CN103852240A - 确定浮力作用下限及动力平衡的物理模拟实验装置以及确定浮力作用下限及动力平衡的方法 - Google Patents

确定浮力作用下限及动力平衡的物理模拟实验装置以及确定浮力作用下限及动力平衡的方法 Download PDF

Info

Publication number
CN103852240A
CN103852240A CN201210511391.4A CN201210511391A CN103852240A CN 103852240 A CN103852240 A CN 103852240A CN 201210511391 A CN201210511391 A CN 201210511391A CN 103852240 A CN103852240 A CN 103852240A
Authority
CN
China
Prior art keywords
pore throat
gas
lower limit
water
critical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210511391.4A
Other languages
English (en)
Other versions
CN103852240B (zh
Inventor
庞雄奇
郭迎春
姜振学
姜福杰
邢恩袁
王鹏威
白通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum Beijing
Original Assignee
China University of Petroleum Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum Beijing filed Critical China University of Petroleum Beijing
Priority to CN201210511391.4A priority Critical patent/CN103852240B/zh
Publication of CN103852240A publication Critical patent/CN103852240A/zh
Application granted granted Critical
Publication of CN103852240B publication Critical patent/CN103852240B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明是借助于物理模拟实验技术确定含油气盆地致密砂岩储层条件下浮力作用下限变化特征及该下限处的动力学平衡关系,属于石油地质领域。本发明设计制作了一套模拟致密储层条件下天然气呈“活塞式”推进的深盆气成藏物理模拟实验装置;模拟不同水柱高度和不同充气压力条件下浮力起作用与否的临界孔喉大小,在浮力作用下限以下天然气不发生气水置换而聚集形成深盆气藏;利用实验数据拟合出了临界孔喉直径与水柱高度的相关关系;建立了临界条件下天然气膨胀力与毛细管力及静水压力的力平衡关系,确定了临界孔喉半径的计算模型。本发明深化了致密砂岩气藏成藏机理的研究,为致密砂岩气藏圈闭范围的预测提供了一种有效的手段。

Description

确定浮力作用下限及动力平衡的物理模拟实验装置以及确定浮力作用下限及动力平衡的方法
技术领域
本发明涉及一种石油地质研究领域的实验装置及其使用方法和实验结果,具体说涉及一种借助于物理模拟实验技术确定含油气盆地致密砂岩储层条件下浮力作用下限变化特征及该下限处的动力学平衡关系。
背景技术
致密砂岩气藏是当前和未来油气资源的重要勘探领域,深盆气藏是致密砂岩气藏最重要的一种类型。深盆气的成藏机理是要解决的首要问题。从目前的文献看,具有代表性的物理模拟实验及成藏机理研究有Robert M. Gies 1982年的物理模拟实验及研究成果、中国石油大学(北京)的物理模拟实验及研究成果、张金亮建立的陆相深层油气成藏模式等。
加拿大学者Gies自主设计了一种深盆气藏形成模拟实验装置(见图1),主要原理是在一个柱状仓内底部最下层用钢筛隔开。钢筛上依次装填细砂层、粗砂层、细砂层和粗砂层。柱仓两侧分别有四个并联出口(A、B、C、D)。柱仓右侧有一个旁通管分别与柱仓的最底层(空层)和最顶层(粗砂层)相连;有个测压管与最底层(空层)相连。利用该装置做实验表明气水倒置只能在低孔渗的砂岩中形成,作者并认识到形成气水界面倒置的关键是由于致密砂岩中饱含天然气,砂层中只有束缚水而没有可自由移动的自由水,无法传递顶部水柱的压力,传统油气运移的动力浮力的作用条件受到限制。但是该装置无法模拟储层埋深下所受的静水压力,也没有得到浮力受到限制时的砂岩层孔隙度的大小和充气压力的大小,导致无法认识浮力受到限制的动力成因。
中国石油大学(北京)庞雄奇等进行了漏斗状毛细玻璃管水封气门限物理模拟实验,装置见图2。实验结果表明:①本实验测得的临界的孔喉直径变化在 0.102 cm 和 0.359 cm 之间,说明只有在储层致密到一定程度时才有可能形成深盆气藏;②本次物理模拟实验表明了供气速率和漏斗状玻璃管的夹角(表现在地质条件下为储层孔隙度和渗透率随埋深的变化率)是水封气的重要影响因素, 说明不同条件下形成深盆气藏的临界孔喉直径不同;③在漏斗夹角较大时, 漏斗状毛细玻璃管水封气临界孔喉直径随供气速率的增大而减小;在漏斗夹角较小时, 该孔喉直径随供气速率的增大而增加(即相当于自然条件下有利于深盆气成藏的范围增大)。本次模拟实验及取得的认识优点及存在的问题有:①认识到形成深盆气藏的临界孔喉直径不是一个定值,供气速率和储层特征是其中的两个影响因素,但没有全面认识影响临界孔喉直径的因素,没有模拟储层埋深下所受的静水压力对临界孔喉直径的影响;②认识到在一定条件下,深盆气藏的范围随着供气速率的增大而增大,但没有从动力学上解释深盆气藏的范围即其顶界变化的机理。
北京师范大学张金亮等在物理模拟和大量实例解剖的基础上,建立了“近源供烃、压差驱动、储盖共控、动态成藏”的陆相深层油气成藏模式(专利申请公布号CN 102289006 A)。该专利申请中认识到了深层地质条件下存在一临界喉道使得该临界条件以下无连续可动水,浮力不起作用,油气处于静态聚集(见图3)。存在问题是仅仅建立了这样一种模式,没有深入研究“浮力不起作用”的临界地质条件及其影响因素。
发明内容
针对上述现有技术和研究存在的不足,本发明设计了一套物理模拟实验装置,利用该装置预测了含油气盆地深部致密砂岩储层条件下浮力作用下限变化特征及该下限处的动力学平衡关系。浮力作用下限指的是某套砂岩储层中浮力作用条件消失的临界地质条件,多用孔喉大小、渗透率或孔隙度表示。
本发明之一的致密砂岩储层浮力作用下限物理模拟实验装置是这样实现的:
本发明的一种致密砂岩储层浮力作用下限物理模拟实验装置,其特征在于它由充气及测压单元、致密砂岩储层孔喉模拟单元、地层水模拟单元组成;
在本发明中,所述的充气及测压单元包括:
甲烷气瓶(4)、充气钢管(3)、压力表(5);
所述甲烷为体积比纯度99%,
所述压力表测量范围为0~ 6MPa,最小刻度为0.01MPa。
在本发明中,所述的致密砂岩储层孔喉模拟单元包括:
模拟孔喉(1)、石英玻璃载体(2);
所述模拟孔喉是用石英玻璃加工而成,高度50cm,孔喉直径大小从下到上由0.2mm逐渐增大到30mm。
在本发明中,所述地层水模拟单元包括:
水管(6)、水
所述水管为塑料水管,直径2cm,高40m,其上标有最小间隔为1cm的刻度尺。
本发明之一的利用所述装置进行预测的方法和步骤是:
①从上部水管注水至H高度,开始充气并不断调节气压大小,观察“孔喉”内气托水活塞式运移到突然冒气泡的临界条件;记录下此时的水柱高度H,气压大小P,临界孔喉直径Φ;
②不断改变水柱高度H1、H2……Hn,按照①,记录下对应的P1、P2……Pn和Φ1、Φ2……Φn
本发明之一的临界孔喉直径与水柱高度的相关关系为:
Φ=6.285exp(-0.06H)
其中,Φ为临界孔喉直径,mm;H为对应的水柱高度,m。
本发明之一的致密砂岩储层浮力作用下限这一临界条件处的动力学平衡关系为:
Pe=Pc+Pw
其中,Pe为天然气膨胀力,MPa;Pc为毛细管力,MPa;Pw为静水压力,MPa。
所述毛细管力计算公式为:
P c = 2 σ · cos θ r
其中,σ为气水界面张力,N/m;θ为润湿角,°;r为临界孔喉半径,m;
所述静水压力计算公式为:
Pww·g·H
其中,ρw为地层水的密度,kg/m3;g为重力加速度,m/s2;H为地层水的高度,m;
所述天然气膨胀力计算公式为:
P e = z · ρ g M g · R · T
其中,Z为天然气的压缩因子,无量纲;ρg为天然气的密度,kg/m3;Mg为天然气摩尔质量,g/mol;
R为气体常数,8.31433;T为天然气的地下温度,k;
本发明之一的致密砂岩储层浮力作用下限的临界孔喉半径计算模型为:
r = 2 σ cos θ Z ρ g RT / M g - ρ w gH
其中,各参数含义如上文所述。
本发明的有益效果是:
说明了浮力作用下限这一临界条件是随实际条件变化的,它不是一个固定值;
能够充分考虑影响临界孔喉的因素,有效地反应了浮力作用下限的形成;
从动力学机理上解释了浮力作用下限的变化特征,建立了临界孔喉的计算公式。
该物理模拟实验装置及实验方法完善了深盆气藏形成模拟实验装置,利用该装置进行物理模拟实验取得的成果认识提升了致密砂岩气藏成藏机理的研究,为致密砂岩气藏圈闭范围的预测提供了一种有效的手段,因而在当前和今后非常规油气勘探领域内有着巨大的指导价值和广阔的应用前景。
附图说明
图1是柱状仓装砂深盆气藏形成物理模拟实验装置;
图2是漏斗状毛细玻璃管水封气门限物理模拟实验装置;
图3是陆相深层油气动态成藏模式;
图4是本发明实施的一套物理模拟实验装置载体示意图;
图5是本发明实施的临界孔喉直径与水柱高度相关关系图;
图6是本发明实施的浮力作用下限这一临界条件处的动力学平衡关系。
具体实施方式
下面结合附图和实施例对本发明做进一步的说明。
设计制作确定浮力作用下限及动力平衡的物理模拟实验装置(附图4),该装置包含:致密砂岩储层孔喉模拟单元、充气及测压单元、地层水模拟单元;
其中,致密砂岩储层孔喉模拟单元,包括 “漏斗状”的模拟孔喉(1),处于立方体状石英玻璃载体(2)的中间;
其中,模拟孔喉(1)用石英玻璃加工而成,高度50cm,孔喉直径大小从下到上由0.2mm逐渐增大到30mm;
其中,充气及测压单元,包括充气钢管(3)、甲烷气瓶(4)、压力表(5),充气钢管(3)两端各连接模拟孔喉(1)和甲烷气瓶(4),压力表(5)装在甲烷气瓶(4)瓶口处;
其中,甲烷气瓶(4)装有体积比纯度为99%的甲烷气体;压力表(5)的测量范围为0~ 6MPa,最小刻度为0.01MPa;
其中,地层水模拟单元,包括水管(6),连接在模拟孔喉(1)上部;
其中,水管(6)为塑料水管,直径2cm,高40m,其上标有最小间隔为1cm的刻度尺。
利用所述装置进行实验的步骤是:
①如附图4装置,从上部水管注水至H1高度,开始充气并不断调节气压大小,观察“孔喉”内气托水活塞式运移到突然冒气泡的临界条件,记录下此时的水柱高度H1=12.12m,气压大小P1=0.12MPa,临界孔喉直径Φ1=3mm;
②注水至H2高度,继续充气并不断调节气压大小,观察“孔喉”内气托水活塞式运移到突然冒气泡的临界条件,记录下此时的水柱高度H2=19.6m,气压大小P2=0.2MPa,临界孔喉直径Φ2=2mm;
③注水至H3高度,继续充气并不断调节气压大小,观察“孔喉”内气托水活塞式运移到突然冒气泡的临界条件,记录下此时的水柱高度H3=24.6m,气压大小P3=0.25MPa,临界孔喉直径Φ3=1.5mm;
④注水至H4高度,继续充气并不断调节气压大小,观察“孔喉”内气托水活塞式运移到突然冒气泡的临界条件,记录下此时的水柱高度H4=28.21m,气压大小P4=0.285MPa,临界孔喉直径Φ4=1mm;
⑤注水至H5高度,继续充气并不断调节气压大小,观察“孔喉”内气托水活塞式运移到突然冒气泡的临界条件,记录下此时的水柱高度H5=35m,气压大小P5=0.358MPa,临界孔喉直径Φ5=0.8mm;
⑥注水至H6高度,继续充气并不断调节气压大小,观察“孔喉”内气托水活塞式运移到突然冒气泡的临界条件,记录下此时的水柱高度H6=38.98m,气压大小P6=0.4MPa,临界孔喉直径Φ6=0.6mm;
利用实验所得数据,拟合出临界孔喉直径与相应水柱高度的相关关系为(图5):
Φ=6.285exp(-0.06H)
其中,Φ为临界孔喉直径,mm;H为对应的水柱高度,m。
利用本次实验所得数据,建立天然气膨胀力和毛细管力及静水压力的动力学平衡关系为(图6):
Pe=Pc+Pw
其中,Pe为天然气膨胀力,MPa;Pc为毛细管力,MPa;Pw为静水压力,MPa。
所述天然气膨胀力计算公式为:
P e = z · ρ g M g · R · T
其中,Z为天然气的压缩因子,无量纲;ρg为天然气的密度,kg/m3;Mg为天然气摩尔质量,g/mol;
R为气体常数,8.31433;T为天然气的地下温度,k;
所述毛细管力计算公式为:
P c = 2 σ · cos θ r
其中,σ为气水界面张力,N/m;θ为润湿角,°;r为临界孔喉半径,m;
所述静水压力计算公式为:
Pww·g·H
其中,ρw为地层水的密度,kg/m3;g为重力加速度,m/s2;H为地层水的高度,m;
确定致密砂岩储层浮力作用下限的临界孔喉半径计算模型为:
r = 2 σ cos θ Z ρ g RT / M g - ρ w gH
其中,各参数含义如上文所述。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种确定浮力作用下限及动力平衡的物理模拟实验装置,所述物理模拟实验装置包括的部件及结构关系如下:
(1)致密砂岩储层孔喉模拟单元,包括“漏斗状”的模拟孔喉(1),处于立方体状石英玻璃载体(2)的中间;
(2)充气及测压单元,用来模拟天然气充注,包括充气钢管(3)、甲烷气瓶(4)、压力表(5),其中,充气钢管(3)两端各连接模拟孔喉(1)和甲烷气瓶(4),压力表(5)装在甲烷气瓶(4)瓶口处;和
(3)地层水模拟单元,用来模拟不同的静水压力大小,包括水管(6),连接在模拟孔喉(1)上部。
2.根据权利要求1所述的物理模拟实验装置,其特征在于,所述模拟孔喉(1)用石英玻璃加工而成,高度50 cm,孔喉直径大小从下到上由0.2mm逐渐增大到30mm。
3.根据权利要求1所述的物理模拟实验装置,其特征在于,所述甲烷气瓶(4)装有体积比纯度为99%的甲烷气体。
4.根据权利要求1所述的物理模拟实验装置,其特征在于,所述压力表(5)的测量范围为0~ 6MPa,最小刻度为0.01MPa。
5.根据权利要求1所述的物理模拟实验装置,其特征在于所述水管(6)为塑料水管,直径2cm,高40m,其上标有最小间隔为1cm的刻度尺。
6.一种采用根据权利要求1所述的物理模拟实验装置来确定浮力作用下限及动力平衡的方法,所述方法包括:
(1)从上部水管注水至H1高度,开始充气并不断调节气压大小,观察“孔喉”内气托水活塞式运移到突然冒气泡的临界条件;记录下此时的水柱高度H1,气压大小P1,临界孔喉直径Φ1
(2)注水至H2高度,继续充气并不断调节气压大小,观察“孔喉”内气托水活塞式运移到突然冒气泡的临界条件;记录下此时的水柱高度H2,气压大小P2,临界孔喉直径Φ2
(3)不断改变水柱高度H3、H4……Hn,重复以上操作,记录下对应的P3、P4……Pn和Φ3、Φ4……Φn
(4)建立临界孔喉(7)直径与水柱高度的关系;
(5)建立浮力作用下限处的动力学平衡关系;和
(6)建立致密砂岩储层浮力作用下限的临界孔喉半径计算模型,进而确定浮力作用下限。
7.根据权利要求6所述的方法,其特征在于,所述步骤(4)建立的临界孔喉(7)直径与水柱高度的关系为:
Φ=6.285exp(-0.06H)
其中,Φ为临界孔喉直径,mm;H为对应的水柱高度,m。
8.根据权利要求6所述的方法,其特征在于,所述步骤(5)建立的浮力作用下限处的动力学平衡关系为:
Pe=Pc+Pw
其中,Pe为充气气压,用来模拟气体膨胀力,MPa;Pc为毛细管力,MPa;Pw为静水柱压力,MPa。
9.根据权利要求6所述的方法,其特征在于,所述步骤(6)建立的致密砂岩储层浮力作用下限的临界孔喉半径计算模型为:
r = 2 σ cos θ Z ρ g RT / M g - ρ w gH
其中,σ为气水界面张力,N/m;θ为润湿角,°;r为临界孔喉半径,m;ρw为地层水的密度,kg/m3;g为重力加速度,m/s2;H为地层水的高度,m;Z为天然气的压缩因子,无量纲;ρg为天然气的密度,kg/m3;Mg为天然气摩尔质量,g/mol;R为气体常数,8.31433;T为天然气的地下温度,k。
CN201210511391.4A 2012-12-03 2012-12-03 确定浮力作用下限及动力平衡的物理模拟实验装置以及确定浮力作用下限及动力平衡的方法 Active CN103852240B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210511391.4A CN103852240B (zh) 2012-12-03 2012-12-03 确定浮力作用下限及动力平衡的物理模拟实验装置以及确定浮力作用下限及动力平衡的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210511391.4A CN103852240B (zh) 2012-12-03 2012-12-03 确定浮力作用下限及动力平衡的物理模拟实验装置以及确定浮力作用下限及动力平衡的方法

Publications (2)

Publication Number Publication Date
CN103852240A true CN103852240A (zh) 2014-06-11
CN103852240B CN103852240B (zh) 2016-08-31

Family

ID=50860158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210511391.4A Active CN103852240B (zh) 2012-12-03 2012-12-03 确定浮力作用下限及动力平衡的物理模拟实验装置以及确定浮力作用下限及动力平衡的方法

Country Status (1)

Country Link
CN (1) CN103852240B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833789A (zh) * 2015-04-09 2015-08-12 中国石油大学(北京) 利用致密砂岩微观孔隙结构确定气水关系的方法
CN105842750A (zh) * 2016-03-24 2016-08-10 中国石油大学(北京) 确定致密砂岩浮力成藏下限对应临界孔隙度的方法及装置
CN106021788A (zh) * 2016-05-31 2016-10-12 中国石油大学(华东) 一种基于孔喉结构特征的致密储层分级评价标准划分方法
CN109885954A (zh) * 2019-03-01 2019-06-14 中国石油大学(华东) 一种纳米孔喉中流体临界注入压力的计算方法
CN109944586A (zh) * 2019-02-26 2019-06-28 中国石油大学(北京) 一种确定致密砂岩气水倒置分布关系形成条件的方法
CN113818863A (zh) * 2020-06-19 2021-12-21 中国石油化工股份有限公司 一种海洋浅层气放喷模拟实验装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060070425A1 (en) * 2004-10-01 2006-04-06 Lasswell Patrick M Electronic humidity chamber for vapor desorption to determine high capillary pressures
CN102128837A (zh) * 2011-01-08 2011-07-20 中国石油大学(华东) 多孔介质中流动泡沫结构图像实时采集实验装置
CN102645678A (zh) * 2012-05-08 2012-08-22 中国石油大学(华东) 成藏动力和孔隙结构约束下的有效储层成藏物性下限计算方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060070425A1 (en) * 2004-10-01 2006-04-06 Lasswell Patrick M Electronic humidity chamber for vapor desorption to determine high capillary pressures
CN102128837A (zh) * 2011-01-08 2011-07-20 中国石油大学(华东) 多孔介质中流动泡沫结构图像实时采集实验装置
CN102645678A (zh) * 2012-05-08 2012-08-22 中国石油大学(华东) 成藏动力和孔隙结构约束下的有效储层成藏物性下限计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
庞雄奇等: "《深盆气成藏门限及其物理模拟实验》", 《天然气地球科学》, vol. 14, no. 3, 30 June 2003 (2003-06-30), pages 207 - 214 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833789A (zh) * 2015-04-09 2015-08-12 中国石油大学(北京) 利用致密砂岩微观孔隙结构确定气水关系的方法
CN104833789B (zh) * 2015-04-09 2016-08-24 中国石油大学(北京) 利用致密砂岩微观孔隙结构确定气水关系的方法
CN105842750A (zh) * 2016-03-24 2016-08-10 中国石油大学(北京) 确定致密砂岩浮力成藏下限对应临界孔隙度的方法及装置
CN106021788A (zh) * 2016-05-31 2016-10-12 中国石油大学(华东) 一种基于孔喉结构特征的致密储层分级评价标准划分方法
CN106021788B (zh) * 2016-05-31 2017-06-30 中国石油大学(华东) 一种基于孔喉结构特征的致密储层分级评价标准划分方法
CN109944586A (zh) * 2019-02-26 2019-06-28 中国石油大学(北京) 一种确定致密砂岩气水倒置分布关系形成条件的方法
CN109885954A (zh) * 2019-03-01 2019-06-14 中国石油大学(华东) 一种纳米孔喉中流体临界注入压力的计算方法
CN109885954B (zh) * 2019-03-01 2023-04-18 中国石油大学(华东) 一种纳米孔喉中流体临界注入压力的计算方法
CN113818863A (zh) * 2020-06-19 2021-12-21 中国石油化工股份有限公司 一种海洋浅层气放喷模拟实验装置及方法
CN113818863B (zh) * 2020-06-19 2024-04-09 中国石油化工股份有限公司 一种海洋浅层气放喷模拟实验装置及方法

Also Published As

Publication number Publication date
CN103852240B (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
CN103852240A (zh) 确定浮力作用下限及动力平衡的物理模拟实验装置以及确定浮力作用下限及动力平衡的方法
Hyodo et al. Mechanical behavior of gas‐saturated methane hydrate‐bearing sediments
US10408728B2 (en) Experimental device and method for studying relationship between sediment yield behavior and radial deformation of porous media during exploitation of natural gas hydrates
Spangenberg et al. Pore space hydrate formation in a glass bead sample from methane dissolved in water
Daigle et al. Capillary controls on methane hydrate distribution and fracturing in advective systems
Rudolph et al. Mud volcano response to the 4 April 2010 El Mayor‐Cucapah earthquake
CN103575631B (zh) 岩石渗透性测试系统及测试方法
Liu et al. Numerical simulations for analyzing deformation characteristics of hydrate-bearing sediments during depressurization
Kitagawa et al. Frequency characteristics of the response of water pressure in a closed well to volumetric strain in the high‐frequency domain
Czauner et al. Regional hydraulic behavior of structural zones and sedimentological heterogeneities in an overpressured sedimentary basin
Bondarenko et al. Thermodynamic and geomechanical processes research in the development of gas hydrate deposits in the conditions of the Black Sea
Li et al. Dynamic behavior of hydrate dissociation for gas production via depressurization and its influencing factors
You et al. Methane hydrate formation in thick sand reservoirs: 1. Short-range methane diffusion
Nunn et al. Kilometer-scale upward migration of hydrocarbons in geopressured sediments by buoyancy-driven propagation of methane-filled fractures
Li et al. A common regularity of aquifers: the decay in hydraulic conductivity with depth
CN103643943B (zh) 确定连续型致密砂岩气藏分布范围的模拟实验装置及方法
McMahon et al. Natural hydrogen seeps as analogues to inform monitoring of engineered geological hydrogen storage
Sundal et al. Variations in mineralization potential for CO2 related to sedimentary facies and burial depth–a comparative study from the North Sea
CN204614346U (zh) 海底烃类渗漏模拟实验装置
Dimri et al. Reservoir geophysics: Some basic concepts
Li et al. Methane hydrate recycling offshore of Mauritania probably after the last glacial maximum
Liu et al. Evaluation of the role of water-shale-gas reactions on CO2 enhanced shale gas recovery
Yan et al. Physical experimental study on the formation mechanism of pockmark by aeration
Šliaupa et al. Prospects of Geological Storage of CO2 in Lithuania
Yamamoto et al. Large-scale numerical simulation of CO2 geologic storage and its impact on regional groundwater flow: A hypothetical case study at Tokyo Bay, Japan

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant