CN103853056B - 一种电源电压识别装置和电源 - Google Patents

一种电源电压识别装置和电源 Download PDF

Info

Publication number
CN103853056B
CN103853056B CN201210496740.XA CN201210496740A CN103853056B CN 103853056 B CN103853056 B CN 103853056B CN 201210496740 A CN201210496740 A CN 201210496740A CN 103853056 B CN103853056 B CN 103853056B
Authority
CN
China
Prior art keywords
voltage
power supply
resistance
circuit
pmos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210496740.XA
Other languages
English (en)
Other versions
CN103853056A (zh
Inventor
马政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN201210496740.XA priority Critical patent/CN103853056B/zh
Publication of CN103853056A publication Critical patent/CN103853056A/zh
Application granted granted Critical
Publication of CN103853056B publication Critical patent/CN103853056B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)

Abstract

本发明实施例公开了一种电源电压识别装置,包括:识别电路和开启电路;所述识别电路,用于检测供电电源的电压,当所述电压属于系统正常工作电压范围时,发送第一控制信号至所述开启电路;当所述电压高于或低于所述系统正常工作电压范围时,发送第二控制信号至所述开启电路;所述开启电路,用于接收到所述第一控制信号时,开启系统电源;接收到所述第二控制信号时,关闭系统电源。本发明实施例还提供一种电源。采用本发明实施例,能够自动识别供电电源的电压是否满足系统的要求,其通用性较高,利于设备的推广应用。

Description

一种电源电压识别装置和电源
技术领域
本发明涉及电源领域,特别是涉及一种电源电压识别装置和电源。
背景技术
办公和家用的很多设备,大多可以采用适配器进行供电。常见的适配器规格有3.3V、5V、8V、12V、48V等。目前,市面上的大部分适配器都使用相同型号的输出电压接口,使得从外观上很难区分适配器的具体规格,即为该适配器的输出电压是多少。因此,现有的适配器在实际使用中,难免出现混淆的现象,导致低压输出的适配器插入高压输入的设备、或者是高压输出的适配器插入低压输入的设备等,造成设备无法上电或者设备烧损,给使用者带来极差的用户体验和极大的损失。
现有技术中,可以采用专用的识别电源的通信接口,例如RS485总线,完成对适配器的输出电压的识别。如图1所示,为现有的适配器电源电压识别的原理图。
图1中,系统和适配器之间通过专用的通信接口连接,由此实现对适配器输出电压的自动识别。
但是,现有的适配器电源识别技术存在的缺陷:首先,需要适配器带有专用的通信接口,这种电源并不常见;其次,还需要系统也支持这种接口,对系统的性能要求比较高。因此,现有技术的通用性比较差,限制了设备的推广使用。
发明内容
本发明提供了一种电源电压识别装置和电源,能够自动识别供电电源的电压是否满足系统的要求,其通用性较高,利于设备的推广应用。
一方面,提供一种电源电压识别装置,所述装置包括:识别电路和开启电路;所述识别电路,用于检测供电电源的电压,当所述电压属于系统正常工作电压范围时,发送第一控制信号至所述开启电路;当所述电压高于或低于所述系统正常工作电压范围时,发送第二控制信号至所述开启电路;所述开启电路,用于接收到所述第一控制信号时,开启系统电源;接收到所述第二控制信号时,关闭系统电源。
在第一种可能的实现方式中,所述装置还包括:防误电路;所述识别电路,还用于当所述电压高于所述系统正常工作电压范围的上限值时,发送瞬时触发信号至所述防误电路;所述防误电路,用于对所述瞬时触发信号进行延时处理,使得所述瞬时触发信号迟于所述第二控制信号发送至所述开启电路;所述开启电路,还用于在接收到所述瞬时触发信号之前若接收到所述第二控制信号,则不开启系统电源。
结合第一种可能的实现方式,在第二种可能的实现方式中,所述识别电路包括:第一电阻、第二电阻、第三电阻、第四电阻、第一PMOS管、第一稳压二极管;所述第一电阻的一端接电源,所述第一电阻的另一端接所述第二电阻的一端和所述第一PMOS管的栅极;所述第二电阻的另一端接地;所述第一PMOS管的源极接所述第三电阻的一端和所述第一稳压二极管的阴极;所述第一PMOS管的漏极经所述第四电阻接地;所述第三电阻的另一端接供电电源;所述第一稳压二极管的阳极接地;所述第一PMOS管的漏极作为所述识别电路的输出端,接所述防误电路的输入端。
结合第一种可能的实现方式,在第三种可能的实现方式中,所述防误电路包括:第五电阻、第六电阻、第七电阻、第一NPN管、以及第一电容;所述第五电阻的一端作为所述防误电路的输入端,接所述识别电路的输出端;所述第五电阻的另一端接所述第六电阻的一端和所述第一NPN管的基极;所述第六电阻的另一端接地;所述第一NPN管的集电极通过所述第七电阻接供电电源;所述第一NPN管的发射极接地;所述第一电容接在所述第一NPN管的基极和地之间;所述第一NPN管的集电极作为所述防误电路的输出端,接所述开启电路的输入端。
结合第一种可能的实现方式,在第四种可能的实现方式中,所述开启电路包括:第二PMOS管;所述第二PMOS管的栅极作为所述开启电路的输入端,接所述防误电路的输出端;所述第二PMOS管的源极接供电电源;所述第二PMOS管的漏极接系统电源。
另一方面,提供一种电源,包括上述任何一种可能的实现方式所述的电源电压识别装置。
本发明实施例提供的电源电压识别装置中,所述识别电路检测供电电源的电压,只有当所述供电电源的电压属于系统正常工作电压范围时,才通过所述开启电路开启系统电源,为系统供电。而当所述供电电源的电压不满足系统电源的要求时,不开启系统电源。由此可以保证所述供电电源的电压满足系统电源的要求,有效避免因供电电源电压过低或过高而导致的系统无法正常工作或系统烧损等现象。
本发明实施例所述的电源电压识别装置,能够自动识别供电电源的电压是否满足系统的要求,其通用性较高,利于设备的推广应用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有的适配器电源电压识别的原理图;
图2为本发明实施例一提供的电源电压识别装置结构图;
图3为本发明实施例二提供的电源电压识别装置结构图;
图4为本发明实施例三提供的电源电压识别装置结构图;
图5a为本发明实施例三的电源电压识别装置在电源电压小于4.75V时各点的电压波形图;
图5b为本发明实施例三的电源电压识别装置在电源电压大于4.75V小于5.25V时各点的电压波形图;
图5c为本发明实施例三的电源电压识别装置在电源电压大于5.25V时各点的电压波形图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例中提供了一种电源电压识别装置和电源,能够自动识别供电电源的电压是否满足系统的要求,其通用性较高,利于设备的推广应用。
参照图2,为本发明实施例一提供的电源电压识别装置结构图。如图2所示,所述电源电压识别装置包括:识别电路10和开启电路20。
所述识别电路10,用于检测供电电源的电压,当所述电压属于系统正常工作电压范围时,发送第一控制信号至所述开启电路20;当所述电压高于或低于所述系统正常工作电压范围时,发送第二控制信号至所述开启电路20。
所述开启电路20,用于接收到所述第一控制信号时,开启系统的电源,为系统供电;接收到所述第二控制信号时,关闭系统电源。
其中,所述供电电源可以为适配器。
本发明实施例一提供的电源电压识别装置中,所述识别电路10检测供电电源的电压,只有当所述供电电源的电压属于系统正常工作电压范围时,才通过所述开启电路20开启系统电源,为系统供电。而当所述供电电源的电压不满足系统电源的要求时,关闭系统电源,停止为系统供电。
由此可以保证所述供电电源的电压满足系统电源的要求,有效避免因供电电源电压过低或过高而导致的系统无法正常工作或系统烧损等现象。
本发明实施例一所述的电源电压识别装置,能够自动识别供电电源的电压是否满足系统的要求,当供电电源电压过低时,保证系统不会上电,避免系统出现残压;当供电电源电压过高时,保证系统不会上电,避免系统内部器件的烧损。由此能够自动识别供电电源的电压是否满足系统的要求,其通用性较高,利于设备的推广应用。
需要说明的是,在实际应用中,当所述供电电源的电压高于所述系统正常工作电压范围的上限值时,很容易导致系统的误启动。具体的,当供电电源的电压高于所述系统正常工作电压范围的上限值时,在供电电源上电过程中,当高电压经过系统正常工作电压范围的上限值时,会发出一瞬间启动信号给开启电路,使得系统上电启动,而系统一旦开启后,过高的电压会直接导致系统烧损,即为系统的误启动。本发明实施例二提供的电源电压识别装置,能够解决瞬时高电压带来的系统误启动问题。
参照图3,为本发明实施例二提供的电源电压识别装置结构图。本发明实施例二所示电源电压识别装置与实施例一的区别在于:所述装置还包括一防误电路。
所述识别电路100,用于检测供电电源的电压,当所述电压属于系统正常工作电压范围时,发送第一控制信号至所述开启电路300;当所述电压高于或低于所述系统正常工作电压范围时,发送第二控制信号至所述开启电路300;还用于当所述电压高于所述系统正常工作电压范围的上限值时,发送瞬时触发信号至所述防误电路200。
所述防误电路200,用于对所述瞬时触发信号进行延时处理,使得所述瞬时触发信号迟于所述第二控制信号发送至所述开启电路,防止系统误开启。
所述开启电路300,用于接收到所述开启信号时,开启系统电源,为系统供电;接收到所述第二控制信号时,关闭系统电源;还用于在接收到所述瞬时触发信号之前若接收到所述第二控制信号,则不开启系统电源。
本发明实施例二所述的电源电压识别装置,当所述供电电源的电压高于所述系统正常工作电压范围的上限值时,所述识别电路100会发送一瞬时触发信号至所述防误电路200。为避免该瞬间触发信号开启系统,所述防误电路200对所述瞬间触发信号进行延时处理,使得所述瞬时触发信号迟于所述第二控制信号发送至所述开启电路300,由此使得开启电路300在接收到所述瞬时触发信号之前就先收到了所述第二控制信号,直接关闭系统电源,停止给系统供电。由此能够有效防止高电压引起的系统误启动。
本发明实施例二所述的电源电压识别装置,能够自动识别供电电源的电压是否满足系统的要求,当供电电源电压过低时,保证系统不会上电,避免系统出现残压;当供电电源电压过高时,保证系统不会上电。同时通过所述防误电路200防止输入高压引发的误启动,避免系统内部器件的烧损。由此可以有效避免因供电电源电压过低或过高而导致的系统无法正常工作或系统烧损等现象,其通用性较高,利于设备的推广应用。
同时,本发明实施例二所述的电源电压识别装置,当所述供电电源的电压高于所述系统正常工作电压范围的上限值时,能够有效避免瞬时高电压造成的系统误启动,提高系统自动识别电源电压的精确度。
参照图4,为本发明实施例三提供的电源电压识别装置结构图。如图4所示,本发明实施例三给出了实施例二所述的电源电压识别装置的一种具体的电路实现形式,在实际应用中,本发明实施例所述的电源电压识别装置并不限于由图4所示的电路实现。
如图4所示,所述识别电路100包括:第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第一PMOS管Q1、第一稳压二极管D1。
所述第一电阻R1的一端接供电电源VCC,所述第一电阻R1的另一端接所述第二电阻R2的一端和所述第一PMOS管Q1的栅极;所述第二电阻R2的另一端接地。
所述第一PMOS管Q1的源极接所述第三电阻R3的一端和所述第一稳压二极管D1的阴极;所述第一PMOS管Q1的漏极经所述第四电阻R4接地。
所述第三电阻R3的另一端接电源供电VCC;所述第一稳压二极管D1的阳极接地。
所述第一PMOS管Q1的漏极作为所述自动识别电路100的输出端接所述防误电路200的输入端,输出控制信号至所述防误电路200。
如图4所示,所述防误电路200包括:第五电阻R5、第六电阻R6、第七电阻R7、第一NPN管Q2、以及第一电容C1。
所述第五电阻R5的一端作为所述防误电路200的输入端,接所述第一PMOS管Q1的漏极,即为所述自动识别电路100的输出端;所述第五电阻R5的另一端接所述第六电阻R6的一端和所述第一NPN管Q2的基极。
所述第六电阻R6的另一端接地。
所述第一NPN管Q2的集电极通过所述第七电阻R7接供电电源VCC;所述第一NPN管Q2的发射极接地。
所述第一电容C1接在所述第一NPN管Q2的基极和地之间。
所述第一NPN管Q2的集电极作为所述防误电路200的输出端,接所述电源开启电路300的输入端。
如图4所示,所述电源开启电路300包括:第二PMOS管Q3。
所述第二PMOS管Q3的栅极作为所述电源开启电路300的输入端,接所述防误电路200的输出端,即为所述第一NPN管Q2的集电极。
所述第二PMOS管Q3的源极接供电电源VCC;所述第二PMOS管Q3的漏极接系统。
下面结合图4所示电路,对本发明实施例所述的电源电压识别装置的工作原理进行详细介绍。
首先,假设系统要求供电电源VCC的电压范围在4.75V和5.25V之间;且所述R1/R2=2/2.75;所述PMOS管的开通电压Vth=2V;所述稳压二极管的钳位电压Vz=5V;所述NPN管的开通电压为0.7V。
(1)当0<VCC<4.75V时,第一PMOS管Q1的栅极A点电压为:VCC×R2/(R1+R2),其源极B点电压为VCC,则此时,Q1的栅源电压为:Vgs=VCC×R1/(R1+R2)。而已知R1/R2=2/2.75,则Vgs=VCC×2/4.75<Vth=2V。此时,所述第一PMOS管Q1不会导通,其漏极C点(即为所述自动识别电路10的输出端)的电压保持在0V(默认与GND地相连)。
相对应地,所述第一PNP管Q2的基极D点电压也为0V,Q2的漏极接地,则Q2的基极和漏极间电压为0V<0.7V。则,所述第一NPN管Q2也不会导通,使得所述第二PMOS管Q3的栅极E点电压为VCC。
而所述第二PMOS管Q3的源极电压为VCC,则Q3的栅源电压Vgs=0V,因此,所述第二PMOS管Q3也不会导通。
此时,所述供电电源VCC不会给系统供电,所述系统无法正常上电启动。
(2)当4.75V<VCC<5V时,第一PMOS管Q1的栅极A点电压为:VCC×R2/(R1+R2),其源极B点电压为VCC,则此时,Q1的栅源电压为:Vgs=VCC×R1/(R1+R2)。而已知R1/R2=2/2.75,则Vgs=VCC×2/4.75>Vth=2V。此时,所述第一PMOS管Q1导通,Q1的源极和漏极相连,其漏极C点电压变为逻辑高电平。
相对应地,所述第一PNP管Q2的基极D点电压也缓慢上升,最终也为逻辑高电平。Q2的漏极接地,则Q2的基极和漏极间电压为逻辑高电平>0.7V。则,所述第一NPN管Q2导通,Q2的集电极和发射极相连,使得所述第二PMOS管Q3的栅极E点电压为0V。
而所述第二PMOS管Q3的源极电压为VCC,则Q3的栅源电压Vgs=VCC>Vth=2V,因此,所述第二PMOS管Q3也导通。
此时,所述供电电源VCC给系统供电,所述系统正常上电启动。
(3)当5V<VCC<5.25V时,第一PMOS管Q1的栅极A点电压为:VCC×R2/(R1+R2),其源极B点电压为Vz(由于供电电源电压VCC大于第一稳压二极管D1的钳位电压Vz,D1会强制将Q1的源极电压固定在Vz),则此时,Q1的栅源电压为:Vgs=Vz-VCC×R2/(R1+R2)。而已知R1/R2=2/2.75,则Vgs=5V-VCC×2/4.75>Vth=2V。此时,所述第一PMOS管Q1导通,其漏极和源极相连,其漏极C点电压变为逻辑高电平。
相对应地,所述第一PNP管Q2的基极D点电压也缓慢上升,最终也为逻辑高电平。Q2的漏极接地,则Q2的基极和漏极间电压为逻辑高电平>0.7V。则,所述第一NPN管Q2导通,Q2的集电极和发射极相连,使得所述第二PMOS管Q3的栅极E点电压为0V。
而所述第二PMOS管Q3的源极电压为VCC,则Q3的栅源电压Vgs=VCC>Vth=2V,因此,所述第二PMOS管Q3也导通。
此时,所述供电电源VCC给系统供电,所述系统正常上电启动。
(4)当VCC>5.25V时,第一PMOS管Q1的栅极A点电压为:VCC×R2/(R1+R2),其源极B点电压为Vz,则此时,Q1的栅源电压为:Vgs=Vz-VCC×R2/(R1+R2)。而已知R1/R2=2/2.75,则Vgs=5V-VCC×2.75/4.75<Vth=2V。此时,所述第一PMOS管Q1不会导通,其漏极C点电压保持在0V(默认与GND地相连)。
相对应地,所述第一PNP管Q2的基极D点电压也为0V,Q2的漏极接地,则Q2的基极和漏极间电压为0V<0.7V。则,所述第一NPN管Q2也不会导通,使得所述第二PMOS管Q3的栅极E点电压为VCC。
而所述第二PMOS管Q3的源极电压为VCC,则Q3的栅源电压Vgs=0V,因此,所述第二PMOS管Q3也不会导通。
此时,所述供电电源VCC不会给系统供电,所述系统无法正常上电启动。
进一步需要说明的是,本发明实施例所述防误电路200是通过延时设计的原理来实现防止高电压时系统的误启动的。简单的说,当所述第一PMOS管Q1的漏极C点电压由低变高时,所述第二PMOS管Q3的栅极E点电压随着C点电压的变化而变化。本发明实施例中,由于所述防误电路200的存在,将这种跟随变化延后,使得E点电压没来得及跟随上C点电压的变化时,C点的状态已经发生变化了。即为,在E点状态还没来得及变化时,C点已经改变状态了。
例如,当VCC为8V>5.25V时,在VCC由0V上升到4.75V时,C点状态开始变化(由0到1)。此时,由于防误电路200的存在,E点状态并没有马上跟随变化,会有一定时间的延时,当VCC上升到5.25V时,C点的状态仍然为1(通过对第五电阻R5、第六电阻R6以及第一电容C1取值的设计保证延时时间大于VCC由4.75V上升到5.25V的时间);当VCC上升到大于5.25V时,C点的状态开始变化(由1到0),而E点的状态始终保持不变。由此,有效避免了高电压时系统的误启动。
参照图5a为本发明实施例三所述电源识别装置在电源电压VCC小于4.75V时各点的电压波形图;参照图5b为本发明实施例三所述电源识别装置在电源电压VCC大于4.75V小于5.25V时各点的电压波形图;参照图5c为本发明实施例三所述电源识别装置在电源电压VCC大于5.25V时各点的电压波形图。其中,各图中,横坐标为时间,纵坐标为电压。
如图5a所示,当供电电源的输出电压范围为小于4.75V时,即为上述(1)情况,此时,所述供电电源无法为系统供电。
如图5b所示,当供电电源的输出电压范围为大于4.75V小于5.25V时,即为上述(1)、(2)和(3)情况,此时,供电电源为系统供电。
如图5c所示,当供电电源的输出电压范围为大于5.25V时,即为上述(1)、(2)、(3)和(4)情况,此时,供电电源无法为系统供电。在(2)和(3)的过程中,供电电源会为系统供电,产生误触发。此时充电电容C1起到防止误触发的作用,使得D点的电压缓慢上升(其上升速度远远慢于供电电源VCC的上电速度,可通过调节第五电阻R5和第一电容C1的值来实现),实现供电电源VCC在经过(2)和(3)时,D点电压不能开启所述第一NPN管Q2,防止电路的误启动。
需要说明的是,本发明实施例所述电源电压识别装置适用于各种电压范围的供电电源,其通用性较强。具体的,所述电源电压识别装置能够识别的供电电源的电压范围可以通过调节所述第一电阻R1和第二电阻R2的值进行具体设定。
本发明实施例三提供的电源电压识别装置中,所述自动识别电路检测供电电源的电压,只有当所述供电电源的电压属于系统正常工作电压范围时,才通过所述电源开启电路开启系统电源,为系统供电。而当所述供电电源的电压不满足系统电源的要求时,不开启系统电源。由此可以保证所述供电电源的电压满足系统电源的要求,有效避免因供电电源电压过低或过高而导致的系统无法正常工作或系统烧损等现象。
本发明实施例三所述的电源电压识别装置,能够自动识别供电电源的电压是否满足系统的要求,其通用性较高,利于设备的推广应用。
同时,本发明实施例三所述的电源电压识别装置,当所述供电电源的电压高于所述系统正常工作电压范围的上限值时,能够有效避免瞬时高电压造成的系统误启动。
相对于本发明实施例提供的电源电压识别装置,本发明实施例还提供一种电源,所述电源包括前述各实施例所述的电源电压识别装置。
采用本发明实施例所述电源为系统供电时,所述电源包括的电源电压识别装置能够自动识别所述电源的电压是否满足系统的要求,只有当所述电源的电压属于系统正常工作电压范围时,才开启系统电源,为系统供电。同时,本发明实施例所述电源,在电源电压高于所述系统正常工作电压范围的上限值时,能够有效避免瞬时高电压造成的系统误启动。
本发明实施例所述电源的通用性较高,利于设备的推广应用。
以上对本发明所提供的一种电源电压识别装置和电源,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (3)

1.一种电源电压识别装置,其特征在于,所述装置包括:识别电路和开启电路;
所述识别电路,用于检测供电电源的电压,当所述电压属于系统正常工作电压范围时,发送第一控制信号至所述开启电路;当所述电压高于或低于所述系统正常工作电压范围时,发送第二控制信号至所述开启电路;
所述开启电路,用于接收到所述第一控制信号时,开启系统电源;接收到所述第二控制信号时,关闭系统电源;
所述装置还包括:防误电路;
所述识别电路,还用于当所述电压高于所述系统正常工作电压范围的上限值时,发送瞬时触发信号至所述防误电路;
所述防误电路,用于对所述瞬时触发信号进行延时处理,使得所述瞬时触发信号迟于所述第二控制信号发送至所述开启电路;
所述开启电路,还用于在接收到所述瞬时触发信号之前若接收到所述第二控制信号,则不开启系统电源;
其中,
所述开启电路包括:第二PMOS管;
所述第二PMOS管的栅极作为所述开启电路的输入端,接所述防误电路的输出端;
所述第二PMOS管的源极接供电电源;所述第二PMOS管的漏极接系统电源;
其中,所述防误电路包括:第五电阻、第六电阻、第七电阻、第一NPN管、以及第一电容;
所述第五电阻的一端作为所述防误电路的输入端,接所述识别电路的输出端;所述第五电阻的另一端接所述第六电阻的一端和所述第一NPN管的基极;
所述第六电阻的另一端接地;
所述第一NPN管的集电极通过所述第七电阻接供电电源;所述第一NPN管的发射极接地;
所述第一电容接在所述第一NPN管的基极和地之间;
所述第一NPN管的集电极作为所述防误电路的输出端,接所述开启电路的输入端。
2.根据权利要求1所述的电源电压识别装置,其特征在于,所述识别电路包括:第一电阻、第二电阻、第三电阻、第四电阻、第一PMOS管、第一稳压二极管;
所述第一电阻的一端接电源,所述第一电阻的另一端接所述第二电阻的一端和所述第一PMOS管的栅极;所述第二电阻的另一端接地;
所述第一PMOS管的源极接所述第三电阻的一端和所述第一稳压二极管的阴极;所述第一PMOS管的漏极经所述第四电阻接地;
所述第三电阻的另一端接供电电源;所述第一稳压二极管的阳极接地;
所述第一PMOS管的漏极作为所述识别电路的输出端,接所述防误电路的输入端。
3.一种电源,其特征在于,包括如权利要求1或2所述的电源电压识别装置。
CN201210496740.XA 2012-11-29 2012-11-29 一种电源电压识别装置和电源 Active CN103853056B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210496740.XA CN103853056B (zh) 2012-11-29 2012-11-29 一种电源电压识别装置和电源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210496740.XA CN103853056B (zh) 2012-11-29 2012-11-29 一种电源电压识别装置和电源

Publications (2)

Publication Number Publication Date
CN103853056A CN103853056A (zh) 2014-06-11
CN103853056B true CN103853056B (zh) 2016-12-21

Family

ID=50860854

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210496740.XA Active CN103853056B (zh) 2012-11-29 2012-11-29 一种电源电压识别装置和电源

Country Status (1)

Country Link
CN (1) CN103853056B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106065967A (zh) * 2016-07-22 2016-11-02 成都秦川科技发展有限公司 控制电路及方法
CN116699454A (zh) * 2023-07-07 2023-09-05 深圳市大亮智造科技有限公司 一种用于电源检测设备的电源故障检测系统及其检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287554A (ja) * 2002-03-27 2003-10-10 Yamaha Corp 電源電圧検知回路
CN1467894A (zh) * 2002-07-13 2004-01-14 艾默生网络能源有限公司 防止误启动的开关电源欠压保护电路及欠压保护方法
CN101552457A (zh) * 2008-12-10 2009-10-07 华为技术有限公司 电源异常保护方法、装置及基站
CN101727077A (zh) * 2008-10-14 2010-06-09 亚洲光学股份有限公司 影像记录装置及其控制方法
CN201819982U (zh) * 2010-05-05 2011-05-04 大唐移动通信设备有限公司 电源检测装置
CN102255496A (zh) * 2010-12-30 2011-11-23 苏州奥佩克汽车部件有限公司 一种电压侦测电源管理电路及其控制方法
CN102280861A (zh) * 2011-08-01 2011-12-14 广州金升阳科技有限公司 一种开关电源输出短路保护电路
CN102393653A (zh) * 2011-10-21 2012-03-28 深圳市通宝莱科技有限公司 电源管理器
CN202424112U (zh) * 2011-12-19 2012-09-05 广州遨控电子科技有限公司 一种电子控制器的电压保护装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992522A (zh) * 2005-12-30 2007-07-04 鸿富锦精密工业(深圳)有限公司 多用开关电路
CN101242172B (zh) * 2007-02-08 2010-05-19 佛山市顺德区顺达电脑厂有限公司 延迟电路
CN102412814A (zh) * 2010-09-26 2012-04-11 上海杰得微电子有限公司 便携式消费类电子产品的强制关机电路
CN102624370B (zh) * 2012-03-29 2014-11-05 广州市广晟微电子有限公司 一种实现电压检测的装置和方法
CN102799130B (zh) * 2012-07-26 2015-01-21 西安电子科技大学 低电压微功耗电源开关及控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287554A (ja) * 2002-03-27 2003-10-10 Yamaha Corp 電源電圧検知回路
CN1467894A (zh) * 2002-07-13 2004-01-14 艾默生网络能源有限公司 防止误启动的开关电源欠压保护电路及欠压保护方法
CN101727077A (zh) * 2008-10-14 2010-06-09 亚洲光学股份有限公司 影像记录装置及其控制方法
CN101552457A (zh) * 2008-12-10 2009-10-07 华为技术有限公司 电源异常保护方法、装置及基站
CN201819982U (zh) * 2010-05-05 2011-05-04 大唐移动通信设备有限公司 电源检测装置
CN102255496A (zh) * 2010-12-30 2011-11-23 苏州奥佩克汽车部件有限公司 一种电压侦测电源管理电路及其控制方法
CN102280861A (zh) * 2011-08-01 2011-12-14 广州金升阳科技有限公司 一种开关电源输出短路保护电路
CN102393653A (zh) * 2011-10-21 2012-03-28 深圳市通宝莱科技有限公司 电源管理器
CN202424112U (zh) * 2011-12-19 2012-09-05 广州遨控电子科技有限公司 一种电子控制器的电压保护装置

Also Published As

Publication number Publication date
CN103853056A (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
US8756358B2 (en) Method and device for identifying universal serial bus (USB) insertion or charger insertion of mobile terminal
CN105301381B (zh) 自动浪涌测试系统及测试方法
CN106655415A (zh) 基于usb接口的智能通用充电识别及控制装置
CN105576766A (zh) 负载自动检测电路及应用其的移动电源
CN106020176B (zh) 一种cc逻辑控制芯片低功耗连接检测方法及结构
CN205656614U (zh) Type-C接口协议检测电路及相应的电源通路控制电路和移动电源系统
CN105186598B (zh) Usb插入自动识别和供电系统和集成有该系统的芯片
CN203422413U (zh) 一种电动汽车传导式充电导引信号检测电路及系统
CN110221163A (zh) 一种USB Type-C接口的连接检测方法和检测电路
CN203759164U (zh) 一种检测usb负载设备接入状态的电路
CN103853056B (zh) 一种电源电压识别装置和电源
CN208580375U (zh) 一种上电复位信号产生电路及集成电路芯片
CN103604975A (zh) 抗干扰低电压检测电路
CN103983836A (zh) 电能表全失压检测方法
CN111315612B (zh) 车载充电机休眠电路
CN104122967B (zh) 一种上电掉电复位控制电路及计算机
CN102201697B (zh) 互联网设备及其充电接口自动切换方法、装置和电路
CN206878506U (zh) 一种数据线和适配器
CN105182270A (zh) 电能表耐压试验装置及试验方法
CN206452166U (zh) 多路usb智能识别充电装置及电源适配器
CN106292821B (zh) 一种单火线取电芯片
CN204407944U (zh) 具智能usb识别芯片的功能检测电路
CN104950240A (zh) 一种用于智能卡工作电压段的测试系统及其测试方法
CN108599309A (zh) 多口usb快充电路
CN203965559U (zh) 一种用于防止电子设备的usb接口连接状态误判的装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant