CN103852300A - 广义位移角度监测受损索载荷递进式识别方法 - Google Patents

广义位移角度监测受损索载荷递进式识别方法 Download PDF

Info

Publication number
CN103852300A
CN103852300A CN201410086093.4A CN201410086093A CN103852300A CN 103852300 A CN103852300 A CN 103852300A CN 201410086093 A CN201410086093 A CN 201410086093A CN 103852300 A CN103852300 A CN 103852300A
Authority
CN
China
Prior art keywords
cable structure
temperature
data
load
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410086093.4A
Other languages
English (en)
Inventor
韩玉林
韩佳邑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201410086093.4A priority Critical patent/CN103852300A/zh
Publication of CN103852300A publication Critical patent/CN103852300A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

广义位移角度监测受损索载荷递进式识别方法基于角度监测、通过监测支座广义位移、索结构温度、环境温度、载荷变化程度和受损索损伤程度来决定是否需要更新索结构的力学计算基准模型,得到新的计入支座广义位移、载荷变化程度、受损索损伤程度、温度的索结构的力学计算基准模型,在此模型的基础上依据被监测量的当前数值向量同被监测量当前初始数值向量、单位损伤被监测量数值变化矩阵和待求的当前名义损伤向量间存在的近似线性关系,据此可以在有支座广义位移温度变化时,能够剔除干扰因素的影响,准确地识别受损索和载荷变化量。

Description

广义位移角度监测受损索载荷递进式识别方法
技术领域
斜拉桥、悬索桥、桁架结构等结构有一个共同点,就是它们有许多承受拉伸载荷的部件,如斜拉索、主缆、吊索、拉杆等等,该类结构的共同点是以索、缆或仅承受拉伸载荷的杆件为支承部件,为方便起见,本方法将该类结构表述为“索结构”,并将索结构的所有承载索、承载缆,及所有仅承受轴向拉伸或轴向压缩载荷的杆件(又称为二力杆件),为方便起见统一称为“索系统”,本方法中用“支承索”这一名词指称承载索、承载缆及仅承受轴向拉伸或轴向压缩载荷的杆件,有时简称为“索”,所以在后面使用“索”这个字的时候,对桁架结构实际就是指二力杆件。在结构服役过程中,对支承索或索系统的健康状态的正确识别关系到整个索结构的安全。在环境温度发生变化时,索结构的温度一般也会随着发生变化,在索结构温度发生变化时,索结构支座可能发生广义位移,索结构承受的载荷也可能发生变化,同时索结构的健康状态也可能在发生变化,在这种复杂条件下,本方法基于角度监测(本方法将被监测的角度称为“被监测量”)来识别受损索和索结构承受的载荷的变化量,属工程结构健康监测领域。
背景技术
剔除载荷变化、索结构支座广义位移和结构温度变化对索结构健康状态识别结果的影响,从而准确地识别结构的健康状态的变化,是目前迫切需要解决的问题;同样的,剔除结构温度变化、索结构支座广义位移和结构健康状态变化对结构承受的载荷的变化量的识别结果的影响,对结构安全同样具有重要意义,本方法公开了解决这两个问题的一种有效方法。
支承索受损对索结构安全是一项重大威胁,基于结构健康监测技术来识别索结构的索系统中的受损索是一种极具潜力的方法。
当索结构承受的载荷出现变化时、或索结构支座广义位移、或索结构的温度发生变化时、或索系统的健康状态发生变化(例如发生损伤)时、或者四种情况同时发生时,会引起索结构的可测量参数的变化,例如会引起索力的变化,会影响索结构的变形或应变,会影响索结构的形状或空间坐标,会引起过索结构的每一点的任意假想直线的角度坐标的变化(例如结构表面任意一点的切平面中的任意一根过该点的直线的角度坐标的变化,或者结构表面任意一点的法线的角度坐标的变化),所有的这些变化都包含了索系统的健康状态信息,也包含了载荷的变化量信息,也就是说可以利用索结构的可测量参数来识别受损索和载荷的变化量。
在支座有广义位移时,目前已公开的技术、方法中,有些仅仅能够在其它所有条件不变时(仅仅只有结构承受的载荷发生变化)识别结构承受载荷的变化,有些仅仅能够在其它所有条件不变时(仅仅只有结构健康状态发生变化)识别结构健康状态的变化,有些仅仅能够在其它所有条件不变时(仅仅只有结构温度和结构健康状态发生变化)识别结构(环境)温度和结构健康状态的变化,目前还没有一种公开的、有效的方法能够同时识别结构承受载荷、结构(环境)温度和结构健康状态的变化,或者说在结构所承受的载荷和结构(环境)温度同时变化时,还没有有效的方法能够识别结构健康状态的变化,而结构承受的载荷和结构(环境)温度是常常变化的,所以如何在结构承受的载荷和结构(环境)温度变化时,剔除载荷变化和结构温度变化对索结构健康状态识别结果的影响,从而准确地识别结构的健康状态的变化,是目前迫切需要解决的问题,本方法公开了一种方法,在支座有广义位移时,可以在索结构承受的载荷和结构(环境)温度发生变化时,剔除支座广义位移、载荷变化和结构温度变化对索结构健康状态识别结果的影响,基于被监测量监测来识别受损索,对索结构的安全具有重要的价值。
同样的,在目前公开的方法中,还没有出现能够剔除支座广义位移、结构温度变化和支承索健康状态影响的、从而实现载荷变化程度的正确识别的方法,而对结构来说,载荷变化的识别也是非常重要的。本方法在识别出受损索的同时,还能同时识别出载荷的变化,即本方法能够剔除支座广义位移、结构温度变化和支承索健康状态变化的影响,实现载荷变化程度的正确识别。
也就是说,本方法实现了已有方法不可能具备的两种功能。
发明内容
技术问题:本方法公开了一种方法,实现了已有方法不可能具备的两种功能,分别是,一、在支座有广义位移时,在结构承受的载荷和结构(环境)温度变化时,能够剔除支座广义位移、载荷变化和结构温度变化对索结构健康状态识别结果的影响,从而准确地识别出支承索的健康状态;二、本方法在识别出受损索的同时,还能同时识别出载荷的变化,即本方法能够剔除支座广义位移、结构温度变化和支承索健康状态变化的影响,实现载荷变化程度的正确识别。
技术方案:本方法由三部分组成。分别是:一、“本方法的索结构的温度测量计算方法”;二、建立索结构健康监测系统所需的知识库和参量的方法、基于知识库(含参量)和实测被监测量的结构健康状态评估方法;三、健康监测系统的软件和硬件部分。
在本方法中,用“支座空间坐标”指称支座关于笛卡尔直角坐标系的X、Y、Z轴的坐标,也可以说成是支座关于X、Y、Z轴的空间坐标,支座关于某一个轴的空间坐标的具体数值称为支座关于该轴的空间坐标分量,本方法中也用支座的一个空间坐标分量表达支座关于某一个轴的空间坐标的具体数值;用“支座角坐标”指称支座关于X、Y、Z轴的角坐标,支座关于某一个轴的角坐标的具体数值称为支座关于该轴的角坐标分量,本方法中也用支座的一个角坐标分量表达支座关于某一个轴的角坐标的具体数值;用“支座广义坐标”指称支座角坐标和支座空间坐标全体,本方法中也用支座的一个广义坐标分量表达支座关于一个轴的空间坐标或角坐标的具体数值;支座关于X、Y、Z轴的坐标的改变称为支座线位移,也可以说支座空间坐标的改变称为支座线位移,本方法中也用支座的一个线位移分量表达支座关于某一个轴的线位移的具体数值;支座关于X、Y、Z轴的角坐标的改变称为支座角位移,本方法中也用支座的一个角位移分量表达支座关于某一个轴的角位移的具体数值;支座广义位移指称支座线位移和支座角位移全体,本方法中也用支座的一个广义位移分量表达支座关于某一个轴的线位移或角位移的具体数值;支座线位移也可称为平移位移,支座沉降是支座线位移或平移位移在重力方向的分量。
物体、结构承受的外力可称为载荷,载荷包括面载荷和体积载荷。面载荷又称表面载荷,是作用于物体表面的载荷,包括集中载荷和分布载荷两种。体积载荷是连续分布于物体内部各点的载荷,如物体的自重和惯性力。
集中载荷分为集中力和集中力偶两种,在坐标系中,例如在笛卡尔直角坐标系中,一个集中力可以分解成三个分量,同样的,一个集中力偶也可以分解成三个分量,如果载荷实际上是集中载荷,在本方法中将一个集中力分量或一个集中力偶分量称为一个载荷,此时载荷的变化具体化为一个集中力分量或一个集中力偶分量的变化。
分布载荷分为线分布载荷和面分布载荷,分布载荷的描述至少包括分布载荷的作用区域和分布载荷的大小,分布载荷的大小用分布集度来表达,分布集度用分布特征(例如均布、正弦函数等分布特征)和幅值来表达(例如两个分布载荷都是均布,但其幅值不同,可以均布压力为例来说明幅值的概念:同一个结构承受两个不同的均布压力,两个分布载荷都是均布载荷,但一个分布载荷的幅值是10MPa,另一个分布载荷的幅值是50MPa)。如果载荷实际上是分布载荷,本方法谈论载荷的变化时,实际上是指分布载荷分布集度的幅值的改变,而分布载荷的作用区域和分布集度的分布特征是不变的。在坐标系中,一个分布载荷可以分解成若干个分量,如果这分布载荷的若干个分量的各自的分布集度的幅值发生变化,且变化的比率不全部相同,那么在本方法中把这若干个分布载荷的分量看成同样数量的独立的分布载荷,此时一个载荷就代表一个分布载荷的分量,也可以将其中分布集度的幅值变化比率相同的分量合成为一个分布载荷或称为一个载荷。
体积载荷是连续分布于物体内部各点的载荷,如物体的自重和惯性力,体积载荷的描述至少包括体积载荷的作用区域和体积载荷的大小,体积载荷的大小用分布集度来表达,分布集度用分布特征(例如均布、线性函数等分布特征)和幅值来表达(例如两个体积载荷都是均布,但其幅值不同,可以自重为例来说明幅值的概念:同一个结构的两个部分的材料不同,故密度不同,所以虽然这两个部分所受的体积载荷都是均布的,但一个部分所受的体积载荷的幅值可能是10kN/m3,另一个部分所受的体积载荷的幅值是50kN/m3)。如果载荷实际上是体积载荷,在本方法中实际处理的是体积载荷分布集度的幅值的改变,而体积载荷的作用区域和分布集度的分布特征是不变的,此时在本方法中提到载荷的改变时实际上是指体积载荷的分布集度的幅值的改变,此时,发生变化的载荷是指那些分布集度的幅值发生变化的体积载荷。在坐标系中,一个体积载荷可以分解成若干个分量(例如在笛卡尔直角坐标系中,体积载荷可以分解成关于坐标系的三个轴的分量,也就是说,在笛卡尔直角坐标系中体积载荷可以分解成三个分量),如果这体积载荷的若干个分量的各自的分布集度的幅值发生变化,且变化的比率不全部相同,那么在本方法中把这若干个体积载荷的分量看成同样数量的独立的载荷,也可以将其中分布集度的幅值变化比率相同的体积载荷分量合成为一个体积载荷或称为一个载荷。
当载荷具体化为集中载荷时,在本方法中,“载荷单位变化”实际上是指“集中载荷的单位变化”,类似的,“载荷变化”具体指“集中载荷的大小的变化”,“载荷变化量”具体指“集中载荷的大小的变化量”,“载荷变化程度”具体指“集中载荷的大小的变化程度”,“载荷的实际变化量”是指“集中载荷的大小的实际变化量”,“发生变化的载荷”是指“大小发生变化的集中载荷”,简单地说,此时“某某载荷的某某变化”是指“某某集中载荷的大小的某某变化”。
当载荷具体化为分布载荷时,在本方法中,“载荷单位变化”实际上是指“分布载荷的分布集度的幅值的单位变化”,而分布载荷的分布特征是不变的,类似的,“载荷变化”具体指“分布载荷的分布集度的幅值的变化”,而分布载荷的分布特征是不变的,“载荷变化量”具体指“分布载荷的分布集度的幅值的变化量”,“载荷变化程度”具体指“分布载荷的分布集度的幅值的变化程度”,“载荷的实际变化量”具体指“分布载荷的分布集度的幅值的实际变化量”,“发生变化的载荷”是指“分布集度的幅值发生变化的分布载荷”,简单地说,此时“某某载荷的某某变化”是指“某某分布载荷的分布集度的幅值的某某变化”,而所有分布载荷的作用区域和分布集度的分布特征是不变的。
当载荷具体化为体积载荷时,在本方法中,“载荷单位变化”实际上是指“体积载荷的分布集度的幅值的单位变化”,类似的,“载荷变化”是指“体积载荷的分布集度的幅值的变化”,“载荷变化量”是指“体积载荷的分布集度的幅值的变化量”,“载荷变化程度”是指“体积载荷的分布集度的幅值的变化程度”,“载荷的实际变化量”是指“体积载荷的分布集度的幅值的实际变化量”,“发生变化的载荷”是指“分布集度的幅值发生变化的体积载荷”,简单地说,“某某载荷的某某变化”是指“某某体积载荷的分布集度的幅值的某某变化”,而所有体积载荷的作用区域和分布集度的分布特征是不变的。
本方法具体包括:
a.为叙述方便起见,本方法统一称被评估的支承索和载荷为被评估对象,设被评估的支承索的数量和载荷的数量之和为N,即被评估对象的数量为N;确定被评估对象的编号规则,按此规则将索结构中所有的被评估对象编号,该编号在后续步骤中将用于生成向量和矩阵;本方法用变量k表示这一编号,k=1,2,3,…,N;确定指定的被测量点,给所有指定点编号;确定过每一测量点的被测量直线,给所有指定的被测量直线编号;确定每一被测量直线的被测量的角度坐标分量,给所有被测量角度坐标分量编号;上述编号在后续步骤中将用于生成向量和矩阵;“索结构的全部被监测的角度数据”由上述所有被测量角度坐标分量组成;为方便起见,在本方法中将“索结构的被监测的角度数据”简称为“被监测量”;所有被监测量的数量之和记为M,M不得小于N;本方法中对同一个量实时监测的任何两次测量之间的时间间隔不得大于30分钟,测量记录数据的时刻称为实际记录数据时刻;物体、结构承受的外力可称为载荷,载荷包括面载荷和体积载荷;面载荷又称表面载荷,是作用于物体表面的载荷,包括集中载荷和分布载荷两种;体积载荷是连续分布于物体内部各点的载荷,包括物体的自重和惯性力在内;集中载荷分为集中力和集中力偶两种,在包括笛卡尔直角坐标系在内的坐标系中,一个集中力可以分解成三个分量,同样的,一个集中力偶也可以分解成三个分量,如果载荷实际上是集中载荷,在本方法中将一个集中力分量或一个集中力偶分量计为或统计为一个载荷,此时载荷的变化具体化为一个集中力分量或一个集中力偶分量的变化;分布载荷分为线分布载荷和面分布载荷,分布载荷的描述至少包括分布载荷的作用区域和分布载荷的大小,分布载荷的大小用分布集度来表达,分布集度用分布特征和幅值来表达;如果载荷实际上是分布载荷,本方法谈论载荷的变化时,实际上是指分布载荷分布集度的幅值的改变,而所有分布载荷的作用区域和分布集度的分布特征是不变的;在包括笛卡尔直角坐标系在内的坐标系中,一个分布载荷可以分解成三个分量,如果这分布载荷的三个分量的各自的分布集度的幅值发生变化,且变化的比率不全部相同,那么在本方法中把这分布载荷的三个分量计为或统计为三个分布载荷,此时一个载荷就代表分布载荷的一个分量;体积载荷是连续分布于物体内部各点的载荷,体积载荷的描述至少包括体积载荷的作用区域和体积载荷的大小,体积载荷的大小用分布集度来表达,分布集度用分布特征和幅值来表达;如果载荷实际上是体积载荷,在本方法中实际处理的是体积载荷分布集度的幅值的改变,而所有体积载荷的作用区域和分布集度的分布特征是不变的,此时在本方法中提到载荷的改变时实际上是指体积载荷的分布集度的幅值的改变,此时,发生变化的载荷是指那些分布集度的幅值发生变化的体积载荷;在包括笛卡尔直角坐标系在内的坐标系中,一个体积载荷可以分解成三个分量,如果这体积载荷的三个分量的各自的分布集度的幅值发生变化,且变化的比率不全部相同,那么在本方法中把这体积载荷的三个分量计为或统计为三个分布载荷;
b.本方法定义“本方法的索结构的温度测量计算方法”按步骤b1至b3进行;
b1:查询或实测得到索结构组成材料及索结构所处环境的随温度变化的传热学参数,利用索结构的设计图、竣工图和索结构的几何实测数据,利用这些数据和参数建立索结构的传热学计算模型;查询索结构所在地不少于2年的近年来的气象资料,统计得到这段时间内的阴天数量记为T个阴天,在本方法中将白天不能见到太阳的一整日称为阴天,统计得到T个阴天中每一个阴天的0时至次日日出时刻后30分钟之间的最高气温与最低气温,日出时刻是指根据地球自转和公转规律确定的气象学上的日出时刻,不表示当天一定可以看见太阳,可以查询资料或通过常规气象学计算得到所需的每一日的日出时刻,每一个阴天的0时至次日日出时刻后30分钟之间的最高气温减去最低气温称为该阴天的日气温的最大温差,有T个阴天,就有T个阴天的日气温的最大温差,取T个阴天的日气温的最大温差中的最大值为参考日温差,参考日温差记为ΔTr;查询索结构所在地和所在海拔区间不少于2年的近年来的气象资料或实测得到索结构所处环境的温度随时间和海拔高度的变化数据和变化规律,计算得到索结构所在地和所在海拔区间不少于2年的近年来的索结构所处环境的温度关于海拔高度的最大变化率ΔTh,为方便叙述取ΔTh的单位为℃/m;在索结构的表面上取“R个索结构表面点”,取“R个索结构表面点”的具体原则在步骤b3中叙述,后面将通过实测得到这R个索结构表面点的温度,称实测得到的温度数据为“R个索结构表面温度实测数据”,如果是利用索结构的传热学计算模型,通过传热计算得到这R个索结构表面点的温度,就称计算得到的温度数据为“R个索结构表面温度计算数据”;从索结构所处的最低海拔到最高海拔之间,在索结构上均布选取不少于三个不同的海拔高度,在每一个选取的海拔高度处、在水平面与索结构表面的交线处至少选取两个点,从选取点处引索结构表面的外法线,所有选取的外法线方向称为“测量索结构沿壁厚的温度分布的方向”,测量索结构沿壁厚的温度分布的方向与“水平面与索结构表面的交线”相交,在选取的测量索结构沿壁厚的温度分布的方向中必须包括索结构的向阳面外法线方向和索结构的背阴面外法线方向,沿每一个测量索结构沿壁厚的温度分布的方向在索结构中均布选取不少于三个点,测量所有被选取点的温度,测得的温度称为“索结构沿厚度的温度分布数据”,其中沿与同一“水平面与索结构表面的交线”相交的、“测量索结构沿壁厚的温度分布的方向”测量获得的“索结构沿厚度的温度分布数据”,在本方法中称为“相同海拔高度索结构沿厚度的温度分布数据”,设选取了H个不同的海拔高度,在每一个海拔高度处,选取了B个测量索结构沿壁厚的温度分布的方向,沿每个测量索结构沿壁厚的温度分布的方向在索结构中选取了E个点,其中H和E都不小于3,B不小于2,设HBE为H与B和E的乘积,对应的共有HBE个“测量索结构沿厚度的温度分布数据的点”,后面将通过实测得到这HBE个“测量索结构沿厚度的温度分布数据的点”的温度,称实测得到的温度数据为“HBE个索结构沿厚度温度实测数据”,如果是利用索结构的传热学计算模型,通过传热计算得到这HBE个测量索结构沿厚度的温度分布数据的点的温度,就称计算得到的温度数据为“HBE个索结构沿厚度温度计算数据”;设BE为B和E的乘积,本方法中在每一个选取的海拔高度处共有BE个“相同海拔高度索结构沿厚度的温度分布数据”;在索结构所在地按照气象学测量气温要求选取一个位置,将在此位置实测得到符合气象学测量气温要求的索结构所在环境的气温;在索结构所在地的空旷无遮挡处选取一个位置,该位置应当在全年的每一日都能得到该地所能得到的该日的最充分的日照,在该位置安放一块碳钢材质的平板,称为参考平板,参考平板与地面不可接触,参考平板离地面距离不小于1.5米,该参考平板的一面向阳,称为向阳面,参考平板的向阳面是粗糙的和深色的,参考平板的向阳面应当在全年的每一日都能得到一块平板在该地所能得到的该日的最充分的日照,参考平板的非向阳面覆有保温材料,将实时监测得到参考平板的向阳面的温度;
b2:实时监测得到上述R个索结构表面点的R个索结构表面温度实测数据,同时实时监测得到前面定义的索结构沿厚度的温度分布数据,同时实时监测得到符合气象学测量气温要求的索结构所在环境的气温数据;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的索结构所在环境的气温实测数据序列,索结构所在环境的气温实测数据序列由当日日出时刻到次日日出时刻后30分钟之间的索结构所在环境的气温实测数据按照时间先后顺序排列,找到索结构所在环境的气温实测数据序列中的最高温度和最低温度,用索结构所在环境的气温实测数据序列中的最高温度减去最低温度得到索结构所在环境的当日日出时刻到次日日出时刻后30分钟之间的最大温差,称为环境最大温差,记为ΔTemax;由索结构所在环境的气温实测数据序列通过常规数学计算得到索结构所在环境的气温关于时间的变化率,该变化率也随着时间变化;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的参考平板的向阳面的温度的实测数据序列,参考平板的向阳面的温度的实测数据序列由当日日出时刻到次日日出时刻后30分钟之间的参考平板的向阳面的温度的实测数据按照时间先后顺序排列,找到参考平板的向阳面的温度的实测数据序列中的最高温度和最低温度,用参考平板的向阳面的温度的实测数据序列中的最高温度减去最低温度得到参考平板的向阳面的温度的当日日出时刻到次日日出时刻后30分钟之间的最大温差,称为参考平板最大温差,记为ΔTpmax;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的所有R个索结构表面点的索结构表面温度实测数据序列,有R个索结构表面点就有R个索结构表面温度实测数据序列,每一个索结构表面温度实测数据序列由一个索结构表面点的当日日出时刻到次日日出时刻后30分钟之间的索结构表面温度实测数据按照时间先后顺序排列,找到每一个索结构表面温度实测数据序列中的最高温度和最低温度,用每一个索结构表面温度实测数据序列中的最高温度减去最低温度得到每一个索结构表面点的温度的当日日出时刻到次日日出时刻后30分钟之间的最大温差,有R个索结构表面点就有R个当日日出时刻到次日日出时刻后30分钟之间的最大温差数值,其中的最大值称为索结构表面最大温差,记为ΔTsmax;由每一索结构表面温度实测数据序列通过常规数学计算得到每一个索结构表面点的温度关于时间的变化率,每一个索结构表面点的温度关于时间的变化率也随着时间变化;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的、在同一时刻、HBE个“索结构沿厚度的温度分布数据”后,计算在每一个选取的海拔高度处共计BE个“相同海拔高度索结构沿厚度的温度分布数据”中的最高温度与最低温度的差值,这个差值的绝对值称为“相同海拔高度处索结构厚度方向最大温差”,选取了H个不同的海拔高度就有H个“相同海拔高度处索结构厚度方向最大温差”,称这H个“相同海拔高度处索结构厚度方向最大温差”中的最大值为“索结构厚度方向最大温差”,记为ΔTtmax
b3:测量计算获得索结构稳态温度数据;首先,确定获得索结构稳态温度数据的时刻,与决定获得索结构稳态温度数据的时刻相关的条件有六项,第一项条件是获得索结构稳态温度数据的时刻介于当日日落时刻到次日日出时刻后30分钟之间,日落时刻是指根据地球自转和公转规律确定的气象学上的日落时刻,可以查询资料或通过常规气象学计算得到所需的每一日的日落时刻;第二项条件的a条件是在当日日出时刻到次日日出时刻后30分钟之间的这段时间内,参考平板最大温差ΔTpmax和索结构表面最大温差ΔTsmax都不大于5摄氏度;第二项条件的b条件是在当日日出时刻到次日日出时刻后30分钟之间的这段时间内,在前面测量计算得到的环境最大误差ΔTemax不大于参考日温差ΔTr,且参考平板最大温差ΔTpmax减去2摄氏度后不大于ΔTemax,且索结构表面最大温差ΔTsmax不大于ΔTpmax;只需满足第二项的a条件和b条件中的一项就称为满足第二项条件;第三项条件是在获得索结构稳态温度数据的时刻,索结构所在环境的气温关于时间的变化率的绝对值不大于每小时0.1摄氏度;第四项条件是在获得索结构稳态温度数据的时刻,R个索结构表面点中的每一个索结构表面点的温度关于时间的变化率的绝对值不大于每小时0.1摄氏度;第五项条件是在获得索结构稳态温度数据的时刻,R个索结构表面点中的每一个索结构表面点的索结构表面温度实测数据为当日日出时刻到次日日出时刻后30分钟之间的极小值;第六项条件是在获得索结构稳态温度数据的时刻,“索结构厚度方向最大温差”ΔTtmax不大于1摄氏度;本方法利用上述六项条件,将下列三种时刻中的任意一种称为“获得索结构稳态温度数据的数学时刻”,第一种时刻是满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第一项至第五项条件的时刻,第二种时刻是仅仅满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第六项条件的时刻,第三种时刻是同时满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第一项至第六项条件的时刻;当获得索结构稳态温度数据的数学时刻就是本方法中实际记录数据时刻中的一个时,获得索结构稳态温度数据的时刻就是获得索结构稳态温度数据的数学时刻;如果获得索结构稳态温度数据的数学时刻不是本方法中实际记录数据时刻中的任一个时刻,则取本方法最接近于获得索结构稳态温度数据的数学时刻的那个实际记录数据的时刻为获得索结构稳态温度数据的时刻;本方法将使用在获得索结构稳态温度数据的时刻测量记录的量进行索结构相关健康监测分析;本方法近似认为获得索结构稳态温度数据的时刻的索结构温度场处于稳态,即此时刻的索结构温度不随时间变化,此时刻就是本方法的“获得索结构稳态温度数据的时刻”;然后,根据索结构传热特性,利用获得索结构稳态温度数据的时刻的“R个索结构表面温度实测数据”和“HBE个索结构沿厚度温度实测数据”,利用索结构的传热学计算模型,通过常规传热计算得到在获得索结构稳态温度数据的时刻的索结构的温度分布,此时索结构的温度场按稳态进行计算,计算得到的在获得索结构稳态温度数据的时刻的索结构的温度分布数据包括索结构上R个索结构表面点的计算温度,R个索结构表面点的计算温度称为R个索结构稳态表面温度计算数据,还包括索结构在前面选定的HBE个“测量索结构沿厚度的温度分布数据的点”的计算温度,HBE个“测量索结构沿厚度的温度分布数据的点”的计算温度称为“HBE个索结构沿厚度温度计算数据”,当R个索结构表面温度实测数据与R个索结构稳态表面温度计算数据对应相等时,且“HBE个索结构沿厚度温度实测数据”与“HBE个索结构沿厚度温度计算数据”对应相等时,计算得到的在获得索结构稳态温度数据的时刻的索结构的温度分布数据在本方法中称为“索结构稳态温度数据”,此时的“R个索结构表面温度实测数据”称为“R个索结构稳态表面温度实测数据”,“HBE个索结构沿厚度温度实测数据”称为“HBE个索结构沿厚度稳态温度实测数据”;在索结构的表面上取“R个索结构表面点”时,“R个索结构表面点”的数量与分布必须满足三个条件,第一个条件是当索结构温度场处于稳态时,当索结构表面上任意一点的温度是通过“R个索结构表面点”中与索结构表面上该任意点相邻的点的实测温度线性插值得到时,线性插值得到的索结构表面上该任意点的温度与索结构表面上该任意点的实际温度的误差不大于5%;索结构表面包括支承索表面;第二个条件是“R个索结构表面点”中在同一海拔高度的点的数量不小于4,且“R个索结构表面点”中在同一海拔高度的点沿着索结构表面均布;“R个索结构表面点”沿海拔高度的所有两两相邻索结构表面点的海拔高度之差的绝对值中的最大值Δh不大于0.2℃除以ΔTh得到的数值,为方便叙述取ΔTh的单位为℃/m,为方便叙述取Δh的单位为m;“R个索结构表面点”沿海拔高度的两两相邻索结构表面点的定义是指只考虑海拔高度时,在“R个索结构表面点”中不存在一个索结构表面点,该索结构表面点的海拔高度数值介于两两相邻索结构表面点的海拔高度数值之间;第三个条件是查询或按气象学常规计算得到索结构所在地和所在海拔区间的日照规律,再根据索结构的几何特征及方位数据,在索结构上找到全年受日照时间最充分的那些表面点的位置,“R个索结构表面点”中至少有一个索结构表面点是索结构上全年受日照时间最充分的那些表面点中的一个点;
c.按照“本方法的索结构的温度测量计算方法”直接测量计算得到初始状态下的索结构稳态温度数据,初始状态下的索结构稳态温度数据称为初始索结构稳态温度数据,记为“初始索结构稳态温度数据向量To”;实测或查资料得到索结构所使用的各种材料的随温度变化的物理和力学性能参数;在实测得到To的同时,也就是在获得初始索结构稳态温度数据向量To的时刻的同一时刻,直接测量计算得到初始索结构的实测数据,初始索结构的实测数据是包括索结构集中载荷测量数据、索结构分布载荷测量数据、索结构体积载荷测量数据、所有被监测量的初始数值、所有支承索的初始索力数据、初始索结构模态数据、初始索结构应变数据、初始索结构几何数据、初始索结构支座广义坐标数据、初始索结构角度数据、初始索结构空间坐标数据在内的实测数据,初始索结构支座广义坐标数据包括初始索结构支座空间坐标数据和初始索结构支座角坐标数据,在得到初始索结构的实测数据的同时,测量计算得到包括支承索的无损检测数据在内的能够表达支承索的健康状态的数据,此时的能够表达支承索的健康状态的数据称为支承索初始健康状态数据;所有被监测量的初始数值组成被监测量初始数值向量Co,被监测量初始数值向量Co的编号规则与M个被监测量的编号规则相同;利用支承索初始健康状态数据以及索结构载荷测量数据建立被评估对象初始损伤向量do,向量do表示用初始力学计算基准模型Ao表示的索结构的被评估对象的初始健康状态;被评估对象初始损伤向量do的元素个数等于N,do的元素与被评估对象是一一对应关系,向量do的元素的编号规则与被评估对象的编号规则相同;如果do的某一个元素对应的被评估对象是索系统中的一根支承索,那么do的该元素的数值代表对应支承索的初始损伤程度,若该元素的数值为0,表示该元素所对应的支承索是完好的,没有损伤的,若其数值为100%,则表示该元素所对应的支承索已经完全丧失承载能力,若其数值介于0和100%之间,则表示该支承索丧失了相应比例的承载能力;如果do的某一个元素对应的被评估对象是某一个载荷,本方法中取do的该元素数值为0,代表这个载荷的变化的初始数值为0;如果没有支承索的无损检测数据及其他能够表达支承索的健康状态的数据时,或者可以认为结构初始状态为无损伤无松弛状态时,向量do中与支承索相关的各元素数值取0;初始索结构支座广义坐标数据组成初始索结构支座广义坐标向量Uo
d.根据索结构的设计图、竣工图和初始索结构的实测数据、支承索初始健康状态数据、索结构集中载荷测量数据、索结构分布载荷测量数据、索结构体积载荷测量数据、索结构所使用的各种材料的随温度变化的物理和力学性能参数、初始索结构支座广义坐标向量Uo、初始索结构稳态温度数据向量To和前面步骤得到的所有的索结构数据,建立计入“索结构稳态温度数据”的索结构的初始力学计算基准模型Ao,基于Ao计算得到的索结构计算数据必须非常接近其实测数据,其间的差异不得大于5%;对应于Ao的“索结构稳态温度数据”就是“初始索结构稳态温度数据向量To”;对应于Ao的索结构支座广义坐标数据就是初始索结构支座广义坐标向量Uo;对应于Ao的被评估对象健康状态用被评估对象初始损伤向量do表示;对应于Ao的所有被监测量的初始数值用被监测量初始数值向量Co表示;Uo、To和do是Ao的参数,由Ao的力学计算结果得到的所有被监测量的初始数值与Co表示的所有被监测量的初始数值相同,因此也可以说Co由Ao的力学计算结果组成,在本方法中Ao、Co、do、Uo和To是不变的;
e.在本方法中,字母i除了明显地表示步骤编号的地方外,字母i仅表示循环次数,即第i次循环;第i次循环开始时需要建立的或已建立的索结构的当前初始力学计算基准模型记为当前初始力学计算基准模型Ai o,Ao和Ai o计入了温度参数,可以计算温度变化对索结构的力学性能影响;第i次循环开始时,对应于Ai o的“索结构稳态温度数据”用当前初始索结构稳态温度数据向量Ti o表示,向量Ti o的定义方式与向量To的定义方式相同,Ti o的元素与To的元素一一对应;第i次循环开始时,对应于Ai o的“索结构支座广义坐标数据”用当前初始索结构支座广义坐标向量Ui o表示,向量Ui o的定义方式与向量Uo的定义方式相同,Ui o的元素与Uo的元素一一对应;第i次循环开始时需要的被评估对象当前初始损伤向量记为di o,di o表示该次循环开始时索结构Ai o的被评估对象的健康状态,di o的定义方式与do的定义方式相同,di o的元素与do的元素一一对应;第i次循环开始时,所有被监测量的初始值,用被监测量当前初始数值向量Ci o表示,向量Ci o的定义方式与向量Co的定义方式相同,Ci o的元素与Co的元素一一对应,被监测量当前初始数值向量Ci o表示对应于Ai o的所有被监测量的具体数值;Ui o、Ti o和di o是Ai o的特性参数,Ci o由Ai o的力学计算结果组成;第一次循环开始时,Ai o记为A1 o,建立A1 o的方法为使A1 o等于Ao;第一次循环开始时,Ti o记为T1 o,建立T1 o的方法为使T1 o等于To;第一次循环开始时,Ui o记为U1 o,建立U1 o的方法为使U1 o等于Uo;第一次循环开始时,di o记为d1 o,建立d1 o的方法为使d1 o等于do;第一次循环开始时,Ci o记为C1 o,建立C1 o的方法为使C1 o等于Co
f.从这里进入由第f步到第q步的循环;在结构服役过程中,按照“本方法的索结构的温度测量计算方法”不断实测计算获得索结构稳态温度数据的当前数据,所有“索结构稳态温度数据”的当前数据组成当前索结构稳态温度数据向量Ti,向量Ti的定义方式与向量To的定义方式相同,Ti的元素与To的元素一一对应;在实测得到当前索结构稳态温度数据向量Ti的同一时刻,实测得到索结构支座广义坐标当前数据,所有索结构支座广义坐标当前数据组成当前索结构实测支座广义坐标向量Ui,向量Ui的定义方式与向量Uo的定义方式相同;在实测得到向量Ti的同时,实测得到在获得当前索结构稳态温度数据向量Ti的时刻的同一时刻的索结构中所有被监测量的当前值,所有这些数值组成被监测量当前数值向量Ci,向量Ci的定义方式与向量Co的定义方式相同,Ci的元素与Co的元素一一对应,表示相同被监测量在不同时刻的数值;
g.根据当前索结构实测支座广义坐标向量Ui和当前索结构稳态温度数据向量Ti,按照步骤g1至g3更新当前初始力学计算基准模型Ai o、被监测量当前初始数值向量Ci o、当前初始索结构稳态温度数据向量Ti o和当前初始索结构支座广义坐标向量Ui o,而被评估对象当前初始损伤向量di o保持不变;
g1.分别比较Ti和Ti o、Ui和Ui o,如果Ti等于Ti o且Ui等于Ui o,则不需要对Ai o进行更新,否则需要按下列步骤对Ai o、Ui o和Ti o进行更新;
g2.计算Ui与Uo的差,Ui与Uo的差就是索结构支座关于初始位置的支座广义位移,用支座广义位移向量V表示支座广义位移,V等于Ui减去Uo;计算Ti与To的差,Ti与To的差就是当前索结构稳态温度数据关于初始索结构稳态温度数据的变化,Ti与To的差用稳态温度变化向量S表示,S等于Ti减去To,S表示索结构稳态温度数据的变化;
g3.先对Ao中的索结构支座施加支座广义位移约束,支座广义位移约束的数值就取自支座广义位移向量V中对应元素的数值,再对Ao中的索结构施加温度变化,施加的温度变化的数值就取自稳态温度变化向量S,对Ao中索结构支座施加支座广义位移约束且对索结构施加温度变化后得到更新的当前初始力学计算基准模型Ai o,更新Ai o的同时,Ui o所有元素数值也用Ui所有元素数值对应代替,即更新了Ui o,Ti o所有元素数值也用Ti的所有元素数值对应代替,即更新了Ti o,这样就得到了正确地对应于Ai o的Ui o和Ti o,此时di o保持不变;当更新Ai o后,Ai o的索的健康状况用被评估对象当前初始损伤向量di o表示,Ai o的索结构稳态温度用当前索结构稳态温度数据向量Ti o表示,Ai o的支座广义坐标用当前初始索结构支座广义坐标向量Ui o表示;更新Ci o的方法是:当更新Ai o后,通过力学计算得到Ai o中所有被监测量的、当前的具体数值,这些具体数值组成Ci o
h.在当前初始力学计算基准模型Ai o的基础上,按照步骤h1至步骤h4进行若干次力学计算,通过计算建立单位损伤被监测量数值变化矩阵ΔCi和被评估对象单位变化向量Di u
h1.在第i次循环开始时,直接按步骤h2至步骤h4所列方法获得ΔCi和Di u;在其它时刻,当在步骤g中对Ai o进行更新后,必须按步骤h2至步骤h4所列方法重新获得ΔCi和Di u,如果在步骤g中没有对Ai o进行更新,则在此处直接转入步骤i进行后续工作;
h2.在当前初始力学计算基准模型Ai o的基础上进行若干次力学计算,计算次数数值上等于所有被评估对象的数量N,有N个评估对象就有N次计算;依据被评估对象的编号规则,依次进行计算;每一次计算假设只有一个被评估对象在原有损伤或载荷的基础上再增加单位损伤或载荷单位变化,具体的,如果该被评估对象是索系统中的一根支承索,那么就假设该支承索再增加单位损伤,如果该被评估对象是一个载荷,就假设该载荷再增加载荷单位变化,用Di uk记录这一增加的单位损伤或载荷单位变化,其中k表示增加单位损伤或载荷单位变化的被评估对象的编号,Di uk是被评估对象单位变化向量Di u的一个元素,被评估对象单位变化向量Di u的元素的编号规则与向量do的元素的编号规则相同;每一次计算中再增加单位损伤或载荷单位变化的被评估对象不同于其它次计算中再增加单位损伤或载荷单位变化的被评估对象,每一次计算都利用力学方法计算索结构的所有被监测量的当前计算值,每一次计算得到的所有被监测量的当前计算值组成一个被监测量计算当前向量;当假设第k个被评估对象再增加单位损伤或载荷单位变化时,用Ci tk表示对应的“被监测量计算当前向量”;在本步骤中给各向量的元素编号时,应同本方法中其它向量使用同一编号规则,以保证本步骤中各向量中的任意一个元素,同其它向量中的、编号相同的元素,表达了同一被监测量或同一对象的相关信息;Ci tk的定义方式与向量Co的定义方式相同,Ci tk的元素与Co的元素一一对应;
h3.每一次计算得到的向量Ci tk减去向量Ci o得到一个向量,再将该向量的每一个元素都除以本次计算所假设的单位损伤或载荷单位变化数值后得到一个“被监测量的数值变化向量δCi k”;有N个被评估对象就有N个“被监测量的数值变化向量”;
h4.由这N个“被监测量的数值变化向量”按照N个被评估对象的编号规则,依次组成有N列的“单位损伤被监测量数值变化矩阵ΔCi”;单位损伤被监测量数值变化矩阵ΔCi的每一列对应于一个被监测量单位变化向量;单位损伤被监测量数值变化矩阵ΔCi的每一行对应于同一个被监测量在不同被评估对象增加单位损伤或载荷单位变化时的不同的单位变化幅度;单位损伤被监测量数值变化矩阵ΔCi的列的编号规则与向量do的元素的编号规则相同,单位损伤被监测量数值变化矩阵ΔCi的行的编号规则与M个被监测量的编号规则相同;
i.定义当前名义损伤向量di c和当前实际损伤向量di,di c和di的元素个数等于被评估对象的数量,di c和di的元素和被评估对象之间是一一对应关系,di c的元素数值代表对应被评估对象的名义损伤程度或名义载荷变化量,di c和di与被评估对象初始损伤向量do的元素编号规则相同,di c的元素、di的元素与do的元素是一一对应关系;
j.依据被监测量当前数值向量Ci同“被监测量当前初始数值向量Ci o”、“单位损伤被监测量数值变化矩阵ΔCi”和“当前名义损伤向量di c”间存在的近似线性关系,该近似线性关系可表达为式1,式1中除di c外的其它量均为已知,求解式1就可以算出当前名义损伤向量di c
C i = C o i + ΔC i · d c i   式1
k.利用式2表达的当前实际损伤向量di的第k个元素di k同被评估对象当前初始损伤向量di o的第k个元素di ok和当前名义损伤向量di c的第k个元素di ck间的关系,计算得到当前实际损伤向量di的所有元素;
Figure BDA0000474991620000161
  式2
式2中k=1,2,3,……,N;di k表示第i次循环中第k个被评估对象的当前实际健康状态,如果该被评估对象是索系统中的一根支承索,那么di k表示其当前实际损伤,di k为0时表示无损伤,为100%时表示该支承索彻底丧失承载能力,介于0与100%之间时表示丧失相应比例的承载能力;如果该被评估对象是一个载荷,那么di k表示该载荷的实际变化量;至此本方法实现了剔除支座广义位移、载荷变化和结构温度变化的影响的、索结构的受损索识别,同时实现了剔除支座广义位移、结构温度变化和支承索健康状态变化影响的、载荷变化量的识别;
l.在求得当前名义损伤向量di c后,按照式3建立标识向量Bi,式4给出了标识向量Bi的第k个元素的定义;
B i = B 1 i B 2 i · · · B k i · · · B N i T   式3
Figure BDA0000474991620000163
  式4
式4中元素Bi k是标识向量Bi的第k个元素,Di uk是被评估对象单位变化向量Di u的第k个元素,di ck是被评估对象当前名义损伤向量di c的第k个元素,它们都表示第k个被评估对象的相关信息,式4中k=1,2,3,……,N;
m.如果标识向量Bi的元素全为0,则回到步骤f继续本次循环;如果标识向量Bi的元素不全为0,则进入下一步、即步骤n;
n.根据式5计算得到下一次、即第i+1次循环所需的被评估对象当前初始损伤向量di+1 o的每一个元素;
Figure BDA0000474991620000164
  式5
式5中di+1 ok是下一次、即第i+1次循环所需的被评估对象当前初始损伤向量di+1 o的第k个元素,di ok是本次、即第i次循环的被评估对象当前初始损伤向量di o的第k个元素,Di uk是第i次循环的被评估对象单位变化向量Di u的第k个元素,Bi k是第i次循环的标识向量Bi的第k个元素,式5中k=1,2,3,……,N;
o.在初始力学计算基准模型Ao的基础上,先对Ao中的索结构支座施加支座广义位移约束,支座广义位移约束的数值就取自支座广义位移向量V中对应元素的数值,再对Ao中的索结构施加温度变化,施加的温度变化的数值就取自稳态温度变化向量S,再令索的健康状况为di+1 o后得到的就是下一次、即第i+1次循环所需的力学计算基准模型Ai+1;得到Ai+1后,通过力学计算得到Ai+1中所有被监测量的、当前的具体数值,这些具体数值组成下一次、即第i+1次循环所需的被监测量当前初始数值向量Ci+1 o
p.取下一次、即第i+1次循环所需的当前初始索结构稳态温度数据向量Ti+1 o等于第i次循环的当前初始索结构稳态温度数据向量Ti o;下一次、即第i+1次循环所需的当前初始索结构支座广义坐标向量Ui+1 o等于第i次循环的当前初始索结构支座广义坐标向量Ui o
q.回到步骤f,开始下一次循环。
有益效果:本方法实现了已有方法不可能具备的两种功能,分别是:一、在索结构发生支座广义位移时,在结构承受的载荷和结构(环境)温度变化时,能够剔除索结构支座广义位移、载荷变化和结构温度变化对索结构健康状态识别结果的影响,从而准确地识别出受损索的结构健康监测方法;二、本方法在识别出受损索的同时,还能同时识别出载荷的变化,即本方法能够剔除索结构支座广义位移、结构温度变化和支承索健康状态变化的影响,实现载荷变化程度的正确识别。
具体实施方式
本方法采用一种算法,该算法用于识别受损索和载荷的变化。具体实施时,下列步骤是可采取的各种步骤中的一种。
第一步:首先确认索结构承受的可能发生变化的载荷的数量。根据索结构所承受的载荷的特点,确认其中“所有可能发生变化的载荷”,或者将所有的载荷视为“所有可能发生变化的载荷”,设共有JZW个可能发生变化的载荷,本方法通过识别这JZW个“所有可能发生变化的载荷”的变化程度来表达“所有可能发生变化的载荷”的变化量。
设索结构的支承索的数量和JZW个“所有可能发生变化的载荷”的数量之和为N。为叙述方便起见,本方法统一称被评估的支承索和“所有可能发生变化的载荷”为“被评估对象”,共有N个被评估对象。给被评估对象连续编号,该编号在后续步骤中将用于生成向量和矩阵。
“结构的全部被监测的角度数据”由结构上K个指定点的、过每个指定点的L个指定直线的、每个指定直线的H个角度坐标分量来描述,结构角度的变化就是所有指定点的、所有指定直线的所有指定的角度坐标分量的变化。每次共有M(M=K×L×H)个角度坐标分量测量值或计算值来表征结构的角度信息。K和M不得小于N。
综合上述被监测量,整个索结构共有M个被监测量,M不得小于被评估对象的数量N。
为方便起见,在本方法中将“索结构的被监测的所有参量”简称为“被监测量”。给M个被监测量连续编号,该编号在后续步骤中将用于生成向量和矩阵。本方法用用变量j表示这一编号,j=1,2,3,…,M。
按技术方案规定的步骤确定“本方法的索结构的温度测量计算方法”。
第二步:建立初始力学计算基准模型Ao
在索结构竣工之时,或者在建立健康监测系统前,按照“本方法的索结构的温度测量计算方法”测量计算得到“索结构稳态温度数据”(可以用常规温度测量方法测量,例如使用热电阻测量),此时的“索结构稳态温度数据”用向量To表示,称为初始索结构稳态温度数据向量To。在实测得到To的同时,也就是在获得初始索结构稳态温度数据向量的时刻的同一时刻,使用常规方法直接测量计算得到索结构的所有被监测量的初始数值,组成被监测量初始数值向量Co
本方法中可以具体按照下列方法在获得某某(例如初始或当前等)索结构稳态温度数据向量的时刻的同一时刻,使用某某方法测量计算得到某某被测量量被监测量(例如索结构的所有被监测量)的数据:在测量记录温度(包括索结构所在环境的气温、参考平板的向阳面的温度和索结构表面温度)的同时,例如每隔10分钟测量记录一次温度,那么同时同样也每隔10分钟测量记录某某被测量量被监测量(例如索结构的所有被监测量)的数据。一旦确定了获得索结构稳态温度数据的时刻,那么与获得索结构稳态温度数据的时刻同一时刻的某某被测量量被监测量(例如索结构的所有被监测量)的数据就称为在获得索结构稳态温度数据的时刻的同一时刻,使用某某方法测量计算方法得到的某某被测量量被监测量的数据。
使用常规方法(查资料或实测)得到索结构所使用的各种材料的随温度变化的物理参数(例如热膨胀系数)和力学性能参数(例如弹性模量、泊松比)。
按技术方案规定的步骤,在实测计算得到初始索结构稳态温度数据向量To的同时,使用常规方法实测计算得到索结构的实测计算数据。初始索结构支座广义坐标数据组成初始索结构支座广义坐标向量Uo。利用支承索的无损检测数据等能够表达支承索的健康状态的数据以及索结构载荷测量数据建立被评估对象初始损伤向量do。利用索结构的设计图、竣工图和初始索结构的实测数据、支承索的无损检测数据、索结构所使用的各种材料的随温度变化的物理和力学性能参数、初始索结构支座广义坐标向量Uo和初始索结构稳态温度数据向量To,利用力学方法(例如有限元法)计入“索结构稳态温度数据”建立初始力学计算基准模型Ao。To、Uo和do是Ao的参数,Co由Ao的力学计算结果组成。
第三步:在本方法中,字母i除了明显地表示步骤编号的地方外,字母i仅表示循环次数,即第i次循环;第i次循环开始时需要建立的或已建立的索结构的当前初始力学计算基准模型记为当前初始力学计算基准模型Ai o,Ao和Ai o计入了温度参数,可以计算温度变化对索结构的力学性能影响;第i次循环开始时,对应于Ai o的“索结构稳态温度数据”用当前初始索结构稳态温度数据向量Ti o表示,向量Ti o的定义方式与向量To的定义方式相同,Ti o的元素与To的元素一一对应;第i次循环开始时需要的、对应于索结构的当前初始力学计算基准模型Ai o的索结构支座广义坐标数据组成当前初始索结构支座广义坐标向量Ui o,第一次建立索结构的当前初始力学计算基准模型Ai o时,Ui o就等于Uo。第i次循环开始时需要的被评估对象当前初始损伤向量记为di o,di o表示该次循环开始时索结构Ai o的被评估对象的健康状态,di o的定义方式与do的定义方式相同,di o的元素与do的元素一一对应;第i次循环开始时,所有被监测量的初始值,用被监测量当前初始数值向量Ci o表示,向量Ci o的定义方式与向量Co的定义方式相同,Ci o的元素与Co的元素一一对应,被监测量当前初始数值向量Ci o表示对应于Ai o的所有被监测量的具体数值;Ti o和di o是Ai o的特性参数;Ci o由Ai o的力学计算结果组成;第一次循环开始时,Ai o记为A1 o,建立A1 o的方法为使A1 o等于Ao;第一次循环开始时,Ti o记为T1 o,建立T1 o的方法为使T1 o等于To;第一次循环开始时,Ui o记为U1 o,建立U1 o的方法为使U1 o等于Uo;第一次循环开始时,di o记为d1 o,建立d1 o的方法为使d1 o等于do;第一次循环开始时,Ci o记为C1 o,建立C1 o的方法为使C1 o等于Co
第四步:安装索结构健康监测系统的硬件部分。硬件部分至少包括:被监测量监测系统(例如含角度测量系统、信号调理器等)、索结构支座广义坐标监测系统(含全站仪、角度测量传感器、信号调理器等)、索结构温度监测系统(含温度传感器、信号调理器等)和索结构环境温度测量系统(含温度传感器、信号调理器等)、信号(数据)采集器、计算机和通信报警设备。每一个被监测量、索结构的每一个支座广义坐标、每一个温度都必须被监测系统监测到,监测系统将监测到的信号传输到信号(数据)采集器;信号经信号采集器传递到计算机;计算机则负责运行索结构的被评估对象的健康监测软件,包括记录信号采集器传递来的信号;当监测到被评估对象健康状态有变化时,计算机控制通信报警设备向监控人员、业主和(或)指定的人员报警。
第五步:编制并在计算机上安装运行本方法的系统软件,该软件将完成本方法任务所需要的监测、记录、控制、存储、计算、通知、报警等功能(即本具体实施方法中所有可以用计算机完成的工作)。
第六步:由此步开始循环运作,在结构服役过程中,按照“本方法的索结构的温度测量计算方法”不断实测计算获得索结构稳态温度数据的当前数据,所有“索结构稳态温度数据”的当前数据组成当前索结构稳态温度数据向量Ti,向量Ti的定义方式与向量To的定义方式相同,Ti的元素与To的元素一一对应;在实测向量Ti的同时,也就是在获得当前索结构稳态温度数据向量Ti的时刻的同一时刻,实测得到索结构中所有被监测量的当前值,所有这些数值组成被监测量当前数值向量Ci,向量Ci的定义方式与向量Co的定义方式相同,Ci的元素与Co的元素一一对应,表示相同被监测量在不同时刻的数值。
在实测得到当前索结构稳态温度数据向量Ti的同时,实测得到索结构支座广义坐标当前数据,所有数据组成当前索结构实测支座广义坐标向量Ui
第七步:在得到当前索结构实测支座广义坐标向量Ui和当前索结构稳态温度数据向量Ti后,分别比较Ui和Ui o、Ti和Ti o,如果Ui等于Ui o且Ti等于Ti o,则不需要对Ai o、Ui o和Ti o进行更新,否则需要对当前初始力学计算基准模型Ai o、当前初始索结构支座广义坐标向量Ui o、当前初始索结构稳态温度数据向量Ti o和被监测量当前初始数值向量Ci o进行更新,而被评估对象当前初始损伤向量di o保持不变,更新方法按按技术方案规定的步骤进行。
第八步:在当前初始力学计算基准模型Ai o的基础上,按技术方案规定的步骤进行若干次力学计算,通过计算建立单位损伤被监测量数值变化矩阵ΔCi和被评估对象单位变化向量Di u。具体的,如果该被评估对象是索系统中的一根支承索,那么就假设该支承索在向量di o表示的该支承索已有损伤的基础上再有单位损伤(例如取5%、10%、20%或30%等损伤为单位损伤),如果该被评估对象是一个载荷,就假设该载荷在向量di o表示的该载荷已有变化量的基础上再增加载荷单位变化(如果该载荷是分布载荷,且该分布载荷是线分布载荷,载荷单位变化可以取1kN/m、2kN/m、3kN/m或1kNm/m、2kNm/m、3kNm/m等为单位变化;如果该载荷是分布载荷,且该分布载荷是是面分布载荷,载荷单位变化可以取1MPa、2MPa、3MPa或1kNm/m2、2kNm/m2、3kNm/m2等为单位变化;如果该载荷是集中载荷,且该集中载荷是力偶,载荷单位变化可以取1kNm、2kNm、3kNm等为单位变化;如果该载荷是集中载荷,且该集中载荷是集中力,载荷单位变化可以取1kN、2kN、3kN等为单位变化;如果该载荷是体积载荷,载荷单位变化可以取1kN/m3、2kN/m3、3kN/m3等为单位变化)。
第九步:建立线性关系误差向量ei和向量gi。利用前面的数据(“被监测量当前初始数值向量Ci o”、“单位损伤被监测量数值变化矩阵ΔCi”),在第八步进行每一次计算的同时,即在每一次计算假设被评估对象中只有一个被评估对象的增加单位损伤或载荷单位变化的同时,当假设第k(k=1,2,3,……,N)个被评估对象增加单位损伤或载荷单位变化时,每一次计算组成一个损伤向量,用di tk表示该损伤向量,对应的被监测量计算当前向量为Ci tk(参见第八步),损伤向量di tk的元素个数等于被评估对象的数量,向量di tk的所有元素中只有一个元素的数值取每一次计算中假设增加单位损伤或载荷单位变化的被评估对象的单位损伤或载荷单位变化值,di tk的其它元素的数值取0,那个不为0的元素的编号与假定增加单位损伤或载荷单位变化的被评估对象的对应关系、同其他向量的同编号的元素同该被评估对象的对应关系是相同的;di tk与被评估对象初始损伤向量do的元素编号规则相同,di tk的元素与do的元素是一一对应关系。将Ci tk、Ci o、ΔCi、di tk带入式(1),得到一个线性关系误差向量ei k,每一次计算得到一个线性关系误差向量ei k;ei k的下标k表示第k(k=1,2,3,……,N)个被评估对象增加单位损伤或载荷单位变化。有N个被评估对象就有N次计算,就有N个线性关系误差向量ei k,将这N个线性关系误差向量ei k相加后得到一个向量,将此向量的每一个元素除以N后得到的新向量就是最终的线性关系误差向量ei。向量gi等于最终的误差向量ei。将向量gi保存在运行健康监测系统软件的计算机硬盘上,供健康监测系统软件使用。
e k i = abs ( ΔC i · d tk i - C tk i + C o i ) - - - ( 1 )
第十步:定义当前名义损伤向量di c和当前实际损伤向量di,di c和di的元素个数等于被评估对象的数量,di c和di的元素和被评估对象之间是一一对应关系,di c和di的元素数值代表对应被评估对象的损伤程度或载荷变化程度,di c和di与被评估对象初始损伤向量do的元素编号规则相同,di c的元素、di的元素与do的元素是一一对应关系。
第十一步:依据被监测量当前数值向量Ci同“被监测量当前初始数值向量Ci o”、“单位损伤被监测量数值变化矩阵ΔCi”和“当前名义损伤向量di c”间存在的近似线性关系,该近似线性关系可表达为式(2),按照多目标优化算法计算当前名义损伤向量di c的非劣解,也就是带有合理误差、但可以比较准确地从所有索中确定受损索的位置及其名义损伤程度的解。
C i = C o i + ΔC i · d c i - - - ( 2 )
可以采用多目标优化算法中的目标规划法(Goal Attainment Method)求解式(2)得到当前名义损伤向量di c
第十二步:依据索系统当前实际损伤向量di的定义和其元素的定义计算得到当前实际损伤向量di的每一个元素,从而可由di确定被评估对象的健康状态。当前实际损伤向量di的第k个元素di k表示第i次循环中第k个被评估对象的当前实际健康状态。
di k表示第i次循环中第k个被评估对象的当前实际健康状态,如果该被评估对象是索系统中的一根支承索,那么di k表示其当前实际损伤,di k为0时表示无损伤,为100%时表示该支承索彻底丧失承载能力,介于0与100%之间时表示丧失相应比例的承载能力;如果该被评估对象是一个载荷,那么di k表示其当前实际载荷变化数值,所以根据被评估对象当前实际损伤向量di能够确定有哪些支承索受损及其损伤程度,确定有哪些载荷发生了变化及其数值。
第十三步:健康监测系统中的计算机定期自动或由人员操作健康监测系统生成索系统健康情况报表。
第十四步:在指定条件下,健康监测系统中的计算机自动操作通信报警设备向监控人员、业主和(或)指定的人员报警。
第十五步:建立标识向量Bi,如果标识向量Bi的元素全为0,则回到第六步继续进行对索系统的健康监测和计算;如果标识向量Bi的元素不全为0,则完成后续步骤后,进入下一次循环。
第十六步:计算得到下一次(即第i+1次,i=1,2,3,4,…)循环所需的初始损伤向量di+1 o的每一个元素di+1 ok(k=1,2,3,……,N);第二,在初始力学计算基准模型Ao的基础上,先对Ao中的索结构支座施加支座广义位移约束,支座广义位移约束的数值就取自支座广义位移向量V中对应元素的数值,再对Ao中的索结构施加温度变化,施加的温度变化的数值就取自稳态温度变化向量S,再令索的健康状况为di+1 o后得到的就是下一次、即第i+1次(i=1,2,3,4,…)循环所需的力学计算基准模型Ai+1;下一次(即第i+1次,i=1,2,3,4,…)循环所需的当前初始索结构稳态温度数据向量Ti+1 o等于Ti o,下一次(即第i+1次,i=1,2,3,4,…)循环所需的当前初始索结构支座广义坐标向量U i+1 o等于Ui o。得到Ai+1、di+1 o、U i+1 o和Ti+1 o后,通过力学计算得到Ai+1中所有被监测量的、当前的具体数值,这些具体数值组成下一次、即第i+1次循环所需的被监测量当前初始数值向量Ci+1 o
第十七步:回到第六步,开始由第六步到第十七步的循环。

Claims (1)

1.广义位移角度监测受损索载荷递进式识别方法,其特征在于所述方法包括:
a.为叙述方便起见,本方法统一称被评估的支承索和载荷为被评估对象,设被评估的支承索的数量和载荷的数量之和为N,即被评估对象的数量为N;确定被评估对象的编号规则,按此规则将索结构中所有的被评估对象编号,该编号在后续步骤中将用于生成向量和矩阵;本方法用变量k表示这一编号,k=1,2,3,…,N;确定指定的被测量点,给所有指定点编号;确定过每一测量点的被测量直线,给所有指定的被测量直线编号;确定每一被测量直线的被测量的角度坐标分量,给所有被测量角度坐标分量编号;上述编号在后续步骤中将用于生成向量和矩阵;“索结构的全部被监测的角度数据”由上述所有被测量角度坐标分量组成;为方便起见,在本方法中将“索结构的被监测的角度数据”简称为“被监测量”;所有被监测量的数量之和记为M,M不得小于N;本方法中对同一个量实时监测的任何两次测量之间的时间间隔不得大于30分钟,测量记录数据的时刻称为实际记录数据时刻;物体、结构承受的外力可称为载荷,载荷包括面载荷和体积载荷;面载荷又称表面载荷,是作用于物体表面的载荷,包括集中载荷和分布载荷两种;体积载荷是连续分布于物体内部各点的载荷,包括物体的自重和惯性力在内;集中载荷分为集中力和集中力偶两种,在包括笛卡尔直角坐标系在内的坐标系中,一个集中力可以分解成三个分量,同样的,一个集中力偶也可以分解成三个分量,如果载荷实际上是集中载荷,在本方法中将一个集中力分量或一个集中力偶分量计为或统计为一个载荷,此时载荷的变化具体化为一个集中力分量或一个集中力偶分量的变化;分布载荷分为线分布载荷和面分布载荷,分布载荷的描述至少包括分布载荷的作用区域和分布载荷的大小,分布载荷的大小用分布集度来表达,分布集度用分布特征和幅值来表达;如果载荷实际上是分布载荷,本方法谈论载荷的变化时,实际上是指分布载荷分布集度的幅值的改变,而所有分布载荷的作用区域和分布集度的分布特征是不变的;在包括笛卡尔直角坐标系在内的坐标系中,一个分布载荷可以分解成三个分量,如果这分布载荷的三个分量的各自的分布集度的幅值发生变化,且变化的比率不全部相同,那么在本方法中把这分布载荷的三个分量计为或统计为三个分布载荷,此时一个载荷就代表分布载荷的一个分量;体积载荷是连续分布于物体内部各点的载荷,体积载荷的描述至少包括体积载荷的作用区域和体积载荷的大小,体积载荷的大小用分布集度来表达,分布集度用分布特征和幅值来表达;如果载荷实际上是体积载荷,在本方法中实际处理的是体积载荷分布集度的幅值的改变,而所有体积载荷的作用区域和分布集度的分布特征是不变的,此时在本方法中提到载荷的改变时实际上是指体积载荷的分布集度的幅值的改变,此时,发生变化的载荷是指那些分布集度的幅值发生变化的体积载荷;在包括笛卡尔直角坐标系在内的坐标系中,一个体积载荷可以分解成三个分量,如果这体积载荷的三个分量的各自的分布集度的幅值发生变化,且变化的比率不全部相同,那么在本方法中把这体积载荷的三个分量计为或统计为三个分布载荷;
b.本方法定义“本方法的索结构的温度测量计算方法”按步骤b1至b3进行;
b1:查询或实测得到索结构组成材料及索结构所处环境的随温度变化的传热学参数,利用索结构的设计图、竣工图和索结构的几何实测数据,利用这些数据和参数建立索结构的传热学计算模型;查询索结构所在地不少于2年的近年来的气象资料,统计得到这段时间内的阴天数量记为T个阴天,在本方法中将白天不能见到太阳的一整日称为阴天,统计得到T个阴天中每一个阴天的0时至次日日出时刻后30分钟之间的最高气温与最低气温,日出时刻是指根据地球自转和公转规律确定的气象学上的日出时刻,不表示当天一定可以看见太阳,可以查询资料或通过常规气象学计算得到所需的每一日的日出时刻,每一个阴天的0时至次日日出时刻后30分钟之间的最高气温减去最低气温称为该阴天的日气温的最大温差,有T个阴天,就有T个阴天的日气温的最大温差,取T个阴天的日气温的最大温差中的最大值为参考日温差,参考日温差记为ΔTr;查询索结构所在地和所在海拔区间不少于2年的近年来的气象资料或实测得到索结构所处环境的温度随时间和海拔高度的变化数据和变化规律,计算得到索结构所在地和所在海拔区间不少于2年的近年来的索结构所处环境的温度关于海拔高度的最大变化率ΔTh,为方便叙述取ΔTh的单位为℃/m;在索结构的表面上取“R个索结构表面点”,取“R个索结构表面点”的具体原则在步骤b3中叙述,后面将通过实测得到这R个索结构表面点的温度,称实测得到的温度数据为“R个索结构表面温度实测数据”,如果是利用索结构的传热学计算模型,通过传热计算得到这R个索结构表面点的温度,就称计算得到的温度数据为“R个索结构表面温度计算数据”;从索结构所处的最低海拔到最高海拔之间,在索结构上均布选取不少于三个不同的海拔高度,在每一个选取的海拔高度处、在水平面与索结构表面的交线处至少选取两个点,从选取点处引索结构表面的外法线,所有选取的外法线方向称为“测量索结构沿壁厚的温度分布的方向”,测量索结构沿壁厚的温度分布的方向与“水平面与索结构表面的交线”相交,在选取的测量索结构沿壁厚的温度分布的方向中必须包括索结构的向阳面外法线方向和索结构的背阴面外法线方向,沿每一个测量索结构沿壁厚的温度分布的方向在索结构中均布选取不少于三个点,测量所有被选取点的温度,测得的温度称为“索结构沿厚度的温度分布数据”,其中沿与同一“水平面与索结构表面的交线”相交的、“测量索结构沿壁厚的温度分布的方向”测量获得的“索结构沿厚度的温度分布数据”,在本方法中称为“相同海拔高度索结构沿厚度的温度分布数据”,设选取了H个不同的海拔高度,在每一个海拔高度处,选取了B个测量索结构沿壁厚的温度分布的方向,沿每个测量索结构沿壁厚的温度分布的方向在索结构中选取了E个点,其中H和E都不小于3,B不小于2,设HBE为H与B和E的乘积,对应的共有HBE个“测量索结构沿厚度的温度分布数据的点”,后面将通过实测得到这HBE个“测量索结构沿厚度的温度分布数据的点”的温度,称实测得到的温度数据为“HBE个索结构沿厚度温度实测数据”,如果是利用索结构的传热学计算模型,通过传热计算得到这HBE个测量索结构沿厚度的温度分布数据的点的温度,就称计算得到的温度数据为“HBE个索结构沿厚度温度计算数据”;设BE为B和E的乘积,本方法中在每一个选取的海拔高度处共有BE个“相同海拔高度索结构沿厚度的温度分布数据”;在索结构所在地按照气象学测量气温要求选取一个位置,将在此位置实测得到符合气象学测量气温要求的索结构所在环境的气温;在索结构所在地的空旷无遮挡处选取一个位置,该位置应当在全年的每一日都能得到该地所能得到的该日的最充分的日照,在该位置安放一块碳钢材质的平板,称为参考平板,参考平板与地面不可接触,参考平板离地面距离不小于1.5米,该参考平板的一面向阳,称为向阳面,参考平板的向阳面是粗糙的和深色的,参考平板的向阳面应当在全年的每一日都能得到一块平板在该地所能得到的该日的最充分的日照,参考平板的非向阳面覆有保温材料,将实时监测得到参考平板的向阳面的温度;
b2:实时监测得到上述R个索结构表面点的R个索结构表面温度实测数据,同时实时监测得到前面定义的索结构沿厚度的温度分布数据,同时实时监测得到符合气象学测量气温要求的索结构所在环境的气温数据;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的索结构所在环境的气温实测数据序列,索结构所在环境的气温实测数据序列由当日日出时刻到次日日出时刻后30分钟之间的索结构所在环境的气温实测数据按照时间先后顺序排列,找到索结构所在环境的气温实测数据序列中的最高温度和最低温度,用索结构所在环境的气温实测数据序列中的最高温度减去最低温度得到索结构所在环境的当日日出时刻到次日日出时刻后30分钟之间的最大温差,称为环境最大温差,记为ΔTemax;由索结构所在环境的气温实测数据序列通过常规数学计算得到索结构所在环境的气温关于时间的变化率,该变化率也随着时间变化;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的参考平板的向阳面的温度的实测数据序列,参考平板的向阳面的温度的实测数据序列由当日日出时刻到次日日出时刻后30分钟之间的参考平板的向阳面的温度的实测数据按照时间先后顺序排列,找到参考平板的向阳面的温度的实测数据序列中的最高温度和最低温度,用参考平板的向阳面的温度的实测数据序列中的最高温度减去最低温度得到参考平板的向阳面的温度的当日日出时刻到次日日出时刻后30分钟之间的最大温差,称为参考平板最大温差,记为ΔTpmax;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的所有R个索结构表面点的索结构表面温度实测数据序列,有R个索结构表面点就有R个索结构表面温度实测数据序列,每一个索结构表面温度实测数据序列由一个索结构表面点的当日日出时刻到次日日出时刻后30分钟之间的索结构表面温度实测数据按照时间先后顺序排列,找到每一个索结构表面温度实测数据序列中的最高温度和最低温度,用每一个索结构表面温度实测数据序列中的最高温度减去最低温度得到每一个索结构表面点的温度的当日日出时刻到次日日出时刻后30分钟之间的最大温差,有R个索结构表面点就有R个当日日出时刻到次日日出时刻后30分钟之间的最大温差数值,其中的最大值称为索结构表面最大温差,记为ΔTsmax;由每一索结构表面温度实测数据序列通过常规数学计算得到每一个索结构表面点的温度关于时间的变化率,每一个索结构表面点的温度关于时间的变化率也随着时间变化;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的、在同一时刻、HBE个“索结构沿厚度的温度分布数据”后,计算在每一个选取的海拔高度处共计BE个“相同海拔高度索结构沿厚度的温度分布数据”中的最高温度与最低温度的差值,这个差值的绝对值称为“相同海拔高度处索结构厚度方向最大温差”,选取了H个不同的海拔高度就有H个“相同海拔高度处索结构厚度方向最大温差”,称这H个“相同海拔高度处索结构厚度方向最大温差”中的最大值为“索结构厚度方向最大温差”,记为ΔTtmax
b3:测量计算获得索结构稳态温度数据;首先,确定获得索结构稳态温度数据的时刻,与决定获得索结构稳态温度数据的时刻相关的条件有六项,第一项条件是获得索结构稳态温度数据的时刻介于当日日落时刻到次日日出时刻后30分钟之间,日落时刻是指根据地球自转和公转规律确定的气象学上的日落时刻,可以查询资料或通过常规气象学计算得到所需的每一日的日落时刻;第二项条件的a条件是在当日日出时刻到次日日出时刻后30分钟之间的这段时间内,参考平板最大温差ΔTpmax和索结构表面最大温差ΔTsmax都不大于5摄氏度;第二项条件的b条件是在当日日出时刻到次日日出时刻后30分钟之间的这段时间内,在前面测量计算得到的环境最大误差ΔTemax不大于参考日温差ΔTr,且参考平板最大温差ΔTpmax减去2摄氏度后不大于ΔTemax,且索结构表面最大温差ΔTsmax不大于ΔTpmax;只需满足第二项的a条件和b条件中的一项就称为满足第二项条件;第三项条件是在获得索结构稳态温度数据的时刻,索结构所在环境的气温关于时间的变化率的绝对值不大于每小时0.1摄氏度;第四项条件是在获得索结构稳态温度数据的时刻,R个索结构表面点中的每一个索结构表面点的温度关于时间的变化率的绝对值不大于每小时0.1摄氏度;第五项条件是在获得索结构稳态温度数据的时刻,R个索结构表面点中的每一个索结构表面点的索结构表面温度实测数据为当日日出时刻到次日日出时刻后30分钟之间的极小值;第六项条件是在获得索结构稳态温度数据的时刻,“索结构厚度方向最大温差”ΔTtmax不大于1摄氏度;本方法利用上述六项条件,将下列三种时刻中的任意一种称为“获得索结构稳态温度数据的数学时刻”,第一种时刻是满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第一项至第五项条件的时刻,第二种时刻是仅仅满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第六项条件的时刻,第三种时刻是同时满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第一项至第六项条件的时刻;当获得索结构稳态温度数据的数学时刻就是本方法中实际记录数据时刻中的一个时,获得索结构稳态温度数据的时刻就是获得索结构稳态温度数据的数学时刻;如果获得索结构稳态温度数据的数学时刻不是本方法中实际记录数据时刻中的任一个时刻,则取本方法最接近于获得索结构稳态温度数据的数学时刻的那个实际记录数据的时刻为获得索结构稳态温度数据的时刻;本方法将使用在获得索结构稳态温度数据的时刻测量记录的量进行索结构相关健康监测分析;本方法近似认为获得索结构稳态温度数据的时刻的索结构温度场处于稳态,即此时刻的索结构温度不随时间变化,此时刻就是本方法的“获得索结构稳态温度数据的时刻”;然后,根据索结构传热特性,利用获得索结构稳态温度数据的时刻的“R个索结构表面温度实测数据”和“HBE个索结构沿厚度温度实测数据”,利用索结构的传热学计算模型,通过常规传热计算得到在获得索结构稳态温度数据的时刻的索结构的温度分布,此时索结构的温度场按稳态进行计算,计算得到的在获得索结构稳态温度数据的时刻的索结构的温度分布数据包括索结构上R个索结构表面点的计算温度,R个索结构表面点的计算温度称为R个索结构稳态表面温度计算数据,还包括索结构在前面选定的HBE个“测量索结构沿厚度的温度分布数据的点”的计算温度,HBE个“测量索结构沿厚度的温度分布数据的点”的计算温度称为“HBE个索结构沿厚度温度计算数据”,当R个索结构表面温度实测数据与R个索结构稳态表面温度计算数据对应相等时,且“HBE个索结构沿厚度温度实测数据”与“HBE个索结构沿厚度温度计算数据”对应相等时,计算得到的在获得索结构稳态温度数据的时刻的索结构的温度分布数据在本方法中称为“索结构稳态温度数据”,此时的“R个索结构表面温度实测数据”称为“R个索结构稳态表面温度实测数据”,“HBE个索结构沿厚度温度实测数据”称为“HBE个索结构沿厚度稳态温度实测数据”;在索结构的表面上取“R个索结构表面点”时,“R个索结构表面点”的数量与分布必须满足三个条件,第一个条件是当索结构温度场处于稳态时,当索结构表面上任意一点的温度是通过“R个索结构表面点”中与索结构表面上该任意点相邻的点的实测温度线性插值得到时,线性插值得到的索结构表面上该任意点的温度与索结构表面上该任意点的实际温度的误差不大于5%;索结构表面包括支承索表面;第二个条件是“R个索结构表面点”中在同一海拔高度的点的数量不小于4,且“R个索结构表面点”中在同一海拔高度的点沿着索结构表面均布;“R个索结构表面点”沿海拔高度的所有两两相邻索结构表面点的海拔高度之差的绝对值中的最大值Δh不大于0.2℃除以ΔTh得到的数值,为方便叙述取ΔTh的单位为℃/m,为方便叙述取Δh的单位为m;“R个索结构表面点”沿海拔高度的两两相邻索结构表面点的定义是指只考虑海拔高度时,在“R个索结构表面点”中不存在一个索结构表面点,该索结构表面点的海拔高度数值介于两两相邻索结构表面点的海拔高度数值之间;第三个条件是查询或按气象学常规计算得到索结构所在地和所在海拔区间的日照规律,再根据索结构的几何特征及方位数据,在索结构上找到全年受日照时间最充分的那些表面点的位置,“R个索结构表面点”中至少有一个索结构表面点是索结构上全年受日照时间最充分的那些表面点中的一个点;
c.按照“本方法的索结构的温度测量计算方法”直接测量计算得到初始状态下的索结构稳态温度数据,初始状态下的索结构稳态温度数据称为初始索结构稳态温度数据,记为“初始索结构稳态温度数据向量To”;实测或查资料得到索结构所使用的各种材料的随温度变化的物理和力学性能参数;在实测得到To的同时,也就是在获得初始索结构稳态温度数据向量To的时刻的同一时刻,直接测量计算得到初始索结构的实测数据,初始索结构的实测数据是包括索结构集中载荷测量数据、索结构分布载荷测量数据、索结构体积载荷测量数据、所有被监测量的初始数值、所有支承索的初始索力数据、初始索结构模态数据、初始索结构应变数据、初始索结构几何数据、初始索结构支座广义坐标数据、初始索结构角度数据、初始索结构空间坐标数据在内的实测数据,初始索结构支座广义坐标数据包括初始索结构支座空间坐标数据和初始索结构支座角坐标数据,在得到初始索结构的实测数据的同时,测量计算得到包括支承索的无损检测数据在内的能够表达支承索的健康状态的数据,此时的能够表达支承索的健康状态的数据称为支承索初始健康状态数据;所有被监测量的初始数值组成被监测量初始数值向量Co,被监测量初始数值向量Co的编号规则与M个被监测量的编号规则相同;利用支承索初始健康状态数据以及索结构载荷测量数据建立被评估对象初始损伤向量do,向量do表示用初始力学计算基准模型Ao表示的索结构的被评估对象的初始健康状态;被评估对象初始损伤向量do的元素个数等于N,do的元素与被评估对象是一一对应关系,向量do的元素的编号规则与被评估对象的编号规则相同;如果do的某一个元素对应的被评估对象是索系统中的一根支承索,那么do的该元素的数值代表对应支承索的初始损伤程度,若该元素的数值为0,表示该元素所对应的支承索是完好的,没有损伤的,若其数值为100%,则表示该元素所对应的支承索已经完全丧失承载能力,若其数值介于0和100%之间,则表示该支承索丧失了相应比例的承载能力;如果do的某一个元素对应的被评估对象是某一个载荷,本方法中取do的该元素数值为0,代表这个载荷的变化的初始数值为0;如果没有支承索的无损检测数据及其他能够表达支承索的健康状态的数据时,或者可以认为结构初始状态为无损伤无松弛状态时,向量do中与支承索相关的各元素数值取0;初始索结构支座广义坐标数据组成初始索结构支座广义坐标向量Uo
d.根据索结构的设计图、竣工图和初始索结构的实测数据、支承索初始健康状态数据、索结构集中载荷测量数据、索结构分布载荷测量数据、索结构体积载荷测量数据、索结构所使用的各种材料的随温度变化的物理和力学性能参数、初始索结构支座广义坐标向量Uo、初始索结构稳态温度数据向量To和前面步骤得到的所有的索结构数据,建立计入“索结构稳态温度数据”的索结构的初始力学计算基准模型Ao,基于Ao计算得到的索结构计算数据必须非常接近其实测数据,其间的差异不得大于5%;对应于Ao的“索结构稳态温度数据”就是“初始索结构稳态温度数据向量To”;对应于Ao的索结构支座广义坐标数据就是初始索结构支座广义坐标向量Uo;对应于Ao的被评估对象健康状态用被评估对象初始损伤向量do表示;对应于Ao的所有被监测量的初始数值用被监测量初始数值向量Co表示;Uo、To和do是Ao的参数,由Ao的力学计算结果得到的所有被监测量的初始数值与Co表示的所有被监测量的初始数值相同,因此也可以说Co由Ao的力学计算结果组成,在本方法中Ao、Co、do、Uo和To是不变的;
e.在本方法中,字母i除了明显地表示步骤编号的地方外,字母i仅表示循环次数,即第i次循环;第i次循环开始时需要建立的或已建立的索结构的当前初始力学计算基准模型记为当前初始力学计算基准模型Ai o,Ao和Ai o计入了温度参数,可以计算温度变化对索结构的力学性能影响;第i次循环开始时,对应于Ai o的“索结构稳态温度数据”用当前初始索结构稳态温度数据向量Ti o表示,向量Ti o的定义方式与向量To的定义方式相同,Ti o的元素与To的元素一一对应;第i次循环开始时,对应于Ai o的“索结构支座广义坐标数据”用当前初始索结构支座广义坐标向量Ui o表示,向量Ui o的定义方式与向量Uo的定义方式相同,Ui o的元素与Uo的元素一一对应;第i次循环开始时需要的被评估对象当前初始损伤向量记为di o,di o表示该次循环开始时索结构Ai o的被评估对象的健康状态,di o的定义方式与do的定义方式相同,di o的元素与do的元素一一对应;第i次循环开始时,所有被监测量的初始值,用被监测量当前初始数值向量Ci o表示,向量Ci o的定义方式与向量Co的定义方式相同,Ci o的元素与Co的元素一一对应,被监测量当前初始数值向量Ci o表示对应于Ai o的所有被监测量的具体数值;Ui o、Ti o和di o是Ai o的特性参数,Ci o由Ai o的力学计算结果组成;第一次循环开始时,Ai o记为A1 o,建立A1 o的方法为使A1 o等于Ao;第一次循环开始时,Ti o记为T1 o,建立T1 o的方法为使T1 o等于To;第一次循环开始时,Ui o记为U1 o,建立U1 o的方法为使U1 o等于Uo;第一次循环开始时,di o记为d1 o,建立d1 o的方法为使d1 o等于do;第一次循环开始时,Ci o记为C1 o,建立C1 o的方法为使C1 o等于Co
f.从这里进入由第f步到第q步的循环;在结构服役过程中,按照“本方法的索结构的温度测量计算方法”不断实测计算获得索结构稳态温度数据的当前数据,所有“索结构稳态温度数据”的当前数据组成当前索结构稳态温度数据向量Ti,向量Ti的定义方式与向量To的定义方式相同,Ti的元素与To的元素一一对应;在实测得到当前索结构稳态温度数据向量Ti的同一时刻,实测得到索结构支座广义坐标当前数据,所有索结构支座广义坐标当前数据组成当前索结构实测支座广义坐标向量Ui,向量Ui的定义方式与向量Uo的定义方式相同;在实测得到向量Ti的同时,实测得到在获得当前索结构稳态温度数据向量Ti的时刻的同一时刻的索结构中所有被监测量的当前值,所有这些数值组成被监测量当前数值向量Ci,向量Ci的定义方式与向量Co的定义方式相同,Ci的元素与Co的元素一一对应,表示相同被监测量在不同时刻的数值;
g.根据当前索结构实测支座广义坐标向量Ui和当前索结构稳态温度数据向量Ti,按照步骤g1至g3更新当前初始力学计算基准模型Ai o、被监测量当前初始数值向量Ci o、当前初始索结构稳态温度数据向量Ti o和当前初始索结构支座广义坐标向量Ui o,而被评估对象当前初始损伤向量di o保持不变;
g1.分别比较Ti和Ti o、Ui和Ui o,如果Ti等于Ti o且Ui等于Ui o,则不需要对Ai o进行更新,否则需要按下列步骤对Ai o、Ui o和Ti o进行更新;
g2.计算Ui与Uo的差,Ui与Uo的差就是索结构支座关于初始位置的支座广义位移,用支座广义位移向量V表示支座广义位移,V等于Ui减去Uo;计算Ti与To的差,Ti与To的差就是当前索结构稳态温度数据关于初始索结构稳态温度数据的变化,Ti与To的差用稳态温度变化向量S表示,S等于Ti减去To,S表示索结构稳态温度数据的变化;
g3.先对Ao中的索结构支座施加支座广义位移约束,支座广义位移约束的数值就取自支座广义位移向量V中对应元素的数值,再对Ao中的索结构施加温度变化,施加的温度变化的数值就取自稳态温度变化向量S,对Ao中索结构支座施加支座广义位移约束且对索结构施加温度变化后得到更新的当前初始力学计算基准模型Ai o,更新Ai o的同时,Ui o所有元素数值也用Ui所有元素数值对应代替,即更新了Ui o,Ti o所有元素数值也用Ti的所有元素数值对应代替,即更新了Ti o,这样就得到了正确地对应于Ai o的Ui o和Ti o,此时di o保持不变;当更新Ai o后,Ai o的索的健康状况用被评估对象当前初始损伤向量di o表示,Ai o的索结构稳态温度用当前索结构稳态温度数据向量Ti o表示,Ai o的支座广义坐标用当前初始索结构支座广义坐标向量Ui o表示;更新Ci o的方法是:当更新Ai o后,通过力学计算得到Ai o中所有被监测量的、当前的具体数值,这些具体数值组成Ci o
h.在当前初始力学计算基准模型Ai o的基础上,按照步骤h1至步骤h4进行若干次力学计算,通过计算建立单位损伤被监测量数值变化矩阵ΔCi和被评估对象单位变化向量Di u
h1.在第i次循环开始时,直接按步骤h2至步骤h4所列方法获得ΔCi和Di u;在其它时刻,当在步骤g中对Ai o进行更新后,必须按步骤h2至步骤h4所列方法重新获得ΔCi和Di u,如果在步骤g中没有对Ai o进行更新,则在此处直接转入步骤i进行后续工作;
h2.在当前初始力学计算基准模型Ai o的基础上进行若干次力学计算,计算次数数值上等于所有被评估对象的数量N,有N个评估对象就有N次计算;依据被评估对象的编号规则,依次进行计算;每一次计算假设只有一个被评估对象在原有损伤或载荷的基础上再增加单位损伤或载荷单位变化,具体的,如果该被评估对象是索系统中的一根支承索,那么就假设该支承索再增加单位损伤,如果该被评估对象是一个载荷,就假设该载荷再增加载荷单位变化,用Di uk记录这一增加的单位损伤或载荷单位变化,其中k表示增加单位损伤或载荷单位变化的被评估对象的编号,Di uk是被评估对象单位变化向量Di u的一个元素,被评估对象单位变化向量Di u的元素的编号规则与向量do的元素的编号规则相同;每一次计算中再增加单位损伤或载荷单位变化的被评估对象不同于其它次计算中再增加单位损伤或载荷单位变化的被评估对象,每一次计算都利用力学方法计算索结构的所有被监测量的当前计算值,每一次计算得到的所有被监测量的当前计算值组成一个被监测量计算当前向量;当假设第k个被评估对象再增加单位损伤或载荷单位变化时,用Ci tk表示对应的“被监测量计算当前向量”;在本步骤中给各向量的元素编号时,应同本方法中其它向量使用同一编号规则,以保证本步骤中各向量中的任意一个元素,同其它向量中的、编号相同的元素,表达了同一被监测量或同一对象的相关信息;Ci tk的定义方式与向量Co的定义方式相同,Ci tk的元素与Co的元素一一对应;
h3.每一次计算得到的向量Ci tk减去向量Ci o得到一个向量,再将该向量的每一个元素都除以本次计算所假设的单位损伤或载荷单位变化数值后得到一个“被监测量的数值变化向量δCi k”;有N个被评估对象就有N个“被监测量的数值变化向量”;
h4.由这N个“被监测量的数值变化向量”按照N个被评估对象的编号规则,依次组成有N列的“单位损伤被监测量数值变化矩阵ΔCi”;单位损伤被监测量数值变化矩阵ΔCi的每一列对应于一个被监测量单位变化向量;单位损伤被监测量数值变化矩阵ΔCi的每一行对应于同一个被监测量在不同被评估对象增加单位损伤或载荷单位变化时的不同的单位变化幅度;单位损伤被监测量数值变化矩阵ΔCi的列的编号规则与向量do的元素的编号规则相同,单位损伤被监测量数值变化矩阵ΔCi的行的编号规则与M个被监测量的编号规则相同;
i.定义当前名义损伤向量di c和当前实际损伤向量di,di c和di的元素个数等于被评估对象的数量,di c和di的元素和被评估对象之间是一一对应关系,di c的元素数值代表对应被评估对象的名义损伤程度或名义载荷变化量,di c和di与被评估对象初始损伤向量do的元素编号规则相同,di c的元素、di的元素与do的元素是一一对应关系;
j.依据被监测量当前数值向量Ci同“被监测量当前初始数值向量Ci o”、“单位损伤被监测量数值变化矩阵ΔCi”和“当前名义损伤向量di c”间存在的近似线性关系,该近似线性关系可表达为式1,式1中除di c外的其它量均为已知,求解式1就可以算出当前名义损伤向量di c
C i = C o i + ΔC i · d c i   式1
k.利用式2表达的当前实际损伤向量di的第k个元素di k同被评估对象当前初始损伤向量di o的第k个元素di ok和当前名义损伤向量di c的第k个元素di ck间的关系,计算得到当前实际损伤向量di的所有元素;
Figure FDA0000474991610000112
  式2
式2中k=1,2,3,……,N;di k表示第i次循环中第k个被评估对象的当前实际健康状态,如果该被评估对象是索系统中的一根支承索,那么di k表示其当前实际损伤,di k为0时表示无损伤,为100%时表示该支承索彻底丧失承载能力,介于0与100%之间时表示丧失相应比例的承载能力;如果该被评估对象是一个载荷,那么di k表示该载荷的实际变化量;至此本方法实现了剔除支座广义位移、载荷变化和结构温度变化的影响的、索结构的受损索识别,同时实现了剔除支座广义位移、结构温度变化和支承索健康状态变化影响的、载荷变化量的识别;
l.在求得当前名义损伤向量di c后,按照式3建立标识向量Bi,式4给出了标识向量Bi的第k个元素的定义;
B i = B 1 i B 2 i · · · B k i · · · B N i T   式3
Figure FDA0000474991610000114
  式4
式4中元素Bi k是标识向量Bi的第k个元素,Di uk是被评估对象单位变化向量Di u的第k个元素,di ck是被评估对象当前名义损伤向量di c的第k个元素,它们都表示第k个被评估对象的相关信息,式4中k=1,2,3,……,N;
m.如果标识向量Bi的元素全为0,则回到步骤f继续本次循环;如果标识向量Bi的元素不全为0,则进入下一步、即步骤n;
n.根据式5计算得到下一次、即第i+1次循环所需的被评估对象当前初始损伤向量di+1 o的每一个元素;
Figure FDA0000474991610000121
  式5
式5中di+1 ok是下一次、即第i+1次循环所需的被评估对象当前初始损伤向量di+1 o的第k个元素,di ok是本次、即第i次循环的被评估对象当前初始损伤向量di o的第k个元素,Di uk是第i次循环的被评估对象单位变化向量Di u的第k个元素,Bi k是第i次循环的标识向量Bi的第k个元素,式5中k=1,2,3,……,N;
o.在初始力学计算基准模型Ao的基础上,先对Ao中的索结构支座施加支座广义位移约束,支座广义位移约束的数值就取自支座广义位移向量V中对应元素的数值,再对Ao中的索结构施加温度变化,施加的温度变化的数值就取自稳态温度变化向量S,再令索的健康状况为di+1 o后得到的就是下一次、即第i+1次循环所需的力学计算基准模型Ai+1;得到Ai+1后,通过力学计算得到Ai+1中所有被监测量的、当前的具体数值,这些具体数值组成下一次、即第i+1次循环所需的被监测量当前初始数值向量Ci+1 o
p.取下一次、即第i+1次循环所需的当前初始索结构稳态温度数据向量Ti+1 o等于第i次循环的当前初始索结构稳态温度数据向量Ti o;下一次、即第i+1次循环所需的当前初始索结构支座广义坐标向量Ui+1 o等于第i次循环的当前初始索结构支座广义坐标向量Ui o
q.回到步骤f,开始下一次循环。
CN201410086093.4A 2014-03-10 2014-03-10 广义位移角度监测受损索载荷递进式识别方法 Pending CN103852300A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410086093.4A CN103852300A (zh) 2014-03-10 2014-03-10 广义位移角度监测受损索载荷递进式识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410086093.4A CN103852300A (zh) 2014-03-10 2014-03-10 广义位移角度监测受损索载荷递进式识别方法

Publications (1)

Publication Number Publication Date
CN103852300A true CN103852300A (zh) 2014-06-11

Family

ID=50860218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410086093.4A Pending CN103852300A (zh) 2014-03-10 2014-03-10 广义位移角度监测受损索载荷递进式识别方法

Country Status (1)

Country Link
CN (1) CN103852300A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105067303A (zh) * 2015-07-23 2015-11-18 东南大学 精简广义位移角度监测载荷受损索递进式识别方法
CN105115759A (zh) * 2015-07-23 2015-12-02 东南大学 精简角度监测受损索载荷广义位移识别方法
CN105115745A (zh) * 2015-07-23 2015-12-02 东南大学 精简广义位移角度监测受损索载荷递进式识别方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042005A (ja) * 2007-08-07 2009-02-26 Nippon Telegr & Teleph Corp <Ntt> 光ファイバを用いた歪・温度の分布測定方法及び測定装置
CN102706659A (zh) * 2012-05-30 2012-10-03 东南大学 温度变化角度监测的问题索和支座角位移递进式识别方法
CN103604640A (zh) * 2013-12-09 2014-02-26 东南大学 广义位移角度监测受损索集中载荷递进式识别方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042005A (ja) * 2007-08-07 2009-02-26 Nippon Telegr & Teleph Corp <Ntt> 光ファイバを用いた歪・温度の分布測定方法及び測定装置
CN102706659A (zh) * 2012-05-30 2012-10-03 东南大学 温度变化角度监测的问题索和支座角位移递进式识别方法
CN103604640A (zh) * 2013-12-09 2014-02-26 东南大学 广义位移角度监测受损索集中载荷递进式识别方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
侯俊明等: "斜拉索索力的温度敏感性", 《长安大学学报(自然科学版)》, no. 04, 31 July 2002 (2002-07-31) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105067303A (zh) * 2015-07-23 2015-11-18 东南大学 精简广义位移角度监测载荷受损索递进式识别方法
CN105115759A (zh) * 2015-07-23 2015-12-02 东南大学 精简角度监测受损索载荷广义位移识别方法
CN105115745A (zh) * 2015-07-23 2015-12-02 东南大学 精简广义位移角度监测受损索载荷递进式识别方法

Similar Documents

Publication Publication Date Title
CN103913328A (zh) 广义位移混合监测受损索载荷递进式识别方法
CN103913342A (zh) 角度监测问题索载荷广义位移递进式识别方法
CN103868725A (zh) 空间坐标监测受损索载荷广义位移递进式识别方法
CN103868731A (zh) 广义位移应变监测受损索载荷识别方法
CN103913318A (zh) 角位移空间坐标监测受损索载荷递进式识别方法
CN103913330A (zh) 广义位移空间坐标监测受损索载荷识别方法
CN103852291A (zh) 广义位移空间坐标监测问题索载荷递进式识别方法
CN103852317A (zh) 角位移混合监测问题索载荷递进式识别方法
CN103913332A (zh) 角位移应变监测受损索载荷识别方法
CN103868745A (zh) 索力监测受损索载荷广义位移递进式识别方法
CN103868721A (zh) 广义位移空间坐标监测受损索载荷递进式识别方法
CN103868726A (zh) 角度监测受损索载荷广义位移递进式识别方法
CN103868716A (zh) 空间坐标监测问题索载荷角位移递进式识别方法
CN103868743A (zh) 广义位移应变监测问题索载荷递进式识别方法
CN103913327A (zh) 线位移空间坐标监测问题索载荷递进式识别方法
CN103852312A (zh) 角位移角度监测问题索载荷递进式识别方法
CN103868732A (zh) 线位移应变监测问题索载荷递进式识别方法
CN103868727A (zh) 线位移角度监测问题索载荷递进式识别方法
CN103852300A (zh) 广义位移角度监测受损索载荷递进式识别方法
CN103913343A (zh) 混合监测受损索载荷广义位移递进式识别方法
CN103868724A (zh) 空间坐标监测受损索载荷角位移递进式识别方法
CN103868712A (zh) 角度监测问题索载荷角位移递进式识别方法
CN103868714A (zh) 线位移应变监测受损索载荷递进式识别方法
CN103868742A (zh) 角位移应变监测问题索载荷递进式识别方法
CN103868722A (zh) 角位移空间坐标监测问题索载荷递进式识别方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140611