在拐杖支撑体上部内置 无线通信模块和蜂鸣器,无线通信模块所连接的天线(7)位于拐杖支撑体表面,在容纳无 线通信模块的位置设有通风口(6),在拐杖支撑体下部内置加速度传感器(13)、GPS模块、 微处理器(14)和电池(16);所述电源总开关、功能按键(2)、显示屏(3)、指示灯(4)、无线 通信模块、蜂鸣器、加速度传感器(13)、GPS模块均通过信号线与微处理器(14)相连;加速 度传感器(13)负责采集拐杖运动加速度,再由微处理器(14)进行处理判断跌倒信息,GPS 模块用于实时跟踪拐杖的位置信息,当检测到跌倒或者通过功能按键(2)主动报警时,微 处理器(14)发送拐杖的位置信息和报警信号; 所述微处理器采用多新息卡尔曼滤波算法得出进行跌倒检测的加速度数据信息,多新 息方法是将标量单新息加以推广,变为新息向量,建立多新息算法;对于多新息卡尔曼滤波 算法,考虑以下随机系统状态空间模型,即为方程式1、2 : X(t+1) =Ax(t)+Bu(t)+w(t) 1 z(t) =Cx(t)+V(t) 2 X(t)是t时刻的系统状态,u(t)是t时刻系统的控制量,A和B是系统参数,Z(t)是t时刻的测量值,C是测量系统参数;w(t)和v(t)分别表示过程和测量的高斯白噪声,其均 值为零,协方差为Q,R; 针对该系统,多新息卡尔曼滤波器是最优的信息处理器;以下五个公式为原始卡尔曼 滤波算法原理描述基本公式,式3、4完成卡尔曼滤波器实现对系统的预测,其中式3利用系 统的上一次状态预测现在的状态,得到系统更新后的预测结果,式4完成对应于X(t11-1) 的协方差的更新;然后,结合已经得到的预测值和收集到的测量值,由式5得到现在t状态 的最优化估计值X(t11);K(t)是卡尔曼增益,其计算公式如式6 ;最后,根据式7更新t状 态下x(t|t)的协方差,得到P(t|t);当系统进入t+1状态时,P(t|t)就等同于式4中的 P(t-111-1),以此卡尔曼滤波算法自回归运算,直到系统过程结束; x(t|t-l) =Ax(t-111-1)+Bu(t) 3 P(t11-1) =AP(t-111-1)A'+Q 4 x(t11) =x(t11-1)+K(t)(z(t)-Cx(t11-1)) 5 K(t) =P(t11-1)CV(CP(t11-1)C' +R) 6 P(t|t) = (I-K(t)C)P(t|t-l) 7 式5中z(t)-Cx(t11-1)为单新息量,将其表示为e(t) =z(t)-Cx(t11-1),将e(t)扩 展为新息矩阵为:
Figure CN103859721BC00021
其中,正整数P为新息长度; 于是得到多新息卡尔曼滤波算法,其最优状态估计方程转变为: x(t|t) =x(tIt-l) + [K! (t)K2 (t) •••Kp(t)]E(p,t) 9 转换即得到如下方程:
Figure CN103859721BC00031
其中,增益矩阵取K1U) =K(t-i+l); 利用多新息卡尔曼滤波算法得到拐杖倒下时最优的加速度信号值X(t),根据此加速度 信号值判断拐杖是正常放倒还是跌倒。
2. 如权利要求1所述远程跌倒监护智能拐杖,其特征是,当所述微处理器分析出加速 度超过5m/s2时,发出跌倒报警信号。
3. 如权利要求1所述远程跌倒监护智能拐杖,其特征是,所述无线通信模块为WiFi模 块。
4. 如权利要求1所述远程跌倒监护智能拐杖,其特征是,所述微处理器为飞思卡尔公 司的K60单片机。
5. 如权利要求1所述远程跌倒监护智能拐杖,其特征是,所述拐杖底部设有减震垫 (17)。
6. 如权利要求5所述远程跌倒监护智能拐杖,其特征是,在所述减震垫(17)下设有防 滑垫(15)。
CN201410141280.8A 2014-04-09 2014-04-09 远程跌倒监护智能拐杖 CN103859721B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410141280.8A CN103859721B (zh) 2014-04-09 2014-04-09 远程跌倒监护智能拐杖

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410141280.8A CN103859721B (zh) 2014-04-09 2014-04-09 远程跌倒监护智能拐杖

Publications (2)

Publication Number Publication Date
CN103859721A CN103859721A (zh) 2014-06-18
CN103859721B true CN103859721B (zh) 2016-01-06

Family

ID=50899176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410141280.8A CN103859721B (zh) 2014-04-09 2014-04-09 远程跌倒监护智能拐杖

Country Status (1)

Country Link
CN (1) CN103859721B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104257048B (zh) * 2014-09-11 2016-04-06 浙江大学 一种基于智能拐杖的老年人辅助系统
CN104273812B (zh) * 2014-10-23 2016-10-05 合肥星服信息科技有限责任公司 一种老年人防摔拐杖
CN104705931A (zh) * 2015-01-21 2015-06-17 安徽师范大学 拐杖
CN104814581B (zh) * 2015-04-20 2017-12-08 姚智宏 一种带座椅的自动报警多功能新型拐杖
JP6650600B2 (ja) * 2015-08-31 2020-02-19 パナソニックIpマネジメント株式会社 歩行杖及び歩行補助装置
CN105231606A (zh) * 2015-10-30 2016-01-13 李丽芳 一种新型的多功能拐杖
CN105513276B (zh) * 2015-12-31 2018-05-08 深圳市华海技术有限公司 智能拐杖的报警方法及系统
CN105661782A (zh) * 2016-01-11 2016-06-15 深圳大学 一种智能伞、智能伞系统及应用
CN105901856A (zh) * 2016-04-14 2016-08-31 石永来 一种魔法拐杖
CN106073079A (zh) * 2016-05-31 2016-11-09 山东建筑大学 具有自动报警与紧急求救的节能型拐杖及工作方法
CN106236101A (zh) * 2016-09-07 2016-12-21 华南理工大学 一种用于老年人实时监护的智能辅助系统
CN106617540A (zh) * 2016-11-29 2017-05-10 东莞市广信知识产权服务有限公司 一种智能登山手杖

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101548927A (zh) * 2009-05-14 2009-10-07 杭州六易科技有限公司 一种掉落智能报警拐杖
CN103198614B (zh) * 2012-01-06 2015-09-23 沈阳新松机器人自动化股份有限公司 智能拐杖及其跌落报警系统、报警方法
CN202637393U (zh) * 2012-06-13 2013-01-02 钟晓广 智能拐杖
CN202800400U (zh) * 2012-06-27 2013-03-20 德州学院 一种智能型拐杖
CN102824002A (zh) * 2012-08-31 2012-12-19 暨南大学 一种适用于老年人的智能拐杖
CN102920117B (zh) * 2012-10-26 2015-04-08 中北大学 一种具有跌倒自动报警功能的智能拐杖
CN203244562U (zh) * 2013-04-27 2013-10-23 西藏民族学院 一种基于gps/gprs的智能导盲拐杖
CN203424415U (zh) * 2013-06-24 2014-02-12 南京中脉科技控股有限公司 智能拐杖

Also Published As

Publication number Publication date
CN103859721A (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
US20180293861A1 (en) Monitoring system
US10031491B2 (en) Adaptive sensor data selection and sampling based on current and future context
US10157528B2 (en) Geolocation bracelet, system, and methods
CN103393412B (zh) 一种基于智能家居的老人看护装置
CN104582562B (zh) 提供以患者为中心的智能监测服务的连接式患者监测系统和方法
El-Bendary et al. FALL DETECTION AND PREVENTION FOR THE ELDERLY: A REVIEW OF TRENDS AND CHALLENGES.
US8937554B2 (en) Low power location-tracking device with combined short-range and wide-area wireless and location capabilities
Dai et al. PerFallD: A pervasive fall detection system using mobile phones
CN104949707B (zh) 基于信息推送的运动监测设备及方法
CN103368792B (zh) 用于对患者的健康状态进行监控的通信系统、通信设备、传感器设备以及方法
CA2658604C (en) Remote device for a monitoring system
US7259671B2 (en) Proximity aware personal alert system
US5652570A (en) Individual location system
US20170150446A1 (en) Self-direct m2m (machine-to-machine) comunication based user's daily activity logging and analyzing system with wearable and personal mobile devices
CN201853320U (zh) 老人监测与报警系统
US7471242B2 (en) Method and apparatus for installing and/or determining the position of a receiver of a tracking system
US9848776B2 (en) Methods using activity manager for monitoring user activity
CN104799826A (zh) 一种智能安康服务系统及报警可靠检测方法
FI116809B (fi) Turvalaitejärjestelmä
US9866507B2 (en) Method of monitoring well-being of semi-independent persons and system thereof
CN103646506B (zh) 一种具有语音通信功能的跌倒监测系统
CN203299558U (zh) 一种具有身体监测装置的智能手表
CN105342623B (zh) 智能跌倒监护装置及其处理方法
US9345403B2 (en) Wireless monitoring system with activity manager for monitoring user activity
EP1348975B1 (en) Radio-frequency badge with an accelerometer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant